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ABSTRACT

In this note, the ideas employed in [1] to treat the problem of an ellipsoid intersected by a plane are applied to the analo-
gous problem of a hyperboloid being intersected by a plane. The curves of intersection resulting in this case are not only
ellipses but rather all types of conics: ellipses, hyperbolas and parabolas. In text books of mathematics usually only
cases are treated, where the planes of intersection are parallel to the coordinate planes. Here the general case is illus-

trated with intersecting planes which are not necessarily parallel to the coordinate planes.

Keywords: Hyperboloid; Intersection Equation of Hyperboloid and Plane

1. Introduction

The problem of a hyperboloid being intersected by a
plane is described in Section 1. The means to treat the
problem are provided in Sections 2, 3 and 4. In the end of
Section 4 first results can be formulated in Corollaries 3
and 4. Further results concerning the center of the conic
of intersection are given in Section 5. Finally in Section 6
the case of a parabola as intersecting curve is treated.

Let a hyperboloid be given with the three positive semi
axesa, b, c

2 2 2
%+%—f—z — 41, 1)

where +1 on the right hand side of (1) corresponds to a
hyperboloid of one sheet, —1 on the right hand side of
(1) to a hyperboloid of two sheets. Let furthermore a
plane be given with the unit normal vector

n=(n,n,n)

which contains an interior point or a boundary point
q= (ql, 0,5, )T of hyperboloid (1). A plane spanned by

T
s

vectors I = (11,1, )T , $=(S.5,.5, )T and containing
the point q is described in parametric form by

T

@

Inserting the components of X into the Equation of
hyperboloid (1) leads to the line of intersection as a

X =q+tr +us with X =(%,%,X)
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quadratic form in the variables t and u. Let theTscalar
product in R’ for two vectors V=(V,V,,v;) and

w=(W,w,,w,)" be denoted by

(V,W) = W, + VW + VW

With the diagonal matrices
D, = diag(l,l,ilj
- ab

the line of intersection has the form:

(D,r,D.r) (DJ,DS)J[t]

(t,u){( D,r,D.s) (D,sD.s))lu

+2((D,q,D_r),(D,a, D_s))(:] (3)

+1-(D,q,D_q).

As Q is an interior point or a boundary point of hy-
perboloid (1) the right-hand side of Equation (3) is non-
negative. Since (D,x,D_y) need not be a scalar prod-
uct in R’, the 2x2 matrix in Equation (3) is in gen-
eral no Gram matrix. If the 2x2 matrix in (3) is posi-
tive definite, then the line of intersection is an ellipse.

Let r and S be unit vectors orthogonal to the unit
normal vector n of plane (2)

(r,r)=rl+r)+r’ =1, @

(n,r)=nr+nr,+nr, =0,
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(s,s)=5+s +s =1,
(n.s)=ns +n,s, +ns =0,

and orthogonal to eachother
(r,s)=rs+1,5s, +rs =0. (6)

Furthermore vectors r and S may be chosen such
that

)

¢ . I.
(D+r,Dfs):;—§+E)—‘?—z:—§:0 )
holds. This will be shown in the next Section. Condition
(7) ensures that the 2x2 matrix in (3) has diagonal
form.
In case (D,r,D.r)=0 and (D,s,D_s)#0 the line
of intersection reduces to

(D,r,D.r)(t-t,)" +(D,s,D s)(u-u,)’

(®)
—+1-d
with
‘o (D,q,D.r) u - (D,q,D_s) ©)
" (Dr,Dr)” °  (D,sDs)
and
D,q,D.ry (D,gD.s)
d=(D,qDq)- 2201 _(DADs)

(D,r,Dr) (D,sD.s)

In case d=+1 Equation (8) can be written as a conic
in translational form

(t—to)2 +(u—u0)2 .

= (11)
al 612
in the variables t and u with
41— +1-
m= g = PO )
(D,r,Dr) (D,s,D.s)

For (D+r, Dr)=0 and (D,s,D_s)#0 the line of
intersection is of the form

2(D,q,D.r)t+(D,sD.s)(u-u,) =£1-d  (13)
with

2
= _M and d = (D+q, qu)_w

(D,sDs) (D,sDs)’

If (D,q,D_r)=0 holds, (13) represents a parabola in
the variables t and u. This will be discussed further in
Section 6.

In order to show that the expression d in (10) is in-
dependent of the choice of g this vector may be de-
composed orthogonally with respectto n:

0

o =xn+pur+vs with & =(q,n) (14)
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where x is the distance of plane (2) from the origin.
Substituting ¢ into (10) one obtains employing (4), (5),
(6) and (7)

d=«2 (D+n,D7n)—(D+n’D‘r) _(D+n,D_s) J (15)

(D,r,D.r) (D,sD.s)

The following rules of computation for the cross
product in R’ ([2], p.147) will be applied repeatedly
later on. For vectors X,y,zZw of R’ the identity of
Lagrange holds

(xxy,zxw)=(x,z)(y,w)—(y,z)(x,w) (16)

and the Grassmann expansion theorem for the double
cross product

xx(yxz)=(x,z2)y-(x,y)z 17)

2. Construction of Vectors r and s

Let r be a unit vector orthogonal to the unit normal
vector n of the plane, so that Equations (4) hold. A
suitable vector S is obtained as a cross product

s=nxr.

Then Equations (5) and (6) are fulfilled: s is a unit
vector, as can be shown by the identity of Lagrange (16),
utilising (n,n)=1, (r,r)=1 and (n,r)=0:

(s,s):(n><r,n><r):(n,n)(r,r)—(n,r)2 =1.

Furthermore one obtains according to the rules apply-

ing to the spar product:
(n,s)=(n,nxr)=det(n,n,r)=0,

(r,s)=(r,nxr)=det(r,n,r)=0.

In case Equation (7) is not fulfilled for the initially
chosen vectors r and s, i.e. (D,r,D_s)=0, the fol-
lowing transformation may be performed with @ € [-n, )

f = coswr +sin @S,
§=—sinwr +cos wS.

The transformed vectors 7 and S satisfy the fol-
lowing conditions: (f,F)=1, (n,f)=0 and $=nxFf,
which imply conditions (4), (5) and (6). The expression

(D,7,D_8)=((D,s,D_s)—(D,r,D.r ))%sin 20
+(D,r,D_s)cos2w
becomes zero, when choosing @ such that

(D,r,D_r)—(D,s,D.s)

= cot2
2(D,r.D.s) o

holds.

Corollary 1: For the unit vectors r and n ortho-
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42 P. P. KLEIN

gonal to each other and S=nxr the following state-
ment holds:

r’+s +n" =1 for i =1,2,3.

This statement follows by substituting the definition of
s and utilising (n,n)=1, (r,r)=1 and (n,r)=0.
For i =1 one obtains for instance:

R2+s+n =r2+(nr-nn) +n
=r’+nr;
=2 =n (1-r7)=2n,nnr -0 (1-1) ) +1
:rlz—nZ(r1 +r2) 2n,r,n,r, — n3( +ry )+1
=12 (1-n3 =3 )= (1, + 0y, ) +1
=12 —(-nr) +1=1.

—-2n, N, + 170 +1-n —n;

3. A Quadratic Equation

Theorem 1: Let n be the unit normal vector of the plane

and let vectors r and s satisfy (r,r)=1, (n,r)=0,
S=nxr and condition (7). Putting
r2 rZ r2
B, =(D,r,D. r):? ?—%,
s.s_s o
ﬁZZ(D+S,D73):?+b—Z—g,

B, and p, are solutions of the following quadratic
Equation:

1 1 1 1 1 1
w5z (g nlaw e
2 2 2
- b?lc2 - a??:2 " a?if =0

19

Proof: Utilising Corollary 1 one obtains:
+s 1+s
Bi+p,= b _3&
_ 1—2nf +1—n22 _1-n
a b’ c’
e e e
Ca b? c?

e e e Py
¢’ a c a b
Applying diagonality condition (7) and the identity of
Lagrange (16) leads to:
Bp,=(D,r,D.r)(D,sD.s)
=(D,r,D.r)(D,s,D_s)—-(D,r,D.s)’  (20)
=(D,rxD,s,D_rxD_s).

r+§

For the cross products D,r xD,S one obtains:
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+ S —Sh
g & § bc
Dr><Ds:r—1 L ir_3= islr3_rlss
T ja b ¢ ac Q1)
i i ii ns —sh
a b c ab
=D, (rxs)
with the diagonal matrices
2 1 1 1
D, =diag| +—,+—,— 22
B g[ bc’ ac abj (22)

According to Grassmann’s expansion theorem for the
double cross product (17)

D, (rxs)=D, (rx(nxr))
=D, ((r.r)n—(r,n)r)=D,n,
follows, since (r,r)=l and (r,n):O. Applying (20),
(21), (23) one obtains:

(23)

2
B =(Bnbn)=—-Eoe 2 @4)

b’c? a’c® a’b?

O
Corollary 2: Under the assumptions of Theorem 1 the
following three pairs of Equations are valid:

D.rxD,s=D, (rxs)=D,n,
D,nxD,r =D, (nxr)=D,s,
D,sxD,n=D, (sxn)=D,r.

The first pair of Equations was verified in the proof of
Theorem 1. The second and the third pair of Equations
follow analogously.

4. A Formular for d

Theorem 2: Under the assumptions of Theorem 1 with
B, #0 and f,#0 the expression for d in (15) is
given by:

2
K

= , 25
an +b’n; —c’n (23)
where «x is taken from (14).
Proof: The verification of (25) consists of three steps.
Step 1: Applying the identity of Lagrange (16) the
following statements hold:

(D,n,D_n)(D,r,D._r)—(D, n,Dfr)2
=(D,nxD,r,D_nxD.r), 26)
(D,n,D_n)(D,s,D_s)— (D+n,D_s)2
=(D,nxD,s,D_nxD_s).
AM
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With Corollary 2 and the diagonal matrices
D* =diag(a,b,*c) 27
one obtains:
(D,nxD,r,D.nxD.r)
(D*s, D’s)
(D,nxD,s,D_.nxD_s)
(D*r, D‘r)
a’b’c’
and it follows by substituting (28) into (26)
(D,n,D.r )2 =(D,n,D_n)(D,r,D.r)
(D*s, D's)
e
(D,n, D_s)2 =(D,n,D.n)(D,s,D.s)
(D+r, Dr )
e
Introducing expressions

7 =(Dr,Dr)=a’’ +b’r) —c’r),

=(DB,sDs)=-

>

(28)

:(Iir,lj_r):—

(29

—(D's. D s)=a’s + b’ - *<2 (30)
}/2—( S, s)—a§+ s, —C’s;,

one obtains from (29) using (18) and (30)

2 7
(D,n,D.r) =(D+n,D,n)ﬂ1+W§C2»
5 7
(D+n: D—S) :(D+n’ D—n)ﬁZ + a2b1202 ’
Combining both Equations (31) for S, #0 and
B, #0 leads to

D.n,Dr)y (D.n,Ds)
+ + +

G

(D,r,Dr) (D,sD.s) (32)
"B+ 7.5
=2(D.n,D_ e i
(D.n n)Jrazbzcz/i’l,B2

Step 2: Analogously to the verification of (24) the ap-
plication of the identity of Lagrange (16) yields:

77, =(Dr,Dr)(D*s,D’s)
- (D*r, Dr )(D*s, D’s)—(D*r, D’s)2 +(D*r, D’s)2
= (D*r xD*s, DT x D’s)+(D*r, D’s)2 .
With the diagonal matrices
D* = diag(bc, +ac, ab)

for the cross products D*r x D*s holds:

Open Access

D*rxD*s=D"(rxs)=D"n.
Therefore one obtains
~ ~ 2
175 :(D*n,D‘n)+(D+r,D‘s)
or
717, =—a’c* (D,n,D.n)+(D'r,D’s) . (33)
In contrast to the verification of (24), where diagonal-
ity condition (7) holds, the analogous expression
(D*r, D’S) in (33) need not be zero.
Step 3: Applying the identity of Lagrange (16) again
leads to
(D,nxD,r,D.nxD_s)=(D,n,D.n)(D,r,D._s)
-(D,n,D_s)(D,r,D.n).
Substituting the involved cross products according to

Corollary 2 and considering diagonality condition (7) one
obtains

(I5+s, D_r) =(D,n,D_s)(D,n,D.r),
or
( D's,Dr )
a’b’c’
Squaring both sides of (34) and substituting the ex-
pressions from (31) leads to:

=(D,n,D_s)(D,n,D.r). (34

(D's, D’r)2 =(a’0’c’(D,n,D.n) B, +7,)
~(a2b2c2 (D,n,D.n)A, +7z)
=a'b'c*(D,n,D.n)’ 45,
+(nB, +7,5,)a’b’c’ (D,n,D.n)+77,.

Substitution of (33) results in Equation
a’v’c’(D,n,D_n)
[ a0’ (D,n,D.n) B8, + (13 +7,8,) 1] =0,
or

nB+ 7.5 :1—a2b2C2(D+n,D_n)ﬂ1,B2. (35)
Substitution of (35) in (32) leads to:

D.n,Dr) (D.n,Ds)
+ + +

(D,r,Dr) (D,sD_s) (36)
1
=(D.,n,Dn)+———.
( + ) a2b2czﬁlﬂ2
Because of (24)
2B’ B B, = —(alm +b’m —c’ny) (37)
holds and with (15) one finally obtains relation (25)
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44 P. P. KLEIN

2 2
d=x’ (D+n,Dfn)—(D*n’D*r) _(b.n,Ds)
(D,r,D.r) (D,sD.s)

2
K

an’ +b’n? —c’n}’
O

Corollary 3: Under the assumptions of Theorem 1 and
in case of a hyperboloid of one sheet assuming S >0
for i=1,2, in case of a hyperboloid of two sheets as-
suming B >0 for i=12 and d<-1, the intersec-
tion of hyperboloid (1) and a plane with unit normal
vector N and distance x from the origin is an ellipse,
the area F of which is given by:

2
k- labc .
F =7{il+—2J— with :\/—aznl2 -b’n; +c’n;.
K ) K

In this formula +1 corresponds to a hyperboloid of
one sheet, —1 to a hyperboloid of two sheets.

Proof: With S >0 for i=12 both sides of Equa-
tion (37) are positive. Thus d according to (25) is
negative for x#0, and zero for kx =0. In case of a
hyperboloid of one sheet the numerator 1-d of ¢,
for i=1,2 in (12) is positive. In case of a hyperboloid
of two sheets the numerator —1-d of ¢ for i=12
in (12) is positive for d<-1. Substituting g for
i =1,2 according to (18), «; for i=12 are positive.
In both of these cases therefore the curve of intersection
(11) is an ellipse with the semi axes

+1-d and B il—d.
\ A \ A

The area of the ellipse is given by:

F_7AB=r +1-d il—d:ﬂil—d
VBN A VBB,

By applying (25) and (37) one obtains the formula in
Corollary 3.0

Remark 1: In the special case that the plane of inter-
section of the hyperboloid is parallel to the x-y-plane, i.e.
the normal vector n=(0,0,1)" with «=(q,n)=q, and

furthermore r :(I,O,O)T, s:(O,l,O)T can be chosen

A

satisfying (4), (5), (6), (7) and p, ZLZ’ 5 =bL2, the
a

formula for the area of the ellipse of intersection reduces
to:

qZ
F= ﬂ[il+—;]ab.
C

The same result is obtained from (1) putting X; =0,
and calculating the area of an ellipse with the semi axes

Open Access

2 2
i1+q—; and b,/i1+&2.
C C

As stated above in case of a hyperboloid of two sheets
2
d= —q—; < -1 has to be assumed.
C

Remark 2: Assuming S <0 fori=1,2and d>-1
in case of a hyperboloid of two sheets would also result
in positive ¢, for i=1,2 according to (18) and (12).
However for two vectors I and s in R’ the condi-
tions B <0 for i=1,2 and (D,r,D_s)=0 cannot
be fulfilled simultaneously.

S <0 for i=1,2 would imply

P r s, s_s
a2 b2 CZ’ 2 b2 CZ’
and thus
worls.,s|.Ks
a2 p)lad b)) cc
Because of (D,r,D_s)=0
[ENA Y

a b

holds. Substituting this Equation into the above inequal-

ity gives
ronL\s s s rsz2
(;2+t)22j(a2+b2]<(;2+gz '

Deleting equal terms on both sides of the inequality
finally results in

2
(rl S —hS )
a’b’
which is impossible for vectors r
components.

Corollary 4: Under the assumptions of Theorem 1 and
assuming S >0 and p, <0 the intersection of hy-
perboloid (1) and a plane with unit normal vector n and
distance x from the origin is for d#+1 a hyperbola
and for d =+1 a pair of straight lines.

Proof: With 5, >0 and S, <0 both sides of Equa-
tion (37) are negative. Thus d according to (25) is
positive or zero. In case 1-d >0 holds for a hyperbol-
oid of one sheet with the semi axes

A= /ﬂ and B= /l_d.
ﬁ1 _ﬁz

the line of intersection is a hyperbola of the form

(t—to)2 (u—uo)z_1
A B

<0,

and S with real
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In case 1—d <0 holds for a hyperboloid of one sheet

with the semi axes
—(1-d —(1-d
A= ( ) and B= ( )
ﬂ1 _ﬂz
the line of intersection is a hyperbola of the form
2 2
(t_to) (u_uo) =1

- A2 + BZ B

with the axes interchanged.

Since d is positive or zero, —1—-d <0 is fulfilled,
so that for a hyperboloid of two sheets with the semi axes

the line of intersection is a hyperbola of the form

(t—t0)2 (u—u0)2 ~
A e Ot
with the axes interchanged, as in the previous case.
In case of #1-d =0 according to (8), after substi-
tuting f, and f, from (18), the line of intersection is
a pair of straight lines of the form

B(t=t,) + B, (u-u,) =0

or
t-t, = i—“_ﬂz(u—uo).
N
([

Remark 3: For f, <0 and g, >0 the roles of the
variables t and u have to be interchanged.

5. The Center of the Conic

Substituting q according to (14) in formulars (9) for the
coordinates (t,,U,) of the center of the conic in the
plane spanned by r and S one obtains using (7):

D,n,D
tOZ_K(LJ)_ﬂ’
b (38)
(D,n,D._s)
Uy = —K-———F—V.
b
The center m of the conicin R’ is given by:
m=0g+t,r +u,s=xn+(t, +u)r +(u, +v)s
D,n,D D,n,D 39
:,{n_( D), (Do —S)sj. 7
B b

Theorem 3: Let the assumptions of Theorem 1 be ful-
filled with B, #0 and B, #0. For the center m of
the conic of intersection in R’ holds:

K

m=
a’n’ +b’n —c’n;

(azq,bznz,—czm)T. (40)

Open Access

_Proof: With diagonal matrices D* from (27) and
D, from (22) utilising
1
a’b’c’
and (37) one obtains a representation of m equivalent
to (40):

D'D =-D,D.

K

m=s—— 555 D'D'n
an +b'n;—c
n n, n (@41
-—% pB,Bn=—_DBDb,n
_ﬂ]ﬁZ ﬂlﬂZ

It is sufficient to show that for the difference

A=m-—2_D DB,n

172
(A,n)=(A,r)=(A,s)=0 holds. Thus the coeffi-
cients in the expansion of A in R’ with respect to the
orthonormal basis [n,r,s| are zero, i.e, A is the zero
vector.
Applying representation (39) and (24) one obtains:

(A,n)=(m, n)—ﬁ(lﬁ_lin, n)
K

2

Furthermore one obtains:

(..~(B.n.B.n))=o0.

(A,r)=(m,r)- ll(z(lilin,r)

=7 ((Dn.D)(P.sD.5)+(B.nBr))

1772

and by interchanging the roles of r and s:

ﬂ;’z (D_ D.n, s)
K

=57 ((D+n, D s)(D,r,D.r)+(D,n, D_s)).

Both previous expressions are zero; this follows by
applying diagonality condition (7), the identity of La-
grange (16) and Corollary 2:

(D,n,D_r)(D,s,D.s)
=(D,n,D_r)(D,s,D_s)—(D,r,D_s)(D,s,D_n)
=(D,rxD,s,D nxD s)=—(D,n,Dr).

(8.5)=(m.5)-

Interchanging the roles of r and S leads to:
(D,n,D_s)(D,r,D.r)
=(D,n,D_s)(D,r,D.r)—(D,s,D_r)(D,r,D_n)
=(D,sxD,r,D.nxD.r)=—(B,n,D s).
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O

Corollary 5: Under the same assumptions as in Cor-
ollary 3 the line of intersection of hyperboloid (1) and a
plane is an ellipse with the semi axes A and B, given
in the proof of Corollary 3, and the apexes

m+Ar and mz=Bs

Proof: Clearly m+ Ar and mzBs are points of
the plane cutting the hyperboloid. In order to show that
they are belonging to the ellipse of intersection, it has to
be verified that they are situated on hyperboloid (1), i.e.
the following equalities hold:

(D, (m+Ar),D_(m+Ar)) ==l
(D, (m+Bs),D_(m=+Bs))=x+l.

This can be verified using m in the form (39) and
employing condition (7) and Equation (15). O

Corollary 6: Under the same assumptions as in Cor-
ollary 4 the line of intersection of hyperboloid (1) and a
plane is in case of d=#+1 a hyperbola with the semi
axes A and B given in the proof of Corollary 4. The
center of the hyperbola given in (9) is equal to the point
of intersection of the asymptotes of the hyperbola.

Proof: The asymptotes of the hyperbola are given by

2 2
(t_to) (u_uo) =0

A B

with

or

t—t, :i\/\/_ﬂzlz(u—uo).

The point of intersection of the asymptotes (tg,Us)
fulfills the following linear system

(ts—to)—\/f(us—uo):o

W

1

0.

(ts—t, )+ (us—u,)

As this homogeneous linear system for the unknowns
ts—t, and ug—U, has a nonzero determinant, it can
only have the trivial solution, which implies

(D.g,D.r) (D+q,D_s)J
te,Us ) =(t,,U, )= — ,— .
(to- ) =(t-t0) ( b i3
O
Corollary 7:
(D,m,D_m)=d

Open Access

Proof: This can be verified, as in the proof of Corol-
lary 5, using m in the form (39) and employing condi-
tion (7) and Equation (15).

O

Because of Corollary 7

d <1 holds, if and only if m is an interior point of
a hyperboloid of one sheet,

d <-1 holds, ifand only if m is an interior point of
a hyperboloid of two sheets,

d>1 holds, if and only if m is an exterior point of
a hyperboloid of one sheet,

d > -1 holds, if and only if m is an exterior point
of a hyperboloid of two sheets.

In case of d =41 one obtains from (25)

K =@ +b'm —c’n} ).
The center (40) of the conic of intersection therefore
becomes a tangent contact point
m=m, = il(aﬁnl,bznp—czrg)T
K
of hyperboloid and plane, where the + -sign corresponds
to a hyperboloid of one sheet and the —-sign to a hy-
perboloid of two sheets.

Example: Determine the line of intersection of hyper-
boloid (1) and a plane, having the normal vector (i, j, k)T
and containing the point q=(¢;,,,0;) , situated in the
interior or on the boundary of (1):

(x=0)i+(y-a)j+(z-a)k=0.
The unit normal vector of the plane has the form:

n=;(i,j,k)T. (42)

JiZ+ it +k?
The distance of the plane from the origin is given by:
_ Qi+ +gk 3)
2, 2,2
Mit+ T +k
According to (25) d can be written as:
. . 2
(ai+0, ] +ak)
d= . 44
a’li’+b’j* —c’k? 44
Substituting (18) into (12) the expressions of ¢, and
o, are given by

x=(q,n)

+1— +]-
+1-d and a2=_1 d

B B,

where f,,f,, satistying S, #0 and S, #0, are solu-
tions of Equation (19) after substituting vector n from
(42):

(i2+ j2+k2),62

S(1 1Y) (1 1 (1 1
eg)lwg)elas)e @

a, = s (45)
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With Theorem 3 one obtains by substituting n from
(42) and x from (43) the formular for the center m of
the conic given by:

_ qi+0,j+0K 2 12: o \T
el GLLE Bl IR

In the special case of a plane containing the origin, i.e.
g is the zero vector, it follows by (43), (44) and (47)
that k=0, d=0 and m is the zero vector also. Fur-
thermore the expressions of ¢; and «, in (45) reduce
to

o, _i and «, :i—l.
1 2

As described in Corollary 3 for a hyperboloid of one
sheet and g >0 for i=1,2 one obtains ¢ >0 for
i =1,2. Then the line of intersection is an ellipse. As
stated in Corollary 4 for a hyperboloid of one sheet and
B >0, B,<0 one obtains o, >0, «,<0. For a
hyperboloid of two sheets and S, >0, £, <0 one ob-
tains o, <0, «a,>0. In both of these cases the line of
intersection is a hyperbola.

In a second special case with g=(i, j,k)T . the above
formulas (43), (44) and (47) reduce to:

22 2)?
K=m, (I+j+k)

a2i2 +b2j2 _CZkZ

and

2+ +K 2 w22
m:a2i2+b2j2—czk2 (a%,b”j,—c’k)
Because of q=xn in(14) px=v =0 holds and (38)
reduces to

T

(D,n, Dfr)’ 4 = _K(D+n, Dfs)’

B b,

where f, and f, are solutions of the quadratic Equa-
tion (46) and vectors r and S have to be determined
as described above in Section 2. As stated in Corollaries
3 and 4, if ¢ for i=1,2 are both positive, an ellipse
as curve of intersection is obtained, and if ¢, for
i=1,2 are of different sign, a hyperbola as curve of
intersection results.

t, =—«x

6. Parabola as Curve of Intersection

A parabola (13) as curve of intersection is obtained in
case of S =(D,r,Dr)=0 and (D,q,D.r)=0. A
hyperboloid of one sheet, given in (1), may be factorized
in the following form:

N
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With the decomposition

(49)
ﬁ_ﬁzl(l_ﬁj
a ¢ k b

for any value of ke R, k#0, these Equations repre-
sent a straight line, as the intersection of two planes in
R’. This straight line lies on (48) because, if the mem-
bers of (49) are multiplied together, (48) results. Rear-
ranging (49) one obtains

ﬁ—kﬁ+§—k=0
a b c (50)
X 1% % 1_,
a kb ¢ k
With the abbreviations

2 2

I:k 1’ =i,n=1+k 1)
kbc ac kab

the straigth line (50) can be equivalently rewritten [3]
X =p+Ilv, X, =p,+nV, X, =p,+nv (52)

witha point p=(p,, P, p3)T on(50)and veR.
Putting

1 T
r=———(I,mn
\/I2+mz+n2( )

B, =(D,r,D_r)=0 holds, because
P m
ﬂl(lz+mz+n2)=[¥+———2j

b*> ¢
(-1 4 (14K)
Tl Ka’d  abic? Klabhc

Choosing a vector q=(q,,0,,0; )T on the surface of
a hyperboloid of one sheet, as given in (1), for instance

q =(asinp,bcos qo,O)T with ¢ €[0,2n), (53)

(D,g,D_r)VI?+m’ +n* = (sin (p:—i+cos¢)%)

=| sin I(2_l+cos i #0
P kabe % abe

for (p=0,£,71:,3—7t and k= =1,
2 2

results.
Constructing a vector s, fulfilling

(r,s)=0, (D,r,D.s)=0, (ss)=1, (54)

a plane spanned by vectors r and S is obtained, con-
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taining the straight line (52). The two linear Equations in
(54) for the components of S can be rewritten:

Is +ms, =-ns,
(55)
I%+ m%: n%.

Solving for s; and S, under the assumptions k= +1
and a=b gives:

na'(c’+b’)

S = —l—m 5
n b (¢’ +a’)
Dividing by s, #0 one obtains o, :% for i=1,2
and thus the following normalized vector S:
1
S=

—O'GlT
Jorvoran

fulfilling (54) and giving
1 ol o 1

= D D S)=———— —l+—2—— .

£ =(D.sbs) o-lz+022+1{a2 b’ J

In case a=D, this signifies rotational symmetry of
the hyperboloid with regard to the z-axis, the coefficient
matrix of (55) is singular. The condition for solvability of
(55)is

I m I m -ns
Roj I mi{=Rg| I m n_|
7 b)) @ v o°

As a=Db this can be reduced to

I m I m -ns,
-R (56
Rg(o o] 90 o [12+12jg (56)
C a

Both sides of (56) are equal to 1 only for 5,=0. A
solution vector S may then be chosen as
S= ;(m, -1,0)"

N +1°
fulfilling (54). This leads to

. =(D,s,D.s) :ﬁ(

For k=41 according to (51) | =0 results. Then the
linear system (55) is solvable for arbitrary § and
1

s, =s =0. Choosing s=(1,0,0)", as above f3, =—

a.2

S |==

— .
a’ a a

m IZJ_I

holds.

Open Access

Using vector q given in (53)

a’sinp b’cos’ ¢
2 + 2 =
a b
is obtained. Thus parabola (13) has the form

2(D+qa D,r)t‘f'ﬂz (U—UO)2 :W (57)

(D+qa qu) = 1

with
~ (D.g,D.s)
’ B

Instead of (49) the alternative decomposition of (48)
(58)

for any value of keR, k=0, may be considered; (58)
also describes a straight line as intersection of two planes
in R’. This straight line as well lies on (48) because, if
the members of (58) are multiplied together, (48) results.
Rearranging (58) one obtains

X kE 5 koo,

a b c (59)
X_1x x 1_,
a kb ¢ k
With the abbreviations
02 o2
fo Kl w2 gLk (60)
kbc ac kab

the straigth line (59) can be equivalently rewritten [3]
X =p +lv, X, =p,+Mv, X, =p,+Av  (61)

with a point p:(p,,pz,p3)T on(59)and veR.

As previously with the terms |,mn now with the
terms |,MA vectors r and S can be defined satis-
fying

B =(D,r,D_r)=0,
(r,s)=0, (D,r,D_s)=0, (s;5)=1.

Choosing a vector q as in (53), in the end a parabola
of the form (57) is obtained.

Mathematica programs modelling the cases described
in Corollaries 3 and 4 and in Section 6 may be obtained
from the author upon request.

7. Conclusion

The intention of this paper is to look at cases which are
not treated in mathematical textbooks where the plane
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intersecting a hyperboloid of one sheet or of two sheets is
not necessarily parallel to the coordinate planes and thus
produces all kinds of conics: ellipses, hyperbolas and
parabolas.
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