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ABSTRACT 

In this paper, an adaptive control scheme is developed to study the hybrid synchronization behavior between two iden- 
tical and different hyperchaotic systems with unknown parameters. This adaptive hybrid synchronization controller is 
designed based on Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of pa- 
rameters is shown. The adaptive hybrid synchronization between two identical systems (hyperchaotic Chen system) and 
different systems (hyperchaotic Lorenz and hyperchaotic Lű systems) are taken as two illustrative examples to show the 
effectiveness of the proposed method. Theoretical analysis and numerical simulations are shown to verify the results. 
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1. Introduction 

Chaos is an omnipresent phenomenon. Scientists who 
understand its existence have been struggling to control 
chaos to our benefit. There is a great need to control the 
chaotic systems as chaos theory plays an important role 
in industrial applications particularly in chemical reac- 
tions, biological systems, information processing and 
secure communications [1-3]. Many scientists who are 
interested in this field have struggled to achieve the syn- 
chronization or anti-synchronization of different hyper- 
chaotic systems. Therefore due to its complexity and 
applications, a wide variety of approaches have been 
proposed for the synchronization or anti-synchronization 
of hyperchaotic systems. The types of synchronization 
used so far include generalized active control [4-8], non- 
linear control [9,10], and adaptive control [11-19].  

The co-existence of synchronization and anti-syn- 
chronization, known as hybrid synchronization, has good 
application prospects in digital communications. There- 
fore it attracted a lot of attention in recent years. In hy- 
brid synchronization scheme, one part of the system is 
anti-synchronized and the others are completely synchro- 
nized so that complete synchronization and anti-syn- 
chronization co-exist in the system. The co-existence of 
CS and AS may enhance security in communication and 
chaotic encryption schemes. Li [20] studied full state 
hybrid projective synchronization behavior in multi- 

scroll chaotic systems in symmetrical coordinate sub- 
space. Xie, Chen and Bolt [21], through numerical stud- 
ies show that an arbitrary signal can be synchronized by 
hybrid chaotic system and then that particular signal can 
be stored for password and message identification. They 
further identify potential applications in information stor- 
age, message identification and certain types of secure 
signal and image communications. 

Zhang and Lű [22] introduce a new type of hybrid 
synchronization called full state hybrid log projective 
synchronization and apply it to the Rossler systems and 
the hyperchaotic Lorenz system to numerically verify 
their results. Similarly Chen, Chen and Lin [23] achieve 
hybrid synchronization in Chin-Lee system using both 
linear and non-linear control schemes. Recently Sun et al. 
[24] analyze the hybrid synchronization of two coupled 
complex networks using linear feedback and adaptive 
feedback control methods. They derive a criterion for the 
hybrid synchronization of the two complex networks and 
show that under suitable conditions two complex net- 
works can realize hybrid synchronization. More recently, 
Vaidyanathan and Rasappan [25] investigate the hybrid 
chaos synchronization of hyperchaotic Qi and Jia sys- 
tems using active nonlinear control. The idea of the 
aforementioned type of hybrid synchronization of chaotic 
systems deals with systems with known parameters. 
However in practical engineering situations, parameters  
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are probably unknown and may change from time to time. 
Therefore, there is a vital need to effectively hybrid- 
synchronize two chaotic systems (identical and different) 
with unknown parameters. This is typically important in 
theoretical research as well as practical applications. 
Among the aforementioned methods, adaptive control 
[11-19] is an effective option for achieving the synchro- 
nization of chaotic systems with fully unknown parame- 
ters. Therefore motivated by this, we study the hybrid 
synchronization of two identical and two different hy- 
perchaotic systems with fully unknown parameters. The 
rest of the paper is organized as follows. In Section 2, we 
present a novel adaptive hybrid synchronization scheme 
with a parameter update law and give a brief description 
of the systems. In Sections 3 and 4, we present the hy- 
perchaos hybrid synchronization between two identical 
and different hyper chaotic systems via adaptive control. 
Conclusions are given in Section 5. 

2. Problem Formulation and Systems  
Description 

In the first part of this section, we set up the problem and 
present novel adaptive hybrid synchronization scheme 
with parameter update law. By using Lyapunov stability 
theory we show the co-existence of hybrid synchroniza- 
tion between two systems described below. In the second 
part of this section we briefly describe the two systems 
used for further analysis. 

2.1. Hybrid Synchronization of Chaotic Systems 

Consider the master chaotic system in the form of 

   x f x F x                   (1) 

where 1
nx R   is the state vector,  is the 

unknown constant parameter vector of the system, 

mR 

 f x  is an  matrix, 1n  F x  is an  matrix 
whose elements 

n m
 abF x  L . The slave system is as- 

sumed by: 

   y g y G y u              (2) 

where 2
ny R   is the state vector,  is the 

unknown constant parameter vector of the system 

qR 
 g y  

is an  matrix,  is an  matrix whose 
elements , and  is control input 
vector. If we divide the master and the slave systems into 
two parts, then system (1) can be written as: 

1n
 abG x 

 G y
L

n q
nRu

   i i i ix f x F x                 (3) 

   j j jx f x F x j               (4) 

and the slave system (2) can be written as 

   i i i iy g y G y u             (5) 

   j j j jy g y G y u            (6) 

Let i i ie y x   and j j je y x   be the synchroni- 
zation and the anti–synchronization error vector’s re- 
spectively. Our goal is to design a controller such that 
the trajectory of the response system (5)-(6) with initial 
conditions 

u

    0y0 i j  can asymptotically ap- 
proach the drive system, (3)-(4), with initial condition 

0 ,y y

    0 , 0i jx0 And finally implement the hybrid 
synchronization such that,  

.x x

   0 0lim lim , , 0i i ie y t y x t x
t t 

   and the anti-syn- 
chronization such that 

   0 0lim lim , , 0j j j
t t

e y t y x t x
 

    

where   is the Euclidean norm. 

2.2. Adaptive Hybrid Synchronization  
Controller Design 

Theorem: If the nonlinear control  is selected 
as: 

 , ,u t x y

 

     
 

    
 

ˆ, , ,

ˆ,
, ,

ˆ, ,

ˆ,

i i i i

i i i

j j j j

j j j

f t x F t x g t y

G t y e
u t x y

,f t x F t x g t y

G t y e









 


    
  

 

and adaptive laws of parameters are taken as: 

 

 

 

 

T

T

T

T

ˆ ,

ˆ ,

ˆ ,

ˆ ,

i i i

j j j

i i i

j j j

F t x e

F t x e

G t y e

G t y e









     
     

    
    









 

then the response system (5)-(6) can synchronize and 
anti-synchronize the drive system (3)-(4) globally and 
asymptotically, where îˆ ˆ, ,i j    and ˆ

j  are respect- 
tively, estimations of the unknown parameters , ,i j i    
and .j  

Proof: From Equations (3)-(6), we get the error dy- 
namical systems as follows: 

     ˆ ˆi i i i i i ie G y F x e    i           (7) 

     ˆ ˆj j j j j j je G y F x e    j         (8) 

     
     

ˆˆ

ˆˆ

i i i i i i

j j j j j j

e F x G y

F x G y

   

   

   

e    


     (9) 

where .i je e e 
ˆ
  

Let ˆˆ, ,i i i j j i i   i             and  
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ˆ
j j j    .  
If a Lyapunov function candidate is chosen as 

 
 T T T T T T

, , , , ,

1

2

i j i j i j

i i j j i i j j i i j j

V e e

e e e e

   

            

  

      
 (10) 

The time derivative of V along the error dynamical 
system is given by: 

     

     

   

T T T T T T

T TT

TTT

T TT T

ˆ ˆˆ ˆi i j j i i j j i i j j

i i i i i i i i

i i i j j j j

j j j j j j

V e e e e

G y F x e e F x e

G y e G y F x e e

F x e G y e

       

  

  

 

     

         

      

       

       

  

  



i

j




 (11) 

 T T 0i i j je e e e    )             (12) 

Since  is positive definite, and V  is negative 
semi-definite, it follows that from the fact that 

V 

     2

0

1
d 0

2

t

e t V V t V     0 .  

It can easily be seen that From Equation (9) 
have . Thus, by Barbalat’s lemma, we have 

.e L
lim 0
t

e



   0,y t y x 0 .

t
 Thus the response system (2) 

can be synchronized and anti-synchronized the drive sys- 
tem (1) globally and asymptotically. This completes the 
proof. 

lim , 0t x 

2.3. Systems Description 

The hyperchaotic Chen system [26,27] is given by: 

  ,

,

,

.

x a y x w

y dx xz cy

z xy bz

w yz rw

  

  
 
 






              (13) 

where ,  ,  x y z
,  c d
, 3,a b 

, 3,a b 

 and  are state variables, and  
, and are real constants. When  

 system (13) is 
chaotic, when  

, system (13) 
is hyperchaotic. 

w

d

d

,  ,  a b
35

35

r
12,c 

12,c 

7,0 0.085,r  

7,0.085 0.789r  

The hyperchaotic Lorenz system [28,29] is described 
by 

  ,

,

,

.

x a y x w

y xz rx y

z xy bz

w xz dw

  

   
 
  






            (14) 

where , ,x y z , and are state variables,  and 
 are real constants. When  and 

w , ,a b c
20c d 36, 3,a b 

1.3,d   system (14) has hyperchaotic attractor.  
The hyperchaotic Lű system [30] is described by: 

  ,

,

,

.

x a y x w

y xz cy

z xy bz

w xz rw

  

  
 
 






           (15) 

where , ,x y z

, 3

 and  are state variables,  and 
 are real constants. When  

w

0,

, ,a b c
r

36a b , 2 0.35 1.3c r ,      system (15) has hy- 
perchaotic attractor. 

3. Adaptive Hybrid Synchronization of Two  
Identical Hyperchaotic Systems with  
Unknown Parameters 

In order to observe the efficacy of our proposed method, 
we used two hyperchaotic Chen systems where the mas- 
ter system is denoted with the subscript 1 and the re- 
sponse system having identical equations denoted by the 
subscript 2. The two systems are defined below. 

 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

,

,

,

.

1x a y x w

y x z cy

z x y bz

w x z dw

  

  
 
 






           (16) 

and 

 2 2 2 2

2 2 2 2 2

2 2 2 2 3

2 2 2 2 4

,

,

,

.

1x a y x w u

y x z cy u

z x y bz u

w x z dw u

   

   
  

  






          (17) 

where 1 2 3 4  are four control functions to be de- 
signed. For the hybrid synchronization, we define the 
state errors between the response system that is to be 
controlled and the controlling drive system as  

1 2 1 2 2 1

, , ,u u u u

x e y, ,ye x    3 2 1,e z z  4 2e w w  1 . The 
error system is given by 

 1 2 1 4 1 1 1

2 1 2 2 1 1 2 1

3 2 2 1 1 3 3

4 2 2 1 1 4 4

2 2 ,

2 ,

,

e a e e e ay w u

e de x z x z ce dx u

e x y x y be u

e y z y z re u

     

     
   

   

2      (18) 

Now our goal is to find proper control functions 
 ,3, 41,2iu i   and parameter update rule, such that sys- 

tem (17) globally hybrid synchronizes system (16) as- 
ymptotically. i.e., lim 0,

t
e


  where 

 T

2 3 4, , , .e e e 1e e  If the two systems are without con- 
trols  1,2,3,4iu i  and the initial condition is: 

        
        

1 1 1 1

2 2 2 2

0 , 0 , 0 , 0

0 , 0 , 0 , 0

x y z w

x y z w
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then the trajectories of the two systems will quickly 
separate each other and become irrelevant. However, 
when appropriate controls are applied the two systems 

us choose a controller pa- 
rame  as follows: 

    (19) 

and the parameter update rule. 
Consider the following Lyapunov function 

2 ,
        (20) 

Consider the following Lyapunov function 

will approach hybrid synchronization for any initial con- 
ditions. We shall propose the following adaptive control 
law for system (17). 

ˆ ˆˆ ˆ ˆ, , , ,a a a b b b c c c r r r d d d              

where ˆ ˆˆ ˆ ˆ, , , ,a b c d r  are the estimates of , , , ,a b c d r  re- 
spectively. Now, let U  and 

,

ters update law 

ˆu a 

ˆ ˆˆ ˆ ˆ, , , ,a b c d r
   

1 2 1 4 1 1 1

2 1 2 2 1 2

2 2

ˆ ˆ 2 ,

e e ay w e

u de x z e dx e

    

    2 1 1

3 2 2 1 1 3 3

4 2 2 1 1 4 4

ˆ ,

ˆ .

e

x z c

u x y x y be e

u y z y z re e

 

    

    

 

2 2
3 2

ˆˆ ˆ, ,c e     
 1 2 1a e e e b e

2
1 2 4

ˆ ˆ,d e e r e  

 T 2 2 2 2 21
.

2
V e e a b c d r          

trajectories 
of Equation (18) is: 

  (21) 

Since is positive definite function and is nega- 
tive definite function, it translates to 

Then the time derivative of V  along the 

 

    
       

1 2 11 2 2

3 3 3 4 4 4 2 1

2 2 2
3 2 1 2 4

2 2 2 2
1 2 3 4

TV e e aa bb cc dd rr

e e de ce e

e be e e re e a e e

b e c e d e e r e

e e e e

     

     
         

      

    

            

 

  

  

 1 2 1e a e e   

V  V
lim 0
t

e


  based 

on the 
hy oti yb

 system (1

ess of the pro- 
posed method, we discuss the simulation results for hy- 

 the numerical simulations, 

Lyapunov stability theorem [31]. Therefore, the 
percha c Chen response system (17) is h rid syn- 

chronized with hyperchaotic Chen drive 6) with 
fully uncertain parameters under the adaptive controller 
(19) and the parameters update law (20). 

Numerical Simulations 

To verify and demonstrate the effectiven

perchaotic Chen system. In
the fourth-order Runge-Kutta method is used to solve the 
systems with time step size 0.001. For these numerical 
simulations, we used the initial conditions,  

            and  1 1 1 10 , 0 , 0 , 0 5,8, 1, 3x y z w   

          2 2 2 20 , 0 , 0 , 0 3,4,5,5x y z w  . Hence, the  
error system has the initial values  
     1 2 30 2, 0 12, 0 6e e e     and  4 0e 2.  The  

unknown parameters are chosen as  
36, 3, 12, 0.5 a b c r     and 7d 

chaotic 
brid synchronization of systems (16) and 

d (20
tial estimated parameters  

 such that th
hyperchaotic Chen system exhibits 

 adap-
tive control laws (Equations (19) an

e 
r. Hy- 

 
ith the ini- 

behavio
(17) via

)) w

       ˆˆ ˆ ˆ0 5, 0 11, 0 2, 0 8a b c r     and  ˆ 0 6d   
are shown in Figures 1 and 2. Figures 1(a) and (d) dis- 
play state trajectories of drive system (16) and the re- 
sponse system (17). Figure

 and (1  
2(b) Shows that the estimates  

 2(a)
chronization errors between system (16)

 displays the hybrid sy
7). 

n- 
Figure

       ˆˆ ˆ ˆ, , ,a t b t c t r t  and  d̂ t  of the unknown pa- 
rameters converges to 36, 3, 12, 0.5a b c r     and 

7d   as .t   

id Sy onization  
between Two Diff  

4. Adaptive Hybr nchr
erent Hypercha

Systems 

otic
sys ur unknown parameters is th

otic 

e drive

In order to observe the hybrid synchronization beh
between hyperchaotic Lorenz system (15) and hypercha

 Lű system (14), we assume that hyperchaotic Lo
tem with fo

avior 
- 

renz 
 system 

and hyperchaotic Lű system with four unknown parame- 
ters is the response system. The drive and response sys- 
tems are defined as follows: 

 1 1 1 1 1

1 1 1 1 1 1

1 1 1

,

,

1 1

1 1 1 1 1

,

. 

x a y x w

y x z r x y

z x y b

  

z

w x z d w

   
 





 

  

and 

 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 3

2 2 2 2 2 4

,

,

,

.

1x a y x w u

y x z c y u

z x y b z u

w x z r w u

   

   
  

  






where 1 2 3 4, , ,u u u u  are four control func
signed. For the hybrid synchronization, 
state errors between the response system
controlled and the controlling drive system

,x e y

       

 that is to be
 as 

  (23) 

 

tions to be de- 
we define the 

1 2 1 2 2 1 3 2 1 4 2 1, , .e x y e z z e w w         
The error system is given by 

   1 2 2 2 2 1 1 1 1 1,e a y x w a y x w u

2 2 2 2 2 1 1

3 2 2 2 2 1 1 1 1e x y b z x y b z
1 1 1

3

4 2 2 2 2 1 1 1 1 4

,

.

e x z c y x z r x y

u

e x z r w x z d w u

2 ,u

      

 
      



    

   
   (24) 

Open Access                                                                                             AM 



M. M. AL-SAWALHA 1625

 

 

 

 

Figure 1. State trajectories of the drive system (16) and the 
response system (17). (a) Signals  and ; (b) Signals 1x 2x

1y

 

 

Figure 2. (a) Hybrid synchronization errors  of 

the drive system (16) and the response system e 
; (b) Changing parameters of th m

(16) and the response system (1 e 

Now our goal is to find proper control functions 

 , , ,1 2 3 4e e e e
 (17) with tim
e drive syste
. 

t

 

 a,b,c,r,d  
7) with tim

 
t

 1,2,3,4iu i 
system (17) gl
asymptotically. 

 and parameter update rule, such that 
obally hybrid synchronizes system (16) 
i.e. lim 0

t
e


  where  

. If the two systems are without con-  , , ,e e e e e T

1 2 3 4

trols  1,2,3,iu i  4  and the initial condition is 

        
        

1 1 1 1

2 2 2 2

0 , 0 , 0 , 0

0 , 0 , 0 , 0

x y z w

x y z w
 

then the trajectories of the two systems will 
separate each other and become irrelevan ver, 
when appropriate controls are applied the two systems 
will approach hybrid synchronization for any initial con- 
ditions. We shall propose the following a ap

quickly 
t. Howe

d tive control 
wla  for system (23). We define the parameters error 

1 1 1 1 1 1 1 1
ˆ ˆˆ ˆ, , ,a a b b b r r r d d d1 1 1 1a           and  

2 2 2 2 2 2 2 2 2 2 2 2
ˆˆ ˆ ˆ, , ,a a a b b b r r r c c c


           where 

1 1 1 1
ˆ ˆˆ ˆ, , ,a b d r  and ˆ  are the2 2 2 2ˆ ˆ, , ,a b c r

2
ˆ ˆ ,c

ˆ  estimates of 
 and 1 1 1 1, , ,a b d r

choose a contr

1 1
ˆ ,d r


2 2 2 2, , ,a b c r  respectively. Now, let us 
ller U  and parameters update law 

1 1 2
ˆˆ ˆ, ,a b r
   as follows: 

o

2 ,


2ˆ ˆ, ,a b 
 and 2y ; (c) Signals  and 1z 2z ; and (d) Signals 1w  

and 2w . 
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   1 2 2 2 2 1 1 1 1

2 2 2 2 2 1 1 1 1 1 2

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ ,

u a y x w a y x w e

u x z c y x z r x y e

u x y b z x y b z e

       

     

     
 

1

  (25) 

Consider the following Lyapunov function 

3 2 2 2 2 1 1 1 1 3

4 2 2 2 2 1 1 1 1 4
ˆˆ .u x z r w x z d w e     

and the parameter update rule 

 1 1 1 1ˆ ,

ˆ ,

a y x e

b z e

  









1 1 3

1 1 2

1 1 4

2 2 3

2 2 2

2 2 4

ˆ ,

ˆ

ˆ

ˆ

ˆ ,

ˆ .

r x e

d w e

a y

b

c y e

r w e





 



















2 2 2 1,

,

x e

z e

             (26) 

 T 2 2 2 2 2 2 2 2
1 2 2 2 2

1
.a b c r        

Then the time derivative of along the trajectories 
of Equation (24) is 


   (27) 

tive definite function and  is ne- 
gative definite function, it translates to 

1 1 12
V e e a b d r     

V  




   
 

      
 

T
1 1 1 1 1 1 1 1 2 2

2 2 2 2 2 2

1 2 2 2 1 1 1 1

2 2 2 1 1 2

3 2 2 1 1 3 4 2 2 1 1 4

1 1 2

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆˆ

V e e a a b b d d r r a a

b b c c r r

e a y x a y x e

e c y r x e

e b z b z e e r w d w e

a y x e b z e d w e

r x e a

     

  

      
  

          
     

  

             

      



 

      
   

2 2 2 1 2 2 3

2 2 2 2 2 4

2 2 2 2

c y e r w e   

1 1 1 1 1 1 3 1 1 4

y x e b z e   

1 2 3 4e e e e    

Since V  is posi V
lim 0,
t

e




 

 

 

 

 bas- 

ed on the Lyapunov stability theorem [31]. Therefore, the 
hyperchaotic Lű response system (14) is hybrid synchro- 
nized the hyperchaotic Lorenz drive system (15) with 
fully uncertain parameters under the adaptive controller 
(25) and the parameters update law (26). 

Numerical Simulations 

To verify and demonstrate the effectiveness of the pro- 
posed method, we discuss the simulation result for the 
hybrid synchronization between hyperchaotic Lorenz  

Figure 3. State trajectories of the drive system (22) and the 
response system (23). (a) Signals  and ; (b) Signals 1x 2x

1y  and 2y ; (c) Signals  and 1z 2z ; and (d) Signals 1  w
and 2w . 
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Figure 4. (a) Hybrid synchronization errors,  of 

the drive system (22) and the response system e 
; (b) and (c) Changing parameters

of the drive system (22) and the re

system and hyperchaotic Lű system. In the numerical 
simulations, the fourth-order Runge-Kutta method is 
used to solve the systems with time step size 0.001. For 
this numerical simulation, we assume that the initial con- 
dition, and 

, , ,1 2 3 4e e e e
 (23) with tim
, , , ,1 1 2 2r d a b r

stem (23) wi

t

time 
 

 , , ,1 1 2 2a b c  

sponse sy th 
t . 

          1 1 1 10 , 0 , 0 , 0 2,3,2, 2 ,x y z w  
         2 2 2 20 , 0 , 0 20,10,10, 15z w    is 

ployed. Hence the error system has the initial values 
   1 2 38, 0 12, 0 8e e e    and  4 0 17e   .

n parameters are chosen as  

0 ,x y

 0 1
unknow

em- 

 The 

1 1 1 1

8
10, , 1.3,  28

3
a b d r   

2 2 2 236, 3, 20, 1.3a b c r   
both the systems exhibits a hy

 in simulations so that 
perchaotic behavior. Hy- 

brid synchronization of and (26) with the initial esti- 
mated parameters  

       1 1 1 10 10, 0 10, 0 10, 0 10a b d r     and  
       2 2 2 20 10, 0 10, 0 10, 0 1a b c r 0  

in Figures 3 and 4. Figure 3 displays state trajectories 
drive system (22) and the response system
4(a) displays the hybrid synchronization err
system (22) and (23). Figures 3(b) and (c) 
estimates 

  are shown 
of 

 (23). Figure 
ors between 
ow that the sh

       1 1 1 1
ˆ ˆˆ ˆ, ,  ,  a t b t d t r t and  

       2 2 2 2, , ,a t b t c t r t  of the unknown parameters  

converges to 

 and  

1 1 1 1

8
10, , 1.3, 28

3
a b d r   

2 2 236,  3, 20, 1.3b c r

 and  

a      as t

5. Conclusion 

 . 

In this paper, we discussed the problem of adaptive hy- 
brid synchronization of hyperchaotic systems with fully 
unknown parameters. On the basis of the Lyapunov sta- 
bility theory and the adaptive control theory, a new adap- 
tive hybrid synchronization control law and a novel pa- 
rameter est eve 

tical and 
different hyperchaotic systems with uncertain parameters. 

ethod h obust- 
ness. Finally, the simulation results ar

imation update law are proposed to achi
hybrid synchronization between the two iden

This shows that our proposed m as strong r
e presented to show 

the effectiveness of this approa
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