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ABSTRACT 

The use of the SIR model to predict the time evolution of an epidemic is very frequent and has spatial information about 
its propagation which may be very useful to contrast its spread. In this paper we take a particular cellular automaton 
model that well reproduces the time evolution of the disease given by the SIR model; setting the automaton is generally 
an annoying problem because we need to run a lot of simulations, compare them to the solution of the SIR model and, 
finally, decide the parameters to use. In order to make this procedure easier, we will show a fast method that, in input, 
requires the parameters of the SIR continuous model that we want to reproduce, whereas, in output, it yields the pa- 
rameters to use in the cellular automaton model. The problem of computing the most suitable parameters for the reticu- 
lar model is reduced to the problem of finding the roots of a polynomial Equation. 
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1. Introduction 

Epidemics have always been a trouble for mankind and 
still continue to be: the globalization, since people can go 
from a side to the other of the Earth in a very fast way, 
can easily turn an infectious disease into a pandemic, 
perhaps spreading all over the world. Hence should be 
clear how helpful would be predicting when and where 
an epidemic will start and how it will evolve. Mathe- 
matical models, both deterministic and stochastic ones, 
which describe the evolution of population, can surely 
support this aim. SIR models, introduced for the first 
time in 1927 by Kermack and Mc Kendrick [1], are one 
of the most famous and used examples; they are a kind of 
models based on the partition of the population in three, 
or more classes, evolving over time according to a non- 
linear ODE. The model can be complicated at will, add- 
ing the spatial distribution of the individuals, inserting an 
age structure or some stochastic terms to simulate the 
epidemics unpredictability [2-5]. 

As written above, further information about the spatial 
distribution can be achieved by adding partial derivatives 
terms right in the continuous SIR model, but we will not 
do that in this paper. Conversely, to pursue the same goal 
we will use a cellular automaton (CA), setting its pa- 
rameters so that the disease evolution over time is similar 

to the one of the SIR models. This approach is very often 
used, but there is no way to know the best parameters to 
put in the reticular model unless you do a lot of tries and 
compare the results of several computations (see for ex- 
ample [6]). This calibration procedure is obviously quite 
imprecise and may lead to a very large waste of time. 

In this paper we will describe a method to compute the 
CA model parameters on the basis of the ones of the con- 
tinuous SIR models. Some assumptions must be made to 
use our method, but according to us they are not so 
strong and, when verified, the CA model perfectly simu- 
lates the results of the SIR model. 

2. The SIR and SIRS Continuous Models 
and the Automaton Model 

The models we are going to focus on are SIR and SIRS. 
The first one takes its name from the division of the 

total population in three classes: susceptibles, those who 
can be infected during a contact with an ill individual, 
infectious, the ones who have contracted the disease but 
can recover, and recovered, individuals who cannot con- 
tract the disease again. The model consists of a system of 
non-linear ordinary differential Equations. Let  S t , 
 I t  and  R t  be the total number of susceptible, in- 

fectious and recovered individuals, respectively, at time 
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t ; suppose that the total number of individuals is con- 
stant over time and call it , so that  N

    N S I t R t t 

 

. 

The system of ODE that rules over our population is: 

     

         

 

S t I t
S t

N
S t I t

 

N

I t N

t

 I t
N

R t I



 




  


 
 


 




      (1) 

with assigned initial conditions ,   00S S   00I I  
and ;  is the density dependent pa- 
rameter related to the average per capita contacts number 
and 

  00R R   0N 

  is the per capita recovery rate, that is the rate at 
which infected individuals recover; we have to suppose 
that   is positive, otherwise it would mean that there is 
no cure for the disease. 

SIRS model is ruled by the same system of non-linear 
ODE, except that a recovered individual can turn again 
into a susceptible one, situation that in some cases is re- 
lated to the loss of immunity. We have to consider the 
new parameter  , that is the rate at which recovered 
individuals change their state; we suppose 0  , oth- 
erwise we would go back to the previous model. The 
system becomes: 

         

         

     

S t I t
S t N R t

N
S t I t

I t N I t
N

R t I t R t

 

 

 


   



  


  




       (2) 

with the same initial conditions ,   00S S   00I I   

and .   00R R
In both of the previously described model we can add 

the class of vaccinated, evolving over time according to 
the function . Suppose we can only vaccinate sus- 
ceptible individuals and we do that at the constant rate 

 V t

0   (if null we get the previous models), so that the 
systems (1) and (2) become (with 0   or 0   
respectively): 

           

         

     
   

S t I t
S t N S t R t

N
S t I t

I t N I t
N

R t I t R t

V t S t

 

 

 



    



  


  

  

with the initial conditions ,   00S S   00I I , 
  00R R  and   00V V . Generally 0V  is quite big 

while   is very small, because vaccination is mostly 
meant to be done before the disease spread, rather than 
once the epidemic has begun. 

In this paper we will also consider a bidimensional 
probabilistic finite state cellular automaton in which we 
suppose that the individuals are static while the disease 
spreads. The cellular automaton model that we use is 
taken from [6]. In particular, supposing N n m 

s
, we 

take an automaton made up of  cells and N   
total steps. At each step, we can represent it by a matrix 

k nC m  made up of elements  with k
ijc  1, , k s , 

 1, ,i n  ,  1, ,j  m . At each step , each cell 
can assume exactly one of the possible states, whose 
number corresponds to the number of classes in the cho- 
sen model: in the following of this article we will assume 

k

1k
ijc   if there is a susceptible at the -th row and the 
-th column, 

i
j 2k

ijc   for an infectious, 3k
ijc   for a 

recovered and 4k
ijc   for a vaccinated. If we are at the 

step , the state transition for the cell at position k  ,i j  
is determined as following: 
 Suppose 1k

ijc  . Let k n mM   be a matrix with 
elements k

ijm  representing the number of infectious 
in the Moore neighbourhood of radius 1  of the cur- 
rent cell at the current step; we assume that the nei- 
ghbourhood for each boundary cell is still the Moore 
one, except the cells that exceed the grid. Let 

k n m
SP   be the probability matrix for susceptibles, 

where each element ,
k
S ijp  is the probability of the 

susceptible cell  ,i j  to become infectious in the 
k -th step and it is given by 

 , 1 1
k
ijmk

S ij ep p   k             (4) 

where  is the contagious probability at the current 
step. So generate a pseudo-random number , if 

, , then the current cell changes state and becomes 
infectious. In the Equation (4)  is generally supposed 
to be constant over time, but we will not consider this 
condition from now on; the reason is that, with a constant 

, we haven’t a good simulation of the continuous 
model, while this was our aim. 

k
ep

k
S ij

p
p p

k
ep

k
ep



   (3) 

If our continuous model contains the class  of vac- 
cinated, we have to put it in the automaton; we introduce 
the probability V , constant over time, that a susceptible 
becomes a vaccinated. Assume that vaccine has no effect 
on the individuals that have already contracted the dis- 
ease, so that, if the current cell has changed its state, it 
cannot become vaccinated. If we still have 

V

k
ijc

p

1  in- 
stead, generate a new pseudo-random number  and if p

Vp p  then turn the current cell into a vaccinated. 
 If 2k

ijc  , let Ip  be the probability that an infec- 
tious becomes recovered, then generate a new 
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pseudo-random number p  and check if Ip p ; in 
this case the current cell becomes recovered. 

 If 3k
ijc   the cell is a recovered, so let Rp  be the 

probability that a recovered turns into a susceptible 
and generate a new pseudo-random number p . If 

Rp p  then the cell becomes a susceptible. 
 In the case 4k

ijc   the current cell cannot change its 
state, supposing vaccination never loses its effects. 

3. As the Automaton Model Can Perfectly 
Simulate the Continuous SIR Model 

Suppose we want to reproduce the behaviour of a SIR 
model with an automaton from the starting time 0  to 
the final time 

t

ft , so let  be the time interval that 
corresponds to one step of our reticular model and 

T

0ft t

T
s


 


the number of steps that we require (we assume that T  
is such that ). We will see that we can arbitrarily 
set  to get the best results, since it depends neither 
on the numerical method we choose to solve the con- 
tinuous SIR model, nor on the step chosen for it. 

s
T

Now focus on a single step of the automaton and put 

1k k  with  and 0 0 . Suppose 
we have to simulate from time kT  to time 1k

T T T   1, ,k s T  t
T  . The 

structure of our automaton is such that a susceptible in- 
dividual can only become infectious or vaccinated, while 
new susceptibles are generated only by the loss of im- 
munity of recovered. So, if we want to calculate the 
probability that a susceptible becomes infectious, we 
have to focus on the decreasing of susceptibles due to the 
contact with infectious: 

      

 
 

   

S t

I t

I t
S t N

N
S t N

S t N





  


 

 

 
 

   

 
 

   

1 1k k

k k

T T

T T

11

d d

ln dk

k

Tk

T
k

S t N
t I

S t N

S T N
.

t t

I t t
S T N






 

 
   

 




 

 
      (5) 

Put 
   1 d .k

k

T

k T

N
I t

N

    t  The integral  1k

k

T

T
dI t

 t   

can be solved using a numerical method, for example we 
can approximate the function  I t  using the interpo- 
lating polynomial of degree  on the node 0   ,k kT I T , 
so: 

    .k k

N
I T T

N


    

Denoting  ,kI T t  the first order divided difference, 
the integration error is estimated as follows: 

       1
2

0 , d
2

k

k

T

k kT

T
E I t T I T t t I       

with  1,k kT T  . If we put  
1

max
k kT t TM I t

    

we obtain 

 
1

2

0max .
2k kT t T

T
E t M

 


            (6) 

From Equation (5) we get 

 
 

 
 

1

1 .

ln

e k

k
k

k

k

k

S T

S T

S T

S T



 

 
   

 



 

This is the fraction of susceptibles who are still healthy 
at 1kT   with respect to the initial value at k ; T e k  is 
the probability that a susceptible doesn't change its state, 
consequently 1 e k  is the probability that a suscepti- 
ble becomes infectious. 

Consider now the automaton model; put 
  , : 1k k

ijH i j c   and  its cardinality, namely 
the total number of susceptibles at time . We are go- 
ing to find the contagious probability 

k
totS

kT
 0,1k

ep  , equal 
among all the individuals but changing step by step, so 
recall the transition probability for a susceptible: 

 
,

1 1 if 0
.

0 if

k
ijmk k

k e ij
S ij

k
ij

p m
p

m



 0

   
 

 

For each susceptible we shall consider a stochastic 
variable k

ijX , with  , ki j H
,

k
S ijp

, which assumes the value 
 with a probability . The variable 1

 , k

k k
ij

i j H

X X


   

returns the number of susceptibles that change their 
status going from  to . If we put  kT 1kT 

  , : 1, 0k k k
ij ijP i j c m   , 

that is the set of susceptibles that are able to turn into 
infected, and  its cardinality, we can calculate the 
expected value of 

k
infS

kX  as shown below: 

   

   

 
 

 
 

,
, ,

, ,
, ,

,

,

1 1

1 .

k k

k k k

k
ij

k

k
ij

k

k k
ij S ij

i j H i j H

k k
S ij S ij

i j P i j H P

mk
e

i j P

mk k
inf e

i j P

kX X p

p p

p

S p

 

 





       

 

     

  

 

 





 


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We expect that kX   individuals become infec- 
tious at this step. Since our aim is to reproduce the SIR 
model, we must make the automaton model not depend- 
ent on the spatial distribution of individuals at time k , 
otherwise each computation would lead to different re- 
sults. Hence we force 

T

kX

1 e k 

  to be equal to the num- 
ber of susceptibles that change class in the continuous 
model, namely , so that we get: k

totS

 
 ,

1
kS

1 e 1
k
ij

k

k

minf k
ek k

i j Ptot tot

p
S S





    .        (7) 

Equation (7) is just what we need: we only have to 
find its roots, if present, to get the most suitable value of 

 to reproduce the SIR model. In the following we 
will show that the function 

k
ep

 : 0,1kg    defined as 

   
 

 
,

1
1 1

k
ij k

k

e
m inf

k k k
i j Ptot tot

S
g x x

S S




    
k

 

under a particular condition admits exactly one zero in 
the interval  0,1 . 

We can see that   0 0,1kg C  as combination of 
continuous functions and 

 

   

0 1 e 0

1 1 e

k

k

k

k
inf

k k
tot

g

S
g

S





  

    ,
 

therefore there exists at least one zero of kg  in  0,1  if 

1 e .kk k
inf totS S                  (8) 

Furthermore we have 

 
 

  1

,

1
,1

k
ij

k

mk
k ijk

i j Ptot

g x m x
S





     

that is negative in all the open interval  0,1
k k

, hence the 
zero, if exists, is unique. So if inf totS S , 
Equation 

 1 e k 
(7) has exactly one root, that is the probability 

 that we need. k
ep
Finally we have to calculate the remaining parameters 

in order to use the automaton model. As in Equation (5), 
focusing on the decreasing of infectious we get 

   
 
 

 
 

1

1

d

e

k

k

T

T

k T

k

I t I t

I t
t T

I t

I T

I T






  

  


  



  

Now  is the probability that an infectious doesn’t 
change its state and consequently  is the prob- 
ability that he becomes recovered. Hence we have: 

e T 

1 e T 

1 e .T
Ip     

Similarly we can compute the other parameters: 

1 e

.1 e

T
R

T
V

p

p





 

 

 

 
 

We have found that the automaton could perfectly 
simulate a SIR model, if the condition (8) is satisfied: it 
states that the number of susceptibles able to be infected 
must be greater than (or equal to) the number of them 
who must change their state (according to the continuous 
model). If, at a certain step of the computation, we found 
that the relation (8) is no more verified, we can reasona- 
bly force  to the value , so that all the susceptibles 
able to become ill do it and the results of the automaton 
are as close to the ones of the continuous model as possi- 
ble. If the computation with the automaton is not satisfy- 
ing yet we can reduce 

k
ep 1

T  until the condition (8) is 
verified at any step: indeed the number 1 e k  de- 
creases since k  linearly depends on , whereas 

 remains the same, because it depends just on the 
spatial distribution of infected individuals. We can also 
notice that the integration error given by Equation (6) 
consequently reduces. 

T
k
infS

4. Some Results 

We will show in this section some results obtained with 
the automaton and compare them to the respective solu- 
tion given by the continuous SIRS model. 

For the simulation we took an automaton of 
20,000N   cells disposed in a  grid; we 

have found that using more individuals doesn’t lead to 
good images in the printed version of the spatial distribu- 
tion, so we decided to limit  and improve the quality 
of the figures. We set the initial conditions to 

200 100

N

 0 19,980S  ,  0 2I  0 ,  and the 
parameters of the SIRS model to , 

   0 0R V
  0.8N 

0
0.3  , 

0.02   and 0.002  , with 0  and 0t  70ft  . 
With the method proved above we computed the pa- 
rameters for the automaton model, then we randomly 
generated the initial matrix  and ran a simulation 
using 

0C
0.05T 

15.4t
. The computation led to Figure 1. At 

time   (that is at the step ) the infection 
reached its peak and the spatial distribution of the indi- 
viduals is shown in Figure 2. Since we want to compare 
this simulation of the disease with a numerical solution 
of the SIRS model, we decided to use the Euler’s method 
with a step 

308k

0.01t   to solve the system (2) (the solu- 
tion is reported in Figure 3). We can notice that the two 
approaches give quite the same results; however our 
method yields the spatial distribution of the individuals 
and allows the use of a cellular automaton to simulate a 
disease spread: this means involving a discrete popula- 
tion and the unpredictability of an epidemic. 

From Equation (6) we can notice that the approximation  
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Figure 1. Disease evolution over time according to the auto- 
maton model. 
 

 

Figure 2. Spatial configuration of individuals at time t = 
15.4. 
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Figure 3. Numerical solution of the SIRS model given by 
Euler’s method. 
 
error may increase if  I t  increases in the interval 
 1,k kT T  ; hence we thought to test our algorithm also in 
this case. We have decided to change the following pa- 
rameters: ,   2.8N  0.7   and 0.1  . Figure 4 
shows the solution given by our algorithm, while Figure 
5 shows Euler’s one. We can see that the two solutions 
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Figure 4. Second test: solution provided by the automaton 
model. 
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Figure 5. Second test: solution given by the Euler’s method. 
 
are quite the same, so our method works also in the worst 
situations. 

We tested our algorithm also over an automaton with 
2,000,000N   and, after 140 steps, the simulation fin- 

ished in 222.29 seconds, so it is very fast. It can be 
probably adapted to solve also other systems of ODEs, 
for which a spatial evolution of the involved functions is 
useful, although the simulations in these cases may be 
not satisfying; that because we have chosen a particular 
cellular automaton, with its own law of transition and 
type of neighbourhood, which well describe the spread of 
an epidemic, but probably are not good in another frame- 
work. Our future work will be trying to generalize this 
method to other systems of ODEs (including more com- 
plicated epidemic models that better reproduce the be- 
haviour of a real disease) and to other types of cellular 
automata. 
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