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ABSTRACT

Firstly, a priori estimates are obtained for the existence and uniqueness of solutions of two dimensional KDV
equations, and prove the existence of the global attractor, finally geting the upper bound estimation of the Haus-
dorff and fractal dimension of attractors.
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1. Introduction

Studies on the infinite dimension system with high dimension have obtained many achievements in recent years,
such as [1-5]. In the paper [6,7]. The authors study the estimates of global attractor for one-dimensional KDV
equation and its dimension. Based on these work, this paper further studies the global attractor of two-
dimensional KDV equations and its upper bound estimation of the Hausdorff and fractal dimension of
attractors.

The following form 2D-KDV equation is studied in this paper

U +Ug +au+B(uv) +yA%u=f(xy), (x,y)eQ (1.1)
u (% yst)=v, (xyit), (xy)eQ (1.2)
u(x,y;0)=u,(xy), (xy)eQ (1.3)
u(xyst),, =0, Au(x,y:t) =0, (x.y)eQ (1.4)

where «,f,y are positive constants. When «a = f =y =0, the equation is the KDV equation.

The rest of this paper is organized as follows. In Section 2, we introduce basic concepts concerning global
attractor. In Section 3, we obtain the existence of the uniqueness global attractor, which has fractal and Haus-
dorft dimension.

In this paper, C denotes a positive constant whose value may change in different positions of chains of
inequalities.

2. Preliminaries

Denoting by |-|Lp the normin L (Q), 1< p <oo, for simplicity, we denote by || and ||m the norm in the
case p=2 and p=co, respectively. Suppose that H =L*(Q), H'(Q) is a Hilbert space for the scalar
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product
0

(), =)+ X(0%0"). D=2
j=1
According to the Poincare inequality and (1.2) we can get
V| <C,|Vul.
In fact,

Uy =V, = Uy =V, =[u,|<

Vi

<ClAu|=|v,|<C

Vi

<ClAu|=|v|<C,|Vul

Now, we can do priori estimates for Equation (1.1)

2A2

Lemma 1. Assume that f (x,y)e L*(Q),u,(x,y)e L’ (Q), a>ﬂc then
0 2
V4

i (1085
|W&WUFSWJKYW6P . = zszF&eP ’]J, @1

Certainly there exist t, =t, (Q)>0, such that
lu(x.y:t) <C,, (2.2)
Proof. We multiply u for both sides of Equation (1.1), we obtain
(ut,u)+(uXXX,u)+az(u,u)+[)’((uv)x ,u)+7(A2u,u) =(f.u), 2.3)

where (U,Uy, ) =—(Uy,,U), we have

(U U ) =0, 2.4)
2 > BC*
ﬂ‘((uv)X ,u)‘ :ﬂ|(uv,ux) < B|u], [Vul]v| < Bu| [Vu|” < BC|Au|ju] < ¥ |Aul +4—}/|u| , (2.5)
[C* 14 2
|@ﬁﬂﬂW”Sjg%ﬂ+ﬁTAﬂs (2.6)

Substituting (2.4)-(2.6) into (2.3) gets

2n2
L1dpafa-L5 |uf <
2

sl
2 dt v p°C?

Using the Growall inequality, we can get

(g £C [, g
sl <atue 2 zz]lflz[leiz ,TJ

ﬂ2c2(2a_ﬁ C
y n
'82c2
Lemma 2. Assume that f (x,y)e Hy(Q),u, (X, y)eHy(Q), a> > then

Y

Vi (x,y) +2aC

|Vu(x,y;t)|2 £|Vu0(x,y)|e’2’“+| (x y)|2 Bl (l—e’z‘”), 2.7
a
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certainly, there also exist t, =t, () >0, such that
P 2
lim|[Vu(x, y:t)| <C;, (2.8)
Proof. We take parts of the scalar product in L*> of (1.1) with —Au :
(Up, —AU) + Uy, —AU ) + e (U, —AU ) + [)’((uv)X ,—Au)+ 7(A2u,—Au) =(f,-Au), (2.9

where (u —Au):(Au u ),thus

XXX 2 2 TIXXX

(Ups—AU) =0, (2.10)

B|((uv), . ~au)|= Bl(uv,Au, ) < Blul, [Vu][vau], @.11)
Noticing

|u|, < C|VAu|§ |u|§, (2.12)

|Vu| < c|VAu|§ |u|§, (2.13)

According to (12) and (13), Lemma 1 and Young inequality, we can obtain that
4
ﬂ‘((uv)X ,—Au)‘ < C|VAu|§ ujs <y|vaul’ +C, (2.14)

2

1 »
|(f,—Au)|£|Vf||Vu|£Z|Vf| + v

> (2.15)
Using (2.10), (2.14) and (2.15), we can get
Ld1oup + Z vl < L |vif 4 c
2 2a
Using Growall inequality, we have

2
. V| +2aC (1-e™)

VUl <[vu,|* e -

a u
ﬂZCz
Lemma 3. Assume that f (x,y)e H; (Q),u,(x,y)e Hy (Q), a> > then
Ve
Af[ 42
|Au(x, y;t)|2 < |Au0 (x, y)|e‘2”‘t +||+ac(l—e‘2“‘), (2.16)
a
Thus there exists t, =t, () >0, such that
|Au(x, y;t)[<C,, (2.17)
Proof. We multiply A’u for both sides of Equation (1.1), we obtain that
(Ut,AZU)-l—(UXXX,AZU)+Q(U,A2U)+ﬂ((UV)X ,Azu)+y<A2u,A2u) = ( f ,Azu), (2.18)
where
(UgorA7U) =0, (2.19)
Noticing
1
lul, <cla’uft |u|3, (2.20)
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1
|au] < C[a%uf [vu,
Using (2.20)-(2.21), we obtain that
3
u4

19 2
ﬁ‘((uv)X ,Azu)‘ < BClul, |Au||A2u| <C |A2u|12 [Vu[s,

According to Lemma 1, Lemma 2 and Young inequality, we get that

,B‘((uv)X .Au)

‘(f,Azu)

Substituting (2.19)-(2.24) into (2.18) gets

< ;/|A2u|2 +C,

<[Au|af| < ZJAuf + - |af
2 2a

L4 P+ Zauf < Ljaff +c
2 dt 2 2a

Using the Growall inequality, we can get

2
+|Af| +2aC (1-e™)

2

|auf” <|Au,| e
a L]

22
Lemma 4. Assume that f (x,y)e H; (Q),u,(x,y)eH; (Q), a> ﬁZC then
/4

|VAu(x, y;t)| <

here Q and |u0|H5, |f|Hg have relations.

Proof. We multiply t*A’u for both sides of Equation (1.1), we obtain that

u,t’A’u)+(u
( )+

XXX 2

we have

2

1
t2VAuU| ,

(ut,t2A3u) = —%%hVAur +

y(A%.EA) =~y vyl

(uXXX,t2A3u):O,

‘(f,A3u)

a‘(u,&u)‘ < oz|Vu||VA2u|2 < %|VA2u|2 +C,

= |Vf||[va’u|< Z|VA2u|2 +i|vf I,
6 2y

ﬁ‘((uv)X ),A3u‘ = ‘(V(uxv+ uv, ),VAZU)‘ <C(3|Vul, |Aul+|u], |VAu|)|VA2u|,

Noticing

lul, <Claup|ufz,

OPEN ACCESS

t2A3u)+a(u,t2A3u)+ ﬁ((uv)X ,t2A3u)+ y(Azu,tzASU) = ( f ,t2A3u),

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

2.27)

(2.28)

(2.29)

(2.30)

2.31)

(2.32)

(2.33)
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1
Vul, <Claufs VAl (2.34)

2 3
VAU < Clufs[valufs, (2.35)
Taking (2.33)-(2.35) into (2.32) and using Young inequality, we have

ﬁ‘((UV)X ,A“U)‘ s%|VA2u|2 +C, (2.36)
namely,

7/ 2
/J"((uv)x ,t2A3u)‘ £g|tVA2u| +C, (2.37)
Taking (2.27)-(2.37) into (2.26), we obtain
v + v <civef
So, we get

|VAu| s%
..

From [8], we have

Theorem 2.1 Let E be a Banach space, {S(t)} are the semigroup operators. S(t):E—E, S(t)S(r)
=S(t+7), S(0)=1,here lis unit operator.Set S(t) satisfy the following conditions:

1) S(t) is bounded. namely VR >O,|u|E <R, there exist a constant C(R), such that |S(t)u|E
<C(R)(te[0,+x)).

2) There exist a bounded absorbing set B, — E, namely VB c E, there exist a constant t;, such that
S(t)BcB, (t>t,).

3) When t>0, S (t) is a completely continuous operator.
Then, the semigroup operators S (t) exist a compact global attractor A.

3. Global Attractor and Dimension Estimation

3.1. The Existence and Uniqueness of Solution

p’c’
2y

Theorem 3.1 Assume that f(x,y)eH;(Q) and u,(x,y)eH;(Q), a> there exists a unique

solution
u(x y;t)e L”(0,T;H7 (Q)), G.1.1)

Proof. By the Galerkin method, we can easily obtain the existence of solutions. Next, we prove the
uniqueness of solutions.
Set @=u, —U,, where U, (i=1,2) are two solutions of (1.1)-(1.4). then @ satisfies

O, + O +ao+ B(UV, —U,V, )+ /A 0 =0, (3.1.2)
UV, = ui_|'(ui ), dy, i=12, (3.1.3)
w(x,y;0)=0, (3.1.4)

Take the inner product with @ , we gets

%%'wr +0’|a’|2 +B(uy, _uzvz’w)+7|Aw|2 =0, (.1.5)

Furthermore
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%|a)|2 < 2ﬁ|(U1V1 - Uszaa’)| + 20{|a)|2 —2}/|Aa)|2
< Zﬂ‘(a)J.UZXdy + ulijdy,w)‘ + 20:|a)|2 — 27|Aa)|2 (3.1.6)

<C (|Vu2|w |a)|2 +|u1 |Va)||a)|)+ 20:|a)|2 —27/|Aa)|2 ,

|oo

Noticing
lu|, <C|vuft uf:. (3.17)
|Vul, < C|Au|i |Vu 1 (3.1.8)
Vol <C|aafs |of: (3.19)
So, we have

Lol <Clawfs[7unfs[of +CIvufi|ufs Volo]+ 2ajof -2/ |aaf
From Lemmas 1-3, we have
|Au,|<C,|Vu,|<C,|Vu|<C,|u|<C
Using Young inequality, we obtain
Lof <Clof
Using Gronwall inequality, we have
of <Jo(0)f = =0
So, we can get @ =0. g

3.2. Global Attractor

/32(:2

Theorem 3.2 Assume that f(x,y)e H;(Q) and u,(x,y)eH;(Q), a> 5
7

there exists a compact

global attractor A, such that
1) S(t)A=At>0
2) limdist(S(t)B,A)=0
here, 'B” is a bounded setin HZ(Q).

dist(X,Y ) =supinf|x—y

xeX YEY

E°

S(t) are the semigroup operators.
Proof. Let us verify theorem 2.1 conditions (1), (2), (3). In Theorem 3.2 conditions, we know that there exist

the solution semigroup S(t), E=H;(Q), S(t):H;(Q)—>H,;(Q). form Lemmas 1-3, we can get
that VB < H; (Q) isabounded setand B included in the ball {|U|H3 < R} ,

|S(t)u0|ig =[u(x, y;t)|i|2 <|u,|" +C,|f[ +C, (t=0,u, €B).

This shows that S(t) (t > 0) is uniformly bounded in H; (©) . Furthermore, when t > max {tl,tz,t3} , We
have

[S(t)uif,, =[u(xyst)] <2(C,+C,+C,)
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so, we can get that B> {u(x, y;it)e H; (Q),|U|H2 <42(C, +C; +C4)} is bounded absorbing set of
semigroup S(t). 0
From Lemma 4, we have |VAu|< ? (t>0), |u0|H2 <R. Since H;(Q)—>H;(Q) is tightly embedded.

So the semigroup operator S(t): Hg (Q)— Hg () for Vt>0 is continuous.

3.3. Dimension Estimation

Considering the following first variation equations

o, (%, yst) + L(u(x yst)) o (x, yit) =0, (3.3.1)
v(x yit) = Ju, (x, yst)dy, (33.2)
w(x,y;0)=0, (3.3.3)
o(xyit)|,, =0, Ao(x,yt),, =0 (3.3.4)

where

o(X,y;0)e Hy (Q)
L(u (t))a)(t) = o, (1)+ao(t)+ fo, (t)v(t) +,B_[a)XX (t)dy+ 7A2a)(t)

It’s easy to prove that the equation has a unique solution. (X, y;t)e L” (O,T; H, (Q)) )
Furthermore, Let u(t)=S(t)u,, (DS(t)u,)@, =a(t), St)(Uu,+ao,)= u'(t), we can get VR, R, and T

are constants. There exist a constant C=C(R,R,,T) such that for u,, ,, t with |UO|H'( o <R
|a)O|H(1](Q) <R,, |t|ST , we have ’
u*(t)—u(t)—a)(t)|H6(Q) < Clapfiy gy (3.3.5)

That suggests that S(t) is Frechet differential at U, (X,Y).
Let V,(t),V;(t),--.Vy (t) be the solutions of the linear variational equations corresponding to the initial

value Vl( )= 51, ,(0)=6,,+.Vy (0) =&, . We have

d

dt|v1( JAV, (t) A+ AV () =2tr (L(u(t))-Qy )M (D) AV, (1) A-AV, ()] =0, (3.3.6)

here A represents the outer product, tr represents the trace, Q, means that the L’ (Q) to the orthogonal
projection on the span {V1 (t).V, (), Vy (t)} . So, from (3.3.8) we can obtain

oy (t)=sup sup |V, (t)AV,(t)A-- AV, ()| , (3.3.7)

UgeAg, el? |&|<1
where o, 1is called Secondary index, namely

oy (t+t) <oy (t)oy (1), 1’20

$0
1
lim oy (t) =I1,, 1<n<N
I, <e™
here

O —hmsup(mf inf (tr (L (s(7)u, )Qu ())d )j

t—o upeAt

Theorem 3.3 The global attractor A of Theorem 3.2 has finite fractal and Hausdorff dimension in
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Hy (Q),
dy (A)< 3, dp (A)<23,, (33.8)

J, 1s a minimal positive integer of the following inequality

_ 2 2
Jo=c 3a+x/a J;; +8ab+2ac, (33.9)

here
c,C’ |u|
2 e

a=2C boa+Lc |aul, +2c,|ul, |aul, o=
6 2 2

Proof. From [9], we need to estimate tr(L(u (t))-QN) of the lower bound. Let ¢,,¢,,---,p, be the
orthogonal basis of subspace of QL (Q),

N

tr ( L(U (t)) ’ QN ) = Z{((Djxxx + ﬂfﬂij + ﬁ_[(/)jxxdy + 7A2¢j + a(/)j ,§0j )}

) (3.3.10)
2 2
" 1{0‘|¢1| +r[ag)| + Blov+ufondye )}
=
where
(2v.0;)=—(0;.v,0; +Vo,,)
So, we can obtain
(p30,) =5 (ve0?)
Furthermore
B _zNj((pjxv,(pj ) =§ > (ve-2}) sgc ﬁ“(pf v,|, < g‘clﬁ‘fpi |Au| . (3.3.11)
j=1 j=1 j=1 j=1
‘(u_l.(ojxxdy: (pj )‘ = ‘(J.(Djdy!uxxgoj +2ux¢jx +U(pjxx)
:‘(C2y¢j$uxx¢j +2ux¢jx +u¢jxx) (3312)
<C, |U|w K(pj U@+ Zux(ojx + U(ojxx)
<C, |u], |Aul, |¢’J |2 +C,ul, ‘(4‘71 20,0, )| +Csul, ‘(% Uy )|
((0]- ,ZUX(DJ-X ) = _2(¢jxux +¢juxxa(0j ) = _2(¢jxux’¢j )_2<uxx9¢7§)
hence
(9,200, ) = (U0}, (3.3.13)
((oj’uwjxx)=_(¢jxu5¢jx)+%(¢j2’uxx)’ (3314)
Taking (3.3.15)-(3.3.16) into (3.3.14), we can get
‘(uj'gpjxxdy,(pj )‘ <Cqlul, (§|Au|w |¢j2|+|V(pjz||u|wj, (3.3.15)

Set 4;,]= (1, 2, 3,---) are eigenvalues of —AU =AU and ¢, are the corresponding eigenfunctions. Satisfying

1 2
|V¢’J |2 :’11’|A¢"J|2 :/112’|‘/’1|2 =14 {(J _21)2 1] ~C1, (3.3.16)
S0, we can get
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tr(L(u(t))-Qy)= 7§N}1§ - Na—g NC, |Au|, —§C6N |ul |Au], —Cq |ul2 izj, (3.3.17)
i=t j=1
Let
yC’ /] 5 c,C’
a:—ggb:a+zc¢wk+ECJQJAQWC: ; |ul, . (3.3.18)
when
c—3a++/a’+c? +8ab+2ac
N >
4a
we have

S0, we can obtain
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