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ABSTRACT 

In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential 
Equation has been discussed. Firstly, the fractional complex transformation has been implemented to convert 
nonlinear partial fractional differential Equations into nonlinear ordinary differential Equations. Afterwards, 
the (Gʹ/G)-expansion method has been implemented, to celebrate the exact solutions of these Equations, in the 
sense of modified Riemann-Liouville derivative. As application, the exact solutions of time-space fractional Bur-
gers’ Equation have been discussed. 
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1. Introduction 

Nonlinear partial differential equations have shown a variety of applications in almost every field, such as in 
electromagnetic, acoustics, electrochemistry, cosmology, biological and material science [1-4]. Fractional dif- 
ferential equations can be considered as the generalization form of the differential equations, as they are in-
volved with the derivatives of any real or complex order (for details see [3]). 

In literature a lot of work has been done on nonlinear partial differential equations [5-8] rather than nonlinear 
partial differential equations (NPDEs) of fractional order. Recently, some new techniques have been introduced, 
by different authors, to find traveling wave solutions for NPDEs of fractional order [9-11]. 

In this article, the  G G -expansion method [5] has been applied in the sense of modified Riemann- 
Liouville derivative to find the exact solutions of space-time fractional nonlinear Burgers’ Equation, which has 
the following form [12]: 
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The rest of the letter is organized as follows, in Section 2 the basic definitions and properties of the fractional 
calculus are considered regarding to modified Riemann-Liouville derivative. In Section 3, the  G G -expan- 
sion method has been proposed to find the exact solutions for NPDEs of fractional order with the help of frac- 
tional complex transformation. As an application, the new exact solutions of nonlinear Burgers’ Equation have 
been discussed in Section 4. In last Section 5, the conclusion has been drawn. 

2. Preliminaries and Basic Definitions 

In this section, the method has been applied in the sense of the Jumarie’s modified Riemann-Liouville derivative 
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[13,14] of order  . For this, some basic definitions and properties of the fractional calculus theory are being 
considered (for details see [3]). Thus, the fractional integral and derivatives can be defined following [13,14] as: 

Definition 2.1 A real function   , > 0f s s , is said to be in the space ,C R   , if there exists a real number 
>p   such that    1

pf s s f s , where    1 0,f s C  , and it is said to be in the space mC  if ,mf C  
m N . 

Definition 2.2 The Jumarie’s modified Riemann-Liouville derivative, of order  , can be defined by the 
following expression: 
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Moreover, some properties for the modified Riemann-Liouville derivative have also been given as follows: 
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3. The (Gʹ/G)-Expansion Method for Nonlinear Fractional Partial Differential Equations 

In this section, the  G G -expansion method [15,16] has been discussed to obtain the solutions of nonlinear 
fractional partial differential equations. 

For this, we consider the following NPDE of fractional order: 
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where u  is an unknown function and P  is a polynomial of u  and its partial fractional derivatives along 
with the involvement of higher order derivatives and nonlinear terms. 

To find the exact solutions, the  G G -expansion method can be performed using the following steps. 
Step 1: First, we convert the NFPDE into nonlinear ordinary differential Equations using fractional complex 

transformation introduced by Li et al. [17]. 
The travelling wave variable 
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where ,K L  and M  are non-zero arbitrary constants, permits us to reduce Equation (2) to an ODE of 
 u u   in the following form 

 , , , , 0.P u u u u                                          (4) 

If the possibility occurs, then Equation (4) can be integrated term by term one or more times. 
Step 2: Suppose that the solution of Equation (4) can be expressed as a polynomial of  G G  in the form: 
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where i  s are constants and  G   satisfies the following second order linear ordinary differential equation. 

      0,G G G                                         (6) 

with   and   as constants. 
Step 3: The homogeneous balance can be used, to determine the positive integer m , between the highest or-
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der derivatives and the nonlinear terms appearing in (4). 
Moreover, the degree of  u   can be defined as  D u m    , which gives rise to the degree of the other 

expressions as follows: 
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Therefore, the value of m  can be obtained for the Equation (5). 
Step 4: After the substitution of (5) into (4) and using Equation (6), we collect all the terms with the same or-

der of  G G  together. Equate each coefficient of the obtained polynomial to zero, yields the set of algebraic 
equations for , , , ,K L M    and  0, 1, 2, ,i i m     . 

Step 5: After solving the system of algebraic equations, and using the Equation (6), the variety of exact so- 
lutions can be constructed. 

4. Application of Burgers’ Equation 

In this section, the improved  G G -expansion method have been used to construct the exact solutions for 
nonlinear space-time fractional Burgers’ Equation (1). 
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It can be observed that the fractional complex transform 
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where K  and L  are constants, permits to reduce the Equation (7) into an ODE. After integrating once, we 
have the following form: 
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C LU KU bK U                                         (9) 

where C  is a constant of integration. Now by considering the homogeneous balance between the highest order 
derivatives and nonlinear term presented in the above Equation, we have the following form 
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where 1 0 1, , , K    and L  are arbitrary constants. To determine these constants substitute Equation (10) 
into (9), and collecting all the terms with the same power of  G G  together, equating each coefficient equal 
to zero, yields a set of algebraic Equations. 
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After solving these algebraic equations with the help of software Maple, yields the following results. 
Case 1 For the values: 
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Straightforward simplification of Equation (10) yields, the following equation 
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                                    (11) 

From Equations (6) and (11), we have the following travelling wave solutions. 
If 2 4 > 0  , then we have the following hyperbolic solution 
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If 2 4 < 0  , then we have the following trigonometric solution 
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and if 2 4 0   , then we have the following solution 
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Straightforward simplification of Equation (10) yields, the following equation 
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From Equations (6) and (12), we have the following travelling wave solutions. 
If 2 4 > 0  , then we have the following hyperbolic solution 
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If 2 4 < 0  , then we have the following trigonometric solution 
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and if 2 4 0   , then we have the following solution 
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where A  and B  are arbitrary constants. 

5. Conclusion 

The  G G -expansion method has been extended to solve the nonlinear partial differential equation of frac- 
tional order, in the sense of modified Riemann-Liouville derivative. First, the fractional complex transformation 
has been used to convert the fractional equations into ordinary differential equation. Then  G G -expansion 
method has been used to find exact solutions. As an application, the new exact solutions for the space-time frac- 
tional Burgers’ Equations have been found. It can be concluded that this method is very simple, reliable and 
proposes a variety of exact solutions to NPDEs of fractional order. 
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