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ABSTRACT 

In this work, with the help of the symbolic computation system Maple and the Riccati mapping approach and a linear 
variable separation approach, a new family of traveling wave solutions of the (2 + 1)-dimensional dissipative Zabolot- 
skaya-Khokhlov equation (DZK) is derived. Based on the derived solitary wave solution, some novel kind wave excita- 
tions are investigated. 
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1. Introduction 

In nonlinear science, soliton theory plays an essential 
role and has been applied in almost all the natural sci- 
ences, especially in all the physical branches such as 
fluid physics, condensed matter, biophysics, plasma phy- 
sics, nonlinear optics, quantum field theory, and particle 
physics, etc. [1-5]. How to find exact solutions of non- 
linear partial differential equations (PDEs) plays an im- 
portant role in the research of nonlinear physical phe- 
nomena. So it is always an interesting topic to search for 
meaningful solutions for PDEs. In order to find some 
new exact solutions, a wealth of effective methods have 
been set up, for instance, the bilinear method, the stan- 
dard Painlevé truncated expansion, the method of “coa- 
lescence of eigenvalue” or “wavenumbers”, the homo- 
genous balance method, the homotopy-perturbation me- 
thod, the hyperbolic function method, the Jacobian ellip- 
tic method, the (G’/G)-expansion method, the variable 
separation method, and the mapping equation method 
[6-15], etc. Among these methods, the mapping equation 
approach is one of the most effectively straightforward 
algebraic methods to construct exact solutions of NPDE 
[16-19].  In this paper, via the Riccati mapping equation 
we find some new exact solutions of the (2 + 1)-dimen- 
sional dissipative Zabolotskaya-Khokhlov equation (DZK). 
Based on the derived solution, we obtain some kind wave 

excitations of the equation. 

2. New Traveling Wave Solutions of the  
DZK Equation 

The (2 + 1)-dimensional dissipative Zabolotskaya-Khok- 
hlov equation is 

2 0xt x xx xxx yyU U UU U U             (1) 

In Ref. [20], some new exact solutions and time soli- 
tons have been discussed by (G’/G)-expansion method. 
As is well known, to search for the solitary wave solu- 
tions for a nonlinear physical model, we can apply dif- 
ferent approaches. One of the most efficient methods of 
finding soliton excitations of a physical model is the 
so-called mapping approach. The basic ideal of the algo- 
rithm is as follows. For a given nonlinear partial differ- 
ential equation (NPDE) with the independent variables  

 0 1 2, , , , mx x t x x x   and the dependent variable u, in 
the form 

 , , , , 0,
i jt xi x xP u u u u             (2) 

where P is in general a polynomial function of its argu- 
ments, and the subscripts denote the partial derivatives, 
the solution can be assumed to be in the form 



X. J. LIU  ET  AL. 1596 

 
0

n
i

i
i

u A q


                  (3) 

with 
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where σ is a constant and the prime denotes the different- 
tiation with respect to q. To determine U explicitly, one 
may substitute (3) and (4) into the given NPDE and col- 
lect coefficients of polynomials of Φ, then eliminate each 
coefficient to derive a set of partial differential equations 
of ,iA  and q, and solve the system of partial differential 
equations to obtain ,iA  and q. Finally, as (4) is known 
to possess the solutions 
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Substituting ,iA q and (5) into (3), one obtains the ex- 
act solutions to the given NPDE. Now we apply the 
mapping approach to (1). By the balancing procedure, 
the ansatz (3) becomes 

 0 1U A A q                 (6) 

with 

,q lx my nt                  (7) 

where 0 ,A 1,A l, m, n are arbitrary constants. Substituting 
(6), (7) and (4) into (1) and collecting coefficients of 
polynomials of  , then setting each coefficient to zero, 
we have 
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Based on the solutions of (4), one thus obtains follow- 
ing exact solutions of Equation (1): 
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3. Kind Wave Excitations of DZK Equation 

In the following discussion, we merel
wave excitations of DZK equation. According to the so- 
lution 

     (13) 

y analyze kind 

 2 10 ,U
 10,l m

when we set the parameters  
10,  10, 10n        at time , we can 

 

t

0t 
obtain a kind wave excitation of the physical quantity

2U  presented in Figure 1.  
Furthermore, According to the solution 2 ,U  when we 

set the parame ers 20,  20,  20l m n    and  
10   es a) 6t at tim   , b)  3t   , c) 0t  , d) 

 3t  , e)  6t  , we can obtain the time evolution of a 
kind wave presented in Figure 2. From Figure 2, one 
fin ect

ge wi e. 

ensional dissipa- 
tive Zabolotskaya-Khokhlov equation. Based on the de-  

ds that the kind wave moves in the same dir ion and 
the amplitude, velocity, and wave shape of the kind wave 
do not undergo any chan th tim

4. Summary and Discussion 

In summary, with the help of a Riccati mapping method 
and a linear variable separation method, we find some 
new exact solutions of the (2 + 1)-dim

 

 

,

  (10) 
Figure 1. Plot of the kind wave structure for the physical 
quantity 2U . 
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Figure 2. Plot of the time evolution of a kind wave for the 
physical quantity 

rived solution , we obtained the kind wave solution 
and studied th e evolution of a kind wave, which are 
different from the ones of the previous work. Because of 
wide applications of the DZK equation in physics, more 
properties are worthy to be studied such as its Lax pair, 
symmetry reduction, bilinear form, and Darboux trans- 
formation, etc. All these properties are worthy of study- 
ing further. 
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