
Applied Mathematics, 2013, 4, 6-12 
Published Online November 2013 (http://www.scirp.org/journal/am) 
http://dx.doi.org/10.4236/am.2013.411A1002 

Open Access                                                                                             AM 

Representation of Functions in 1
μL  Weighted Spaces by 

Series with Monotone Coefficients in the Walsh 
Genrealized System* 

Martin Grigoryan, Artavazd Minasyan 
Department of Physics, Yerevan State University, Yerevan, Armenia 

Email: gmarting@ysu.am, artavazdminasyan@gmail.com 
 

Received June 28, 2013; revised July 28, 2013; accepted August 5, 2013 
 

Copyright © 2013 Martin Grigoryan, Artavazd Minasyan. This is an open access article distributed under the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. 

ABSTRACT 

Let   n x  be the Walsh generalized system. In the paper constructed a weighted space 1L , and series n na   in 

the Walsh generalized system with monotonically decreasing coefficient 0na   such that for each function 

  1f x L  in the space one can find a subseries  
k kn na  x  that converges to  f x  in the weighted 1L  and 

almost everywhere on  0,1 . 

 
Keywords: Orthonormal System; Convergence; Functional Series 

1. Introduction 

In the present paper we study the following natural ques-
tion: does there exist a weighted space , with 

, such that for every function in the space 
1 0,1L 

1 0 x 

      11

0
0,1 ; dL f f x x x     

one can find a series in the Walsh generalized system 
 n  of the form 

1

,  with  0,n n n
n

a a



 ↘  

that possess the following property: for any function 
 there exists a growing sequence of natural 

numbers  such that the subseries 
1k

 1 0,1f L
kn

k kn na  
 con- 

verges to  in the f  1 0,1L  norm and a.e. 
Note that the problem of representing a function  

by a series in classical and general orthonormal systems 
has a long history. Of course the problem of the repre-
sentation of functions was studied before Luzin’s work. 
It goes back to D. Bernoulli, L. Euler and many others. 

f

A question posed by Lusin in 1915 asks whether it is 

possible to find for every measurable function  a 
trigonometric series, with coefficient sequence converg-
ing to zero, that converges to the function almost every-
where. For real-valued functions, this question was given 
an affirmative answer by Men’shov [1] in 1941. 

[0,2π]

There are many other works (see [2-11]) devoted to 
representations of functions by series in classical and 
general orthonormal systems and the existence of differ-
ent types of universal series in the sense of convergence 
almost is everywhere and by measure. 

Since the trigonometric and Walsh systems have many 
properties in common, one would think that there should 
be a corresponding result for the Walsh system. This is, 
indeed, the case, and, in fact, the same sort of result 
holding for a multitude of Walsh subsystems, many of 
them are quite sparse and far from complete. 

In this paper we prove the following theorem: 
Theorem 1. For any 0 < < 1  there exists a 

measurable function   <x  ,0 1,x  with 

    0,1 ; 1 1x x     , 

such that for any  and any function 1p   1 0,1f L  
there exists a series in the Walsh generalized system 
 n  of the following form 

*This work was supported by State Committee Science MES RA, in 
frame of the research project No. SCS 13-1A313. 
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1 2
1

,   where  0  and  ,
ii k i

i

a a k k




  ↘   (1) 

which converges to  in the —metric and 
almost everywhere. 

f 1 0,1L 

Note that there exist functions in the space  1 0,1L  
that can not be represented by series in the Walsh system 
 k  (see [8], pp. 124-125). 

Theorem 1 is a consequence of the more general 
Theorem 2, which is stated as follows: 

Theorem 2. For any 0 < < 1  there exists a mea- 
surable function    < 1x x  ,0 ,  with 

    0,1 ; 1 1x x     , 

and a series in the Walsh generalized system  n  of 
the form 

0

,   with  0,n n n
n

a a



 ↘  

that possess the following property: for any function 
 there exists a growing sequence of natural 

numbers  such that the subseries 
 1 0,1f L

kn

1
k kn n

k

a 



  

converges to f  in the -norm and a.e. 1 0,1L 
Recall the following definition: a series 

1 n nn
a 

 0,1


 is 

said to be universal with respect to subseries in the space 
, if for each function , one can 

select a subseries 
1k

1 0,1L    1f x L

kn nk
a  

 which converges to 
 f x  in  norm .  1 0,1L
The above-mentioned definitions are given not in the 

most general form and only in the generality, in which 
they will be applied in the present paper. 

Note that the result of the Theorem 2 is definitive in a 
certain sense: one can not replace  by  1L E  1 0,1L



 
because no orthonormal system of bounded functions 
does there exist a series universal in  with re-
spect to subseries. This is almost obvious. 

1 0,L 1

The following problems remain open. 
Question 1. Are the theorems 1 and 2 true for the 

trigonometric system? 
Question 2. What kind of necessary and sufficient con- 

ditions should be imposed on the weight function  x
n

 
in order to construct a Walsh series 

1 nn
a  

 to be 
universal in the space with respect to subseries? 

2. Proofs of Main Lemmas 

Let  be a fixed integer and 2a
2π

e
i

a
a  . Recall the 

following definitions. 
The Rademacher system of order  is defined induc-

tively as follows. For  let 
a

0n 

 0

1
if , , 0,1, , 1,k

a

k k
R x x k a

a a
     



and for  let 1n 

     01 .n
n nR x R x R a x    

The Walsh generalized system (see [3] and [13,14]) of 
order  is defined by a

 0 1,x   

and if 1
1

snn
sn a a    , where 1 > > sn n , 

0 , 1, 2, ,a j sj     then 

    1

1

s

sn n n x R x R x   . 

We denote the generalized Walsh system of order  
by a

a
 . Note that 2  is the classical Walsh system. 

The basic properties of the generalized Walsh system of 
order  have been obtained by H. E. Chrestenson, J. 
Fine, C. Vateri, W. Young, N. Vilenkin and others. Next 
we list some properties of , which will be useful 
later. 

a

a

 Each n -th Rademacher function has period na . 
   , ,n k    k m

n nR x R x   , and m k  
(mod a ). 

  n x  is a finite product of Rademacher functions 
with values in a . 

      k k ja j
x R x  x  if . 


 a

 0 1kj a  
 , 2a   is a complete orthonormal system in  

 0,1L2  and it is basic in  0,1pL  for . > 1p

We put 

   
   

 

1,         if   0,1 ,1 ,

;  1
1 ,  if   ,

1, 2, ,1 ,

j k
k

j
k jk

k k k

k

x a

I x j j
a x

a a

k j a

   
     

 
  

﹨


    (2) 

and periodically extend these functions on  with 
period 1. 

1R

By  E x
E

 we denote the characteristic function of 
the set , i.e. 

 
1,    if   

0,   if  .E

x E
x

x E



  

               (3) 

Then, clearly 

         0 ,
k

j k
k jI x x a 


   x

a

         (4) 

and let for the natural numbers 1 , and 1, kk j       

       1

0

1
d ,   

0

k k
i ij j k

k

b x x x
a

i a

  
 

    
 
 

 
    (5) 

        1

0
d

0,     if   0  or  

1,   if  1 .

j j
i k k i

k

k

a I I x x x

i i

i a



   
  


a          (6) 

  
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Hence 

       
1

0

ka

i ij j
ik k

x b 


 

 
  

 
 x

i

            (7) 

        
1

1

ka
j j

k i k
i

I x a I 




  x .               (8) 

Lemma 1. Let dyadic interval 

    1 ; , 1,k m m m
m k a k a k a         

and numbers  be given. Then 
there exists a measurable set 

 0 ,  0,  0,1N    
 0,E  1  and a poly- 

nomial  in the Walsh generalized system Q  k  of 
the following form 

0

N

k k
k N

Q c 


   

which satisfy the following conditions: 

1) the coefficients  are 0  or  
0

N

k k N
c


  , 

2)  > 1E   , 

3)  
:   if   

0 :   if   

x E
Q x

x

 
  

, 

4)   00

1 1 21 2

0
max d ,

m

k kk NN m N
c x x A   

 
   

where A  is a constant, 

5)     
00

max , 0;1
m

k kk NN m N
c x x




 
  . 

Proof. Let 

0 0

1
1;   log loga as N


        

m         (9) 

We define the polynomial  Q x  and the numbers , 
 and 

nc

ia jb  in the following form: 

           1

0
,   0;1 .s

k
m

Q x x I a x x 


         (10) 

     1

0
d ,   0.n n nc c Q Q x x x n           (11) 

 

   0

0

1

,   0 ,   

,   0 .

m
i i k

m

j j

b b i a

a a I j a




    
 

  
               (12) 

Taking into consideration the following equation 

     
  

,   

if   0 , see 1 ,

s
s

i j j a i

s

x a x x

i j a

  
 

 

 
 

and having the following relations (5)-(8) and (10)-(12), 
we obtain that the polynomial  has the following 
form: 

 Q x

     

 

 

0

0

0

11

0 1

1 1

1 0

,

m

m

s

a a
s

i i j j
i j

a a

j i j a i
j i

N

k k
k N

Q x b x a a x

a b x

c x





  

 





 

 

 
 



  

  



 

 



       (13) 

where 

 

0

0

0

 or 0    if   ,
,

0,                 if   ,

1.

m
k k

s m s

k N N
ac c Q

k N N

N a a a





       
   

   


     (14) 

Then let 

  ; .E x Q x    

Clearly that (see (2) and (10)), 

   01 1mE a a   ,             (15) 

   0

,                if   

1 ,   if   

0,                if   

x E

Q x a x E

x










  




﹨      (16) 

   1

0
,   .n nc Q x x dx n     

Hence 

 

 

  

0 0

0 0

1

0

1
2 2

1

0

1
1 1 222 1

0

dmax

dmax

d ,

m

k k
N m N k N

m

k k
N m N k N

c x x

c x x

Q x x A





 

  

  



 
 
 
 

 





 2 

 

where 4 ,A A  Repeating the arguments in the proof of 
Lemma 1, we get a proof of the last statement of Lemma 
1. Lemma 1 is proved. 

Lemma 2. Let given the numbers . 
Then for any function 

,0 < < 1N  
 

1L
, one can 

find a set 

1 0,1 ,  > 0f L f
 0,1E   and a polynomial in the Walsh 

generalized system 

1

,
M

k k
k N

Q a 
 

 


 

satisfying the following conditions: 
1)  0 <ka   and the non-zero coefficients in  

 
1

M

k k N
a

 
 are in decreasing order, 

2) > 1E  , 

Open Access                                                                                             AM 



M. GRIGORYAN, A. MINASYAN 9

3)     d < ,
E

Q x f x x   

4)      11
max d d

m

k kk Ne eN m M
a x x f x x 

   
 

   

for every measurable subset e of E, 

5)       11
max ,   0;1

m

k kk NN m M

f x
a x x

   
  

. 

Proof. We choose some non-overlapping binary 
intervals  and a step function   0

1


  



   
0 0

1 1

,   1,x x


 


 

  
 

           (17) 

satisfying the conditions 

0

1 1
2 2

2
1

,max
2

A A  
 

 


 

 
   

 
            (18) 

0 0 1 1
0

2      ,
             (19) 

 1

0
d

2
f x .

                           (20) 

Successively applying Lemma 1, we determine some 
sets  0,1E   and polynomials 

 
1

1

0,   1 ,   1, , ,
m

j j
j m

Q a m N




 0 





    


   (21) 

where  or 0ja  j j  , if  1,j m m  , 

> 1 ,
2

E
    

 
                         (22) 

: if  

0 :   if  

x E
Q

x
 




 
  

,                       (23) 

 
1 1

11 1 2 2
01

dmax
m

k k
m m m k m

a x x A
  

  
 



   

 
   

 
  , (24) 

Then let 

0

1

,E E



 

                     (25) 

0

1 1

.
M

k k
k N

Q Q a






  

  


           (26) 

>From (19), (21), (22) and (25) follows, that 

> 1E   

and 0 <ka   and the non-zero coefficients in 
 

1k k N 
 are in decreasing order, i.e. the statements 1) 

- 3) of Lemma 2 are valid. 

M
a

To verify the statement 4), for any  deter- 
mine 

<N m M
  from the condition 1m m < m   . Then by (21) 

and (26) 

1

1 11

.
m m

k k n k k
n k mk N

a Q a




 


   

   


         (27) 

Since for any point x E ,  (see (17), 
(23) and (26)), then from the conditions (18), (24), and 
(27) for every measurable subset e of E. 

   Q x x

We have 

         d d
e e

Q x f x x x f x x .       

   

 

     

1

11

1

d d

d

d d
2

n

m

k k ne e
nk N

m

n ne
n m

e e

a x x x x

a x x

x x f x x





  



 




 

 

  
  

  
 

  
 

   

  



 







 

Repeating the arguments in the proof of Lemma 2, we 
get a proof of the last statement of Lemma 2. Lemma 2 is 
proved. 

The main tool in the proof of Theorem 2 is the fol- 
lowing result. 

Lemma 3. Let   k x
0 < < 1

 the Walsh generalized sys-
tem, then for any   there exist a weight function  

   ,0 1,x x    with     0,1 ; 1 1x x       

such that for any numbers  , and  0 > 1,p ,0 < < 1N  
evry function  

1

1 0,1 ,  > 0
L

f L f , one can find poly-  

nomial in the Walsh generalized system 

,  
k k

M

n n
k N

Q a N


N    

satisfying the following conditions: 
1)  

1
0 < < < , < <

k kn na a N k


M , 

2)       1

0
d < ,Q x f x x x   

3)     1

101
max d

k k

m

n nk NN m M
a x x 

   
 

x  

    1

0
df x x x   . 

Proof of Lemma 3 
Let 

    
1
, 0,1k k

f x x



 ,          (28) 

be the sequence of all algebraic polynomials with 
rational coefficients. Applying repeatedly Lemma 2, we  

obtain sequences of   1k k
E




 sets and polynomials in the  

Walsh systems   n x  

   
1

1

,
k

i i
k

m

k n n
i m

Q x a x






             (29) 

where 
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0 1;  km m ↗ 

which satisfy the following conditions: 

 
1 12 0,    

 1, 2, ,
i i

k
n n k ka a i m m

k



    

 

, ,
   (30) 

      4 1d 2
k

k
k kE

Q x f x x    ,         (31) 

 

  
1 1

1

dmax

d 2

i i
k k k k

m

n nem m m i m

k
ke

a x x

f x x


 

  

 

 
  
 

 




          (32) 

for every measurable subset e of  kE
11 2 .k

kE                  (33) 

Setting 

0
0

0
0

0 1 2

1
1

,   1,2, ,;

,   1;log

.

n s
s n

n s
s n

n n n
n n

E n

E E n

B














 


  


        

         





  ﹨

    (34) 

It is clear (see (33), (34)) 

01,   1 .B E     

We define a function  x  in the following way: 

    
1 0

1,      0,1

,   ,  1n n n

x E B
x

x n


 

  
   

 ﹨

﹨ n

;s




   (35) 

where 

1
2

1

2
n

n
n

s

h






  
                          (36) 

   
1 1

1 1

0 0
sup 1 d d .max

i i
k k k

m

k k n n x
m m m i m

h f x x a 
 
  

 
    

 
  x  

It follows from (34)-(36) that for all  0k n

        
  

10,1
1

12 1 2

0
1

d

1
2 d 2 .

3

k n n
k k

n k

n k
k k

n k

Q x x dx Q x x

Q x x h

 




  
 


   

 



 

 

 

﹨ ﹨ n

(37) 

In a similar way for all  we have 0k n

      2

0,1

1
d 2

3k

k
kf x x x  


 ﹨

.        (38) 

By the conditions (31), (35)-(38) for all  we 
obtain 

0k n

     
     

       

 

1

0

0,1

4 1 2 2

d

d

d

1
2 2 2 2 2 .

3

k

k

k k

k k

k k

k k k

Q x f x x x

Q x f x x x

Q x f x x x










   



 

 

    



 ﹨

       (39) 

Taking relations (32), (34)-(36) into account we obtain 
that for all  1,k km m m , and  0 1k n 

   

   

     

 

    
 

1

1

1

1
0 1

1
0

0

1

0

0,1

2

1

2 12

1

2
2 1

1

d

d

d

1
2 d

3

1
2 2 d

3

1
2

3 2

i i
k

i ik
k

i ik
k

i in n
k

n n

n

m

s s
i m

m

n n
i m

m

n ns
i m

k m
k

n n n
n n i m

k
kk

k n
n n

k
k n

k
n n

a x x x

a x x x

a x x x

a x x

f x x

 

 

 

 


























 
  

 

 
 


 

 





 
    

  

       

   







 

 



﹨

﹨

﹨

﹨
  

   

     

    

1

1
0

0

2
2 1

1

2 12

1

12

0

d

1
2 2 d

3 2

1
2 2 2 2 d

3

2 2 d .

n

n n

k

k n

k
k n

k nk
n n

k
kk

n k
n n

k
k

f x x

f x x

f x x

f x x x



 

 










  

 

 


 



x

   

        

       

  



 

 



﹨

(40) 

From the sequence (28) we choose a function  
0kf x  

such that 

   
0

1

0
d < ;

4kf x f x x
   

              (41) 

 
0

1
0

2
2,;   log kk     

m N .          (42) 

Then, we set 

   
0kQ x Q x ,  0 01,k kN m M m  . 

Now, it is not difficult to verify (see (30), (39)-(42)) 
that the function  x  and the polynomials  Q x  
satisfy the requirements of Lemma 3. 

Remark: In Lemma 3 polynom  can be chosen 
such that 

 Q x

      11
max ,   0;1

m

k kk NN m M

f x
a x A x

   
  

 

Lemma 3 is proved. 
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Proof Theorem 2 
Let  and let  0,1 

    
1
, 0,1k k

f x x



 ,              (43) 

be the sequence of all algebraic polynomials with ra-
tional coefficients. Applying repeatedly Lemma 3, we 
obtain a weight function  x  with  0 < 1x   and 

    0,1 ; 1 1x x    , a sequences of polynomials 
in the Walsh generalized systems   n x  

    ,
i i

k

k n n
i N

Q x a x


 
kM

            (44) 

where 

1 11; 1, 2,k kN N M k     

which satisfy the following conditions: 

 
1

2 0,    

 1, 2, ,
i i

k
n n k ka a i N M

k


     

 

, ,
    (45) 

      1 4

0
d < 2 ,k

k kQ x f x x x         (46) 

   

    

1

0

1 1

0

dmax

d 2 .

i i
k k k

m

n n
N m M i N

k
k

a x x x

f x x x

 



  

 

 
  
 

 




        (47) 

Consider a series 

 

    
1

1

,  where    

if  , see 30 .

is s s n
s

i i

a x a a

s n n













           (48) 

Clearly (see (45), (48)) 

0  andka ↘  

let  and let 1p     0,1pf x L . We choose some 
 

1
f x  from sequence (43), to have 

      1

1 4
1 00

d 2 ,   .f x f x x x k      

Suppose that the numbers 10 1< < < qk     and 
polynomials    x

1 1q  
 are already deter-

mined satisfying to the following conditions: 
, ,Q x Q

     

 

1 4

0
1

d 2 ,   

2, 1 ,

n

s
s

n

f x Q x x x

s q

  



 
  

 
 

        (49) 

   

 

1

0
d 2 ,   max

2, 1 .

i i
n n n

m
n

n n
N m M i N

a x x x

n q

  

  

  

 
  
 
 

 

     (50) 

Let a function  
q

f x , 1>q q    be chosen from the 

sequence (43) such that 

         
1

1 4 1

0
1

d 2
q

q
j q

j

f x Q x f x x x 


 



  
       
 .  (51) 

Hence by (49) we obtain 

   1

0
d 2

q

qf x x    .               (52) 

From the conditions(46) (47), (52) follows that 

     1 4

0
1

d 2
n

q
q

n

f x Q x x x  



 
 

 
 ,        (53) 

   1

0
d 2max

i i
q q n

m
q

n n
N m M i N

a x x x
  

  .

  

 
  
 
 

    (54) 

Then we obtain that the series 

 
1

 (see (29) (34) , see (44), (48))k k k
k

a x 



  

where 

1

1,   if  ,   where  , ,

0,   otherwise

q qi
qk

k n i N M 





      




 

converges to  f x  in the -norm. Repeating 
the arguments in the proof of Theorem 2 and using 
Lemma 1, Lemma 2 and remark of Lemma 3 we get the 
proof of the second statement of Theorem 2. 

1 0,1L 

Theorem 2 is proved. 
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