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ABSTRACT

In this paper, an adaptive control scheme is developed to study the hybrid synchronization behavior between two iden-
tical and different hyperchaotic systems with unknown parameters. This adaptive hybrid synchronization controller is
designed based on Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of pa-
rameters is shown. The adaptive hybrid synchronization between two identical systems (hyperchaotic Chen system) and
different systems (hyperchaotic Lorenz and hyperchaotic Lii systems) are taken as two illustrative examples to show the
effectiveness of the proposed method. Theoretical analysis and numerical simulations are shown to verify the results.
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1. Introduction

Chaos is an omnipresent phenomenon. Scientists who
understand its existence have been struggling to control
chaos to our benefit. There is a great need to control the
chaotic systems as chaos theory plays an important role
in industrial applications particularly in chemical reac-
tions, biological systems, information processing and
secure communications [1-3]. Many scientists who are
interested in this field have struggled to achieve the syn-
chronization or anti-synchronization of different hyper-
chaotic systems. Therefore due to its complexity and
applications, a wide variety of approaches have been
proposed for the synchronization or anti-synchronization
of hyperchaotic systems. The types of synchronization
used so far include generalized active control [4-8], non-
linear control [9,10], and adaptive control [11-19].

The co-existence of synchronization and anti-syn-
chronization, known as hybrid synchronization, has good
application prospects in digital communications. There-
fore it attracted a lot of attention in recent years. In hy-
brid synchronization scheme, one part of the system is
anti-synchronized and the others are completely synchro-
nized so that complete synchronization and anti-syn-
chronization co-exist in the system. The co-existence of
CS and AS may enhance security in communication and
chaotic encryption schemes. Li [20] studied full state
hybrid projective synchronization behavior in multi-
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scroll chaotic systems in symmetrical coordinate sub-
space. Xie, Chen and Bolt [21], through numerical stud-
ies show that an arbitrary signal can be synchronized by
hybrid chaotic system and then that particular signal can
be stored for password and message identification. They
further identify potential applications in information stor-
age, message identification and certain types of secure
signal and image communications.

Zhang and Lt [22] introduce a new type of hybrid
synchronization called full state hybrid log projective
synchronization and apply it to the Rossler systems and
the hyperchaotic Lorenz system to numerically verify
their results. Similarly Chen, Chen and Lin [23] achieve
hybrid synchronization in Chin-Lee system using both
linear and non-linear control schemes. Recently Sun et al.
[24] analyze the hybrid synchronization of two coupled
complex networks using linear feedback and adaptive
feedback control methods. They derive a criterion for the
hybrid synchronization of the two complex networks and
show that under suitable conditions two complex net-
works can realize hybrid synchronization. More recently,
Vaidyanathan and Rasappan [25] investigate the hybrid
chaos synchronization of hyperchaotic Qi and Jia sys-
tems using active nonlinear control. The idea of the
aforementioned type of hybrid synchronization of chaotic
systems deals with systems with known parameters.
However in practical engineering situations, parameters
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are probably unknown and may change from time to time.

Therefore, there is a vital need to effectively hybrid-
synchronize two chaotic systems (identical and different)
with unknown parameters. This is typically important in
theoretical research as well as practical applications.
Among the aforementioned methods, adaptive control
[11-19] is an effective option for achieving the synchro-
nization of chaotic systems with fully unknown parame-
ters. Therefore motivated by this, we study the hybrid
synchronization of two identical and two different hy-
perchaotic systems with fully unknown parameters. The
rest of the paper is organized as follows. In Section 2, we
present a novel adaptive hybrid synchronization scheme
with a parameter update law and give a brief description
of the systems. In Sections 3 and 4, we present the hy-
perchaos hybrid synchronization between two identical
and different hyper chaotic systems via adaptive control.
Conclusions are given in Section 5.

2. Problem Formulation and Systems
Description

In the first part of this section, we set up the problem and
present novel adaptive hybrid synchronization scheme
with parameter update law. By using Lyapunov stability
theory we show the co-existence of hybrid synchroniza-
tion between two systems described below. In the second
part of this section we briefly describe the two systems
used for further analysis.

2.1. Hybrid Synchronization of Chaotic Systems
Consider the master chaotic system in the form of
x=f(x)+F(X)a (1)

where xeQ, c R" is the state vector, @ € R" is the
unknown constant parameter vector of the system,
f(X) is an nx1 matrix, F(X) iS an Nxm matrix
whose elements F, (x)eL, . The slave system is as-
sumed by:

y=9(y)+G(y)B+u )

where yeQ, c R" is the state vector, e R is the
unknown constant parameter vector of the system ¢ ( y)
is an nx1 matrix, G(y) is an nxq matrix whose
elements G, (Xx)el,, and ueR" is control input

vector. If we divide the master and the slave systems into
two parts, then system (1) can be written as:

%=1 (x)+FR (X« 3)
X = f;(x)+F; (e, )
and the slave system (2) can be written as

Vi =0 (y)+G(y)p +u Q)
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¥, =9;(¥)+G;(y)5; +u (6)

Let ¢ =y, —% and € =y, +X; be the synchroni-
zation and the anti—synchronization error vector’s re-
spectively. Our goal is to design a controller U such that
the trajectory of the response system (5)-(6) with initial
conditions Y, = (yi (0),y; (O)) can asymptotically ap-
proach the drive system, (3)-(4), with initial condition
X =(% (0).%(0)). And finally implement the hybrid
synchronization such that,
lim||g | = }gg”yl (t,¥o)—% (t,% )" =0 and the anti-syn-

ta>o0

chronization such that

tim|le,| = lim|y, (t.,) - x, (t.%,)] =0

t—oo t—oo

where |||| is the Euclidean norm.
2.2. Adaptive Hybrid Synchronization
Controller Design

Theorem: If the nonlinear control u(t,x,y) is selected
as:

i (6X)+F (4X)é - g (t.y)

-G (t,y)5 -¢
DT 00 00949,y
+G, (t,y)/éj —§

and adaptive laws of parameters are taken as:
é=-[F(tx)] g

& =-[F (tx)] ¢
A=lety)]'q

by - (G, ty)] e

then the response system (5)-(6) can synchronize and
anti-synchronize the drive system (3)-(4) globally and
asymptotically, where &,d;, /;’, and ,l;’j are respect-
tively, estimations of the unknown parameters &, a;, 3
and p;.

Proof: From Equations (3)-(6), we get the error dy-
namical systems as follows:

4=G((A-A)+F((@-a)-e O
& =G, (y)(ﬂj _BJ‘)*Fj (X)(
e=F (X)(ai _di)_Gi (y)(ﬂ: - Ai)

a -a))-¢ (8

A : ©)
+FJ(X)(0‘1 —aj)+Gj(y)(ﬂj —ﬁj)—e
where e=¢ +e,. _ .
Let ¢ =, -6G,a,=a;-a,B = -5 and
AM
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/B i~ s j _/8 i
If a Lyapunov function candidate is chosen as
V<Qsel sdi ’dl s,éi sléj )
1 T T ~T ~ (10)
ZE(Q g+e'e +a'a +a"a +4"f+BB)
The time derivative of V along the error dynamical
system is given by:

V=¢'g+e'e +a

—(eITeI —ejTej)SO) (12)

Since V is positive definite, and V is negative
semi-definite, it follows that from the fact that

Jlefat=3[v(0)-v(1)

It can easily be seen that €€ L .From Equation (9)
have lime=0. Thus, by Barbalat’s lemma, we have
11m||yt_) Yo ) £ X(t, % )" =0. Thus the response system (2)
can be synchronized and anti-synchronized the drive sys-
tem (1) globally and asymptotically. This completes the
proof.

Jsv(0)

2.3. Systems Description

The hyperchaotic Chen system [26,27] is given by:
x=a(y—x)+Ww,
y =dx—xz+cy,
Z=xy-bz,
W= yzZ+rw.

(13)

where X, Yy, Z and W are state variables, and
a, b, c,d,and rarereal constants. When
a=35b=3,c=12,d=7,0<r <0.085, system (13) is
chaotic, when
a=35b=3,c=12,d =7,0.085<r <0.789, system (13)
is hyperchaotic.

The hyperchaotic Lorenz system [28,29] is described
by

x=a(y—-x)+w,
Yy =—XZ+IX-Y,

(14)
z=xy-bz,
W= —xz+dw.
where X,y,Zz, and W are state variables, a,b,c and

d are real constants. When a=36,b=3,c=20 and
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d =1.3, system (14) has hyperchaotic attractor.
The hyperchaotic Lii system [30] is described by:

x=a(y-X)+Ww,

y=-Xz+cy, (15)
Z=xy-bz,
W= XZ+rw.

where X, ¥,z and W are state variables, a,b,c and
r are real constants. When
a=36,b=3,c=20,-0.35<r<1.3,

perchaotic attractor.

system (15) has hy-

3. Adaptive Hybrid Synchronization of Two
I dentical Hyper chaotic Systemswith
Unknown Parameters

In order to observe the efficacy of our proposed method,
we used two hyperchaotic Chen systems where the mas-
ter system is denoted with the subscript 1 and the re-
sponse system having identical equations denoted by the
subscript 2. The two systems are defined below.

% =a(y,—%)+w,
¥1 =-XZ +0y, (16)
z =xy,—bz,
Vi = X7 +dw.
and
Xz =a(Y2_X2)+W2+u1:
Y, ==%2, +CY, +U,, (17)

2, =%y, bz, +u;,

W, = X,Z, +dw, +U,.
where u,,U,,U,,U, are four control functions to be de-
signed. For the hybrid synchronization, we define the
state errors between the response system that is to be
controlled and the controlling drive system as

€=X-X,6=Y,+Y,, §=2-2, € =W, +W . The
error system is given by

g =a(e —¢g)+e —2ay, —2w +U,,
e =de — %,z — X7 +ce +2dx +U,,
€ :x2y2—x1y1—be3+u3,

€& =Y, +Y,Z4+rg +u,

(18)

Now our goal is to find proper control functions
U (i=1,2,3,4) and parameter update rule, such that sys-
tem (17) globally hybrid synchronizes system (16) as-
ymptotically. i.e., P_g.}"e":O, where

e=[e.e.e.e] . If the two systems are without con-
trols U (i =1,2,3,4) and the initial condition is:

(% (0),(0),2(0),w (0))
#(%(0),,(0),2(0),w, (0))
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then the trajectories of the two systems will quickly
separate each other and become irrelevant. However,
when appropriate controls are applied the two systems
will approach hybrid synchronization for any initial con-
ditions. We shall propose the following adaptive control
law for system (17).

d=a-ab=b-bE=c-¢f=r-f,d=d—d
where 4, 6 6d f are the estimates of ab,c,d,r re-

spectively. Now, let us chogse a controller U and pa-
rameters update law &,b,¢,d,f as follows:

Y :_a(ez _Q)_e4+zay1 +2w -8,

u, =—de +x,2,+ X7 —Ce, - 2dx —e,,

. (19)
U ==XY, + XY, +be —e,
U ==Y,z - ¥,z +fe, —e,
and the parameter update rule.
Consider the following Lyapunov function
A 2 R 2 A 2
afﬂ%‘% b=-€7.C=¢e", (20)

d=ee,.f=¢’
Consider the following Lyapunov function
v =l(eTe+€12 +b? +¢€* +d? +f2).
2
Then the time derivative of V along the trajectories
of Equation (18) is:
Vz(eTé+éé+5t;)+Cé+a; )
~¢[a(e,-g)-g]+e[de +Ce -6 |
+e3[ be, — e3]+e4 fe,—e,]+a(-(g
+b(e?)+¢(-e’)+d(-ee)+7(-€)
:_e12 _e22 _ejZ _e42

Since V is positive definite function and V is nega-
tive definite function, it translates to }1m||e|| =0 based
—0

-e)) @D

on the Lyapunov stability theorem [31]. Therefore, the
hyperchaotic Chen response system (17) is hybrid syn-
chronized with hyperchaotic Chen drive system (16) with
fully uncertain parameters under the adaptive controller
(19) and the parameters update law (20).

Numerical Simulations

To verify and demonstrate the effectiveness of the pro-
posed method, we discuss the simulation results for hy-
perchaotic Chen system. In the numerical simulations,
the fourth-order Runge-Kutta method is used to solve the
systems with time step size 0.001. For these numerical
simulations, we used the initial conditions,

(% (0)-%(0).2(0).w (0)) = (5.8.-1.-3) and
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(%,(0).¥,(0),2(0),w, (0)) =(3.4,5,5) . Hence, the
error system has the initial values
g(0)=-2,6,(0)=12,6,(0)=6 and e,(0)=2. The
unknown parameters are chosen as
a=36,b=3,c=12,r=0.5 and d=7 such that the
hyperchaotic Chen system exhibits chaotic behavior. Hy-
brid synchronization of systems (16) and (17) via adap-
tive control laws (Equations (19) and (20)) with the ini-
tial estimated parameters .
a(0)=5,b(0)=11,6(0)=2,f(0)=8 and d(0)=6
are shown in Figures 1 and 2. Figures 1(a) and (d) dis-
play state trajectories of drive system (16) and the re-
sponse system (17). Figure 2(a) displays the hybrid syn-
chronization errors between system (16) and (17). Figure
2(b) Shows that the estimates

é(t),b(t),é(t),f(t) and d( ) of the unknown pa-
rameters converges to a=36,b=3,c=12,r=0.5 and
d=7 as t— .

4. Adaptive Hybrid Synchronization
between Two Different Hyperchaotic
Systems

In order to observe the hybrid synchronization behavior
between hyperchaotic Lorenz system (15) and hypercha-
otic Ll system (14), we assume that hyperchaotic Lorenz
system with four unknown parameters is the drive system
and hyperchaotic Li system with four unknown parame-
ters is the response system. The drive and response sys-
tems are defined as follows:

X :a1(y| _X])+\N]a

Yi ==X+, XY,

z=xY,-bz,

W =-x2z+dwW.
and

X, :az(yz—x2)+wz+ul,
Y, =%, +GY, +U,

z, :XQY2_b222+U3’

W, = X,Z, +I,W, +U,.

(23)

where U,,U,,U,,U, are four control functions to be de-
signed. For the hybrid synchronization, we define the
state errors between the response system that is to be
controlled and the controlling drive system as
€=X-"X6=Y,tY.8=2-2,6 =W, +W.

The error system is given by

€ =a2(y2—x2)+wz—a,(y1—xl)—wl+u1,

€ =X +GY, = X4+ X —Y, +U,, (24)
& =%Y, -0,z -Xxy +bz +u,
€, =X%2z, +LW, —XZ +dWw+U,.
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Figure 1. State trajectories of the drive system (16) and the
response system (17). (a) Signals x, and x,; (b) Signals
y, and vy,; (c) Signals z and z; and (d) Signals w,
and w,.
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Figure 2. (a) Hybrid synchronization errors e,,e,,e,,e, of
the drive system (16) and the response system (17) with time
t; (b) Changing parameters a,b,c,r,d of the drive system
(16) and theresponse system (17) with time t .

Now our goal is to find proper control functions
U, (i :l,2,3,4) and parameter update rule, such that
system (17) globally hybrid synchronizes system (16)
asymptotlcally ie 11m||e|| 0 where

e=[g.e.6.6] .
trols U (i =1,2,3,4) and the initial condition is

(% (0),(0),2(0),w (0))
#(%(0),,(0),2(0),w, (0))

then the trajectories of the two systems will quickly
separate each other and become irrelevant. However,
when appropriate controls are applied the two systems
will approach hybrid synchronization for any initial con-
ditions. We shall propose the following adaptive control
law for system (23). We define the parameters error

a=a- allq b - blr—r—rd_d d and

If the two systems are without con-

4,=-a,-4a,b=b - bzr_r—rz,c2 ¢, —¢, where
a, 61 d f and &, b2 ¢,f, are the estimates of
a,b,d,r, and a,,b,,c,,r, respectively. Now, let us
choose, a controller U and parameters update law
a, 61 ,f,4,,b,6,,f, as follows:
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U, =—éz(y2—X2)—W2+é1(y1 _X1)+W| -8,
u, :X222_62y2+xlzl_flxl +Y, -6,

- ~ (25)
Uy ==X, +0,2, +xy, -bz -e,
Uy =-%2 —Hw + X2 —dw —e,.
and the parameter update rule
é‘l :_(Y1_X1)ela
b =ze,
fi=xe,
% =we, 6)
& =(¥,—%)e,
b, =-ze,.
¢, =y.8,
f, = we,.

Consider the following Lyapunov function
Y :%<eTe+:§12+l:~)l2 +d +77 +8 +B +67 +1,7).
Then the time derivative of V along the trajectories
of Equation (24) is
V-(eeras +bh +dd +hf +ad,
+Bb +88 +f |
:el[éQ(yz_XZ)_éi(yl_Xl)_el]
+6[6y, +71% -6 ]
+e[-Bz+bz - |re[tw +dw-e | @7)
+&((%-x)8)+b(-ze)+d (-we)
+i(-x&)+a (=(v %)) +b,(28)
6, (v,6)+F(-we,)
Z—Qz—%z—%2—942

Since V is positive definite function and V is ne-
gative definite function, it translates to 1im||e|| =0, bas-
t—w

ed on the Lyapunov stability theorem [31]. Therefore, the
hyperchaotic Lii response system (14) is hybrid synchro-
nized the hyperchaotic Lorenz drive system (15) with
fully uncertain parameters under the adaptive controller
(25) and the parameters update law (26).

Numerical Simulations

To verify and demonstrate the effectiveness of the pro-
posed method, we discuss the simulation result for the
hybrid synchronization between hyperchaotic Lorenz

Open Access
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Figure 3. State trajectories of the drive system (22) and the
response system (23). (a) Signals x, and x,; (b) Signals
y, and y,; (c) Signals z and z,; and (d) Signals w,
and w,.
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Figure 4. (a) Hybrid synchronization errors, e,e,,e,,e, of
thedrive system (22) and the response system (23) with time
t; (b) and (c) Changing parameters a,,b,,r,,d;,a,,b,,r,,C,
of the drive system (22) and the response system (23) with
time t.

system and hyperchaotic L system. In the numerical
simulations, the fourth-order Runge-Kutta method is
used to solve the systems with time step size 0.001. For
this numerical simulation, we assume that the initial con-
dition,  (x (0),,(0),7(0),w (0))=(2,3,2,-2), and
(%(0).¥,(0),2,(0),w, (0))=(20,10,10,-15) is em-
ployed. Hence the error system has the initial values
g (0)=18,6,(0)=12,6(0)=8 and €, (0)=-17. The
unknown parameters are chosen as

a =10,b =§,d1 =13, 1, =28 and

Open Access

a, =36,b, =3,¢c, =20,r, =1.3 in simulations so that
both the systems exhibits a hyperchaotic behavior. Hy-
brid synchronization of and (26) with the initial esti-
mated parameters

a (0)=10,b (0)=10,d,(0)=10,r,(0)=10 and
a,(0)=10,b,(0)=10,c,(0)=10,r,(0) =10 are shown
in Figures 3 and 4. Figure 3 displays state trajectories of
drive system (22) and the response system (23). Figure
4(a) displays the hybrid synchronization errors between
system (22) and (23). Figures 3(b) and (c) show that the
estimates & (t),by (t), d,(t), f,(t) and

a, (t),b, (t),c,(t),r,(t) of the unknown parameters

converges to a =10,b :g,dl =1.3,r, =28 and

a,=36,b, =3,c,=20,r,=13 as t > .

5. Conclusion

In this paper, we discussed the problem of adaptive hy-
brid synchronization of hyperchaotic systems with fully
unknown parameters. On the basis of the Lyapunov sta-
bility theory and the adaptive control theory, a new adap-
tive hybrid synchronization control law and a novel pa-
rameter estimation update law are proposed to achieve
hybrid synchronization between the two identical and
different hyperchaotic systems with uncertain parameters.
This shows that our proposed method has strong robust-
ness. Finally, the simulation results are presented to show
the effectiveness of this approach.
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