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ABSTRACT 

In this article I describe a randomized algorithm based on random walks with two absorbing barriers that solves the sat- 
isfiability problem (known to be NP complete) with arbitrary high probability. As a consequence of this algorithm, I 
also prove that the RSA cryptographic protocol is not secure. 
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1. Useful Notions That Are Used for the  
Analysis of the Algorithm 

A Boolean expression is said to be in conjunctive normal 
form (CNF) if it is of the form 1 2 3 k , 
and each Ei, called a clause (or conjunct), is of the form 

1 2 3i i i ir

E E E E   

      , where each ij is a literal, either x 
or x, for some variable x.  

A Boolean expression is said to be in disjunctive nor- 
mal form (DNF) if it is of the form 1 2 3 kF F F F   , 
and each Fj, called a clause (or disjunct), is of the form 

1 2 3j j j jr       , where each jk is a literal, ei- 
ther y or y, for some variable y.  

A Boolean expression in CNF form is called satisfi- 
able if there is some assignment of 0’s and 1’s to the 
variables that gives the expression the value 1. 

The satisfiability problem is to determine, given a 
Boolean expression, whether it is satisfiable. We note 
that any Boolean expression E in CNF form has a dual 
Boolean expression E* in DNF form (we only replace 
every  with a , and replace every  with a ). For ex- 
ample, if     1 2 3 4 1 2 3 4, , ,E x x x x x x x x   

   
 , then 

 2 3 4 1 2 3 4,x x x x x x   
 1 2 3, , , , n

*
1, ,E x x . We note that the 

binary vector x x x x x   represents a solu- 
tion for the equation  1, 2, 3 , , 1nE y y y y 

 1 2, ,
 (in CNF 

form) if the binary vector , nx x x     x  re- 
presents a solution for the dual equation 

 *
1 2, ,E y y

1 2, ,E y y

3 , , 0ny y 

   3 1 2 3, , 1 ,, , ,ny y E y y y y  

. This follows immediately from 
the equivalence  

  0n
An expression is said to be 3-CNF if each clause has 

exactly three distinct literals. 



Theorem 1 (see Reference [1]). L3SAT, the satisfiabil- 
ity problem for 3-CNF expressions, is NP-complete. 

The Hamming distance dH(x, y) between two vectors x, 
y is the number of components in which they differ. It is 
known that the Hamming distance dH(x, y) satisfies the 
conditions for a metric.  

Related to the theory of symmetric random walks (in 
one dimension), we have the following theorem. 

Theorem 2 (see Reference [2]). Limit theorem for first 
passages. For fixed t, the probability that the first passage 
through r occurs before epoch  tends to  2t r

1
2 1P N

t
  

    
  

, as , where N is the normal  r 

distribution function. We note that when , then P 
tends to 1. 

t 

2. The Description and Analysis of the  
Algorithm 

We consider a Boolean expression  
in 3-CNF form with n variables. We want to determine 
whether it is satisfiable.  

 1 2 3, , , , nE y y y y

Step 1. Randomly generate a binary vector 
 1 2 3, , , , nx x x x x  , each xi, will be 0 or 1 in a random 

manner.  
Step 2. If  1 2 3, , , , nx x x x x   is a solution for the 

equation  1 2 3, , , , 1nE y y y y  , then return  
 , , n1 2 3, ,x x x x x .  

Otherwise, if  1 2 3 n, , , ,x x x x  x  is a solution for 
the equation  *

1 2 3, , , , nE y y y y  0 , then return 
 , n1 2, ,x x x    x . 

Otherwise go to Step 3. 
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Step 3. Randomly choose a component of the vector x, 
and flip its binary value. In other words, randomly 
choose a value i in the set {1, 2, ··· n}, and flip the value 
of xi. If xi is 0, then put xi = 1, and if xi is 1, then put xi = 
0.  

Repeat Steps 2 and 3 for  cycles (where t is a 
fixed number). If no solution for our Boolean equation 
has been found after  cycles, then the 3-CNF ex- 
pression under consideration is considered not satisfiable.  

2t n

2t n

If the 3-CNF expression is not satisfiable, then the al- 
gorithm will report that the expression is not satisfiable. 
If the expression is satisfiable, then the initially randomly 
generated vector will be at a certain Hamming distance d 
from a solution of the equation  1 2 3, , , , 1nE y y y y   , 
and at Hamming distance n  d from the corresponding 
solution of the equation  *E y1 2 3, , , , 0ny y y  . With 
each cycle (in particular step 3), it is as likely that the 
Hamming distance d will increase or decrease. The 
Hamming distance d will increase or decrease with  

probability 
1

2
. We basically have a symmetric random  

walk with two absorbing barriers. From Theorem 2, we 
see that by choosing a large t, we can make the probabil- 
ity that the algorithm will fail as small as we want (we 
say that the algorithm will fail if it reports that our 3- 
CNF form is not satisfiable, when in fact it is satisfiable). 

We can also use parallel computers (processors) that 
deal with the same problem in parallel, and the probabil- 
ity that the algorithm will fail on all simultaneously will 
be as small as we want. We can design the system so that 
we can run the algorithm for many problems, for a time 
comparable with the age of the Universe, and we can 
expect it to fail once or twice. I think that this is accept- 
able, in relation to practical applications. Since we are 
dealing with a NP-complete problem, this algorithm will 
solve a multitude of problems. 

3. Applications 

This algorithm will have applications in industry, medi- 
cine, and many other domains of activity (where effi- 
ciency is an issue, see Reference [3]). It can also be 
proved that the RSA cryptographic protocol, on which 
most of the Internet transactions and activity are based, is 
not secure. RSA relies on the assumption that it is easy 
to multiply numbers, but very difficult to factor them. 
Here is an randomized algorithm for factoring large num- 
bers, that is polynomial, and it is based on a random walk 
with an absorbing barrier and a reflecting barrier. 

We consider a large n-bit number N written in binary. 
We want to factor it. 

For m taking values from 1 to n, perform the following 
three steps (actually, for each m, perform many cycles, as 

escribed below). d 

Step 1. Randomly generate an m-bit binary number x.  
Step 2. If x is a divisor of N, then return x. 
Otherwise go to Step 3. 
Step 3. Randomly choose a bit of the m-bit number x, 

and flip its binary value. In other words, randomly 
choose a value i in the set {1, 2, ··· m}, and flip the i-th 
bit of x. 

Repeat Steps 2 and 3 for  cycles (where t is a 
fixed number).  

2t m

This algorithm runs for a total of  cycles (where 
the constant C can be determined), and it either finds a 
divisor of N, or else says that N is prime (we make sure 
that we exclude 1 and N itself, when we run the algo- 
rithm, also other implementation details must be taken 
into consideration), and the probability of failure will be 
as small as we want (a similar theoretical analysis applies, 
as described in the previous section, but here we have a 
random walk with one absorbing barrier and one reflect- 
ing barrier). 

3C n

4. Conclusion 

For all practical purposes, we can assume that P = NP, 
even the conjecture P  NP might be true, if we exclude 
randomized algorithms. It is also interesting to note that 
all financial transactions over the Internet are based on a 
cryptographic protocol that is not secure. In Reference [4] 
it is mentioned a somewhat similar algorithm for the 2- 
SAT problem, which is not NP complete. The generali- 
zation to 3-SAT and other NP complete problems and 
possible applications of these ideas were presented in this 
article.  

5. Note 

The symmetrical random walk model used here is just an 
approximation. In fact, we have to use a random walk 
with probabilities varying from place to place. This more 
exact model could lead to more different conclusions 
than presented here, in this article. 
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