
Applied Mathematics, 2013, 4, 78-83 
http://dx.doi.org/10.4236/am.2013.410A3010 Published Online October 2013 (http://www.scirp.org/journal/am) 

Precessing Ball Solitons as Self-Organizing Systems during 
a Phase Transition in a Ferromagnet 

V. V. Nietz 
Joint Institute for Nuclear Research, Dubna, Russia 

Email: nietz@jinr.ru 
 

Received July 1, 2013; revised August 1, 2013; accepted August 8, 2013 
 

Copyright © 2013 V. V. Nietz. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

Precessing ball solitons (PBS) in a ferromagnet during the first order phase transition is induced by a magnetic field 
directed along the axis of anisotropy, while the action of the periodic field perpendicular to the main magnetic field has 
been analyzed. Under these conditions, the characteristics of arising equilibrium PBS are uniquely determined by the 
frequency of the periodic field, but the solitons with other frequencies are impossible. For such structure, the entropy 
increase connected with dissipation is compensated by the decrease of the entropy due to the external periodic field. It is 
shown that the equilibrium PBS are essentially the “self-organizing systems” that can arise spotaneously in a metasta- 
ble state of ferromagnet. 
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1. Introduction 

It is known that a very large number of phenomena and 
processes which exist in nature can be reproduced artifi- 
cially, and can be classified as “self-organizing systems” 
or “dissipative structures” [1-4]. Even life itself in all its 
forms is an example of such a structure. Processes be- 
longing to this category, which can be demonstrated on a 
laboratory table are, for example, the chemical “Zhabo- 
tinskiy reaction” [5,6] and “Benar effect” [7]. Some of 
them are periodic structures in space or time. Others are 
more complex. But the common feature of all these proc- 
esses is that the loss of energy of the system associated 
with the dissipation is fully offset by the influx of energy 
from external sources, i.e., inflow of entropy due to the 
dissipation equal to the negative flow of entropy due to 
the coupling to an external source. 

Another case of “self-organized systems”, occurring 
away from the equilibrium state of the system is pre- 
sented in this paper. 

Kinetics of the phase transition in a uni-axis ferro- 
magnet under the action of a magnetic field along the 
easy axis has been considered in [8]. In such cases, in the 
metastable state of the crystal, precessing magnetic soli- 
tons (PBS) with the symmetry of the ellipsoid can spon- 
taneously arise. The precession frequency and, corre- 
spondingly, the amplitude, size and energy of PBS are 

characterized by a continuous spectrum. The PBS can 
grow and transform into the macroscopic domain of a 
new phase state. This transformation is related to the 
energy dissipation and, as a result of this process, the 
PBS quickly disappear. 

In the present paper we consider the conditions when, 
in addition to the main magnetic field that provides phase 
transition, a periodic magnetic field perpendicular to the 
easy axis operates. In such a case, only solitons with the 
precession frequency equal to the frequency of the mag- 
netic field could arise. In this case, there is a stabilization 
of PBS, i.e. a “freeze” of them, and, most importantly, 
fully compensation of changes in entropy, and thus above 
conditions for the existence of “self-organizing systems” 
are fulfilled. 

The next chapter is a theoretical introduction to the 
physics of precessing magnetic solitons in phase transi- 
tion with the additional action of a periodic magnetic 
field. The last chapter presents several examples of equi- 
librium PBS, which are “self-organizing systems”, show- 
ing their main characteristics and the conditions of their 
occurrence. 

2. Equations for PBS 

In the given article, to analyze magnetic solitons in a fer- 
romagnet at the first-order transition in the presence of 
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periodic magnetic field, as in [8], we use the Landau- 
Lifshitz equation [9] with a Gilbert form of dissipative 
term:  
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and corresponding expression for the density of thermo- 
dynamic potential (as in [8]) 
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Here , 0zH  H  is the periodic field directed per- 
pendicular to the Z-axis, 1 , ; m is a 
non-dimensional vector of ferromagnetism equal in the 
absolute value to 1; 

0K  0 

x ymm m i  , in initial state: 
. 1zm  

Further, we consider the PBS in a flat plate perpen- 
dicular to the Z-axis, use the following dimensionless 
values:  

1
12 B K t    , 0.5 0.5

1x K X  , 

0.5 0.5
1y K Y , ; 0.5 0.5

1 zz K Z

and note: 

1 04πzh H K M K  1 ,  

0 14π 3D M K . 

If the added periodic field is 

0
1 eiK h  

 H                 (3) 

and to present the expression for magnetic component in 
the view 
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(here we restrict ourselves to the case of moveless soli- 
tons, but the phase of precession of magnetic moments 
differs from the phase of periodic field and depends on a 
radius, i.e.  ,    r ), we obtain the following equa-  

tions for 21zm p   : 
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From (5), we obtain the expressions for the density of 
PBS energy relative to the initial state, together with the 
energy of interaction with the external field (see, for 
example [8]): 
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and for the change of this energy connected with dissipa- 
tion and the action of the external periodic field: 
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The Equations (5)-(8) constitute a complete descrip- 
tion of PBS, including their time transformation. How- 
ever, in the given paper we consider only the equilibrium 
state of PBS inside the ferromagnet, i.e. when the de- 
crease of energy caused by dissipation is compensated by 
energy flow from the external periodic field, i.e. 

 ,e r   0   . Furthermore, in this case, 0zm    , 
0    . Therefore, for the equilibrium state of PBS 

we have the following expressions: 
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and the relation: 

    2
arcsin 1 zr a m   r ,          (11) 

where 0a h  . 
Correspondingly, the equation for equilibrium PBS is 
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the following: 
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In our case, equilibrium PBS are “self-organizing 
systems” or “dissipative structures” [1-3] that can arise 
spontaneously in a metastable state during the first-order 
phase transition to the stable equilibrium state, i.e. to 

. For such PBS—the dissipative structures, the 
entropy increase connected with dissipation is compen- 
sated by the decrease of the entropy that due the external 
periodic field. It can be expressed as follows: 
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3. Characteristics of Equilibrium PBS 

It follows from the foregoing that at the action of a peri- 
odic magnetic field only the PBS with a frequency speci- 
fied by this field may arise spontaneously. This is differ- 
ent from the phase transition discussed in [8], where the 
frequency and, accordingly, the configuration of arising 
PBS are not defined. 

In Figures 1-3, the configurations of the PBS for sev- 
eral frequencies of precession at ,  are 
presented. For each frequency, there is the solution of the 
Equation (12) with corresponding PBS that precesses in 
substratum of uniform precession of the bulk crystal. 
Beside such solution, there is the solution that corre- 
sponds to homogeneous precession of magnetic moments, 
without soliton. Such a solution at 

0k  0.998h 

31.2 10    is 
shown in Figure 1. 

Note that the maximum frequency of PBS at 
 without periodic field equals 0.998h  32 10res    

and corresponds to magnetic resonance in a metastable 
state. In Figure 1 and in the following examples, the 
same parameters as in the [8] article  
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Figure 1. Configurations of solutions of the (12) equation 
for h = 0.998, .1 5 10h 

   : number 1 is at 3
0 1.2 10   , 

and number 2 is at . Number 0 is the solu-

tion for homogeneous precession, without PBS, at 

31.18 100  

3
0 1.2 10   . 
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Figure 2. The same as in Figure 1, for the following fre- 
quencies: number 3 is if , number 4 is for 31.11 10ω   

0 , and number 5 is for .  3
0 3 10
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Figure 3. The same as in Figure 1, for the following fre- 
quencies: number 6 is for , number 7 is for 0 0.005ω 

0 0.01 , and number 8 is for 0 0.03 . 
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Figure 4. Frequency dependencies of energy (full circles), 
amplitude  (full squares), and radius  (crosses) of 

PBS for , . Here and further, the 

utmost values of parameters of equilibrium PBS are noted 
by a dotted line. 
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Figure 5. Frequency dependencies of energy and amplitude 
 of PBS for , . smp 0.998h  50.6 10h 

  

 
(here 0  is the amplitude of uniform precession); and 
radius of PBS is . 

p

0.5

As can be seen from (11), if , the equilibrium 
state of PBS is possible only under the condition: 

r
1smp 

0 smp h  .              (15) 

Frequency range of equilibrium PBS increases with 
the increase of periodic field amplitude. For 0.998h  , 
if , condition 51.5 10 , 5 10h 

     4
0 smp h   

corresponds to max 0.03  . If 50.6 10h 
   , then 

max 0.0137   (see in Figures 4 and 5). 
The possibility of equilibrium PBS is connected with 

the fact, that during their precession, the magnetic mo- 
ments lag by phase behind precession of periodic field. 
In the Figures 6 and 7, the frequency dependency of the  
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Figure 6. The frequency dependencies of the 0  angle (full 

circles) if 0.998h  , , and corresponding 

exponential factor at 

51.5 10h 
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 290 KT  . 
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Figure 7. The same frequency dependency if the 0  angle 

as in Figure 6 in the range near . 0 0
 
angle of such a delay in center of PBS, i.e. 

   0r  0   , is shown. Besides, in Figure 6 the 
curve of corresponding exponential factor, that defines 
temperature dependency of the PBS probability, is pre- 
sented. The probability of PBS origin decreases sharply 
at the increase of PBS energy. 

If the magnetic field h  is enough large, the equilib- 
rium PBS with amplitude zm  are possible. It is 
obviously in such cases, the condition for equilibrium 
PBS can be written as: 

0m 

0 h  .               (16) 

In Figures 8 and 9, two examples of such case for 
0.99h   are presented. As seen in the second example, 

in Figure 9, the equilibrium PBS are possible with the 
negative energy and at 

s
, i.e. in the bifurcation 

point b. The configuration of such equilibrium PBS is 
shown in Figure 10. 

0E 
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Figure 8. The frequency dependencies of energy and am- 
plitude for equilibrium PBS if , 0.99h   51.5 10h 

 

0h 
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For comparison, these dependencies for  case are 

shown too (by open circles for energy and open squares for 
the amplitude). The energy E = 0 is for the initial homoge- 
neous metastable state. 
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Figure 9. Frequency dependencies of energy and amplitude 
for equilibrium PBS if , . For com- 

parison, these dependencies for  case are shown too. 
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The probability of the equilibrium PBS near the bifur- 

cation point where  increases sharply is shown in 
Figure 11. The energy 25 meV corresponds to tempera- 
ture about 290 K. 
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4. Conclusions 

Periodic magnetic field acting perpendicular to the axis 
of easy magnetization, i.e. perpendicular to the main 
magnetic field, leads to a significant change in the nature 
of the precessing magnetic solitons in the first order 
transition, in comparison with [8]. 

1) Near the boundary of the existence of the meta- 
stable state, only PBS with precession frequency equals 
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Figure 10. Configuration of equilibrium PBS at 0sE  . 
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   , 0 0.1143 . 
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Figure 11. Frequency dependencies of the energy, β angle in 
center of PBS (noted by asterisks) and exponential tempera- 
ture factor for equilibrium PBS at , 0.99h   5.5 10h 

   . 

The bifurcation point is noted as b. 

 
the frequency of the external field can occur. The fre- 
quency of the external field specifies uniquely of other 
characteristics of PBS (amplitude, configuration, energy) 
too. 

2) Arising PBS are equilibrium, i.e. reducing their 
energy due to dissipative processes is fully compensated 
by the influx of energy from an external periodic field. 

3) We can consider the equilibrium PBS as “dissipa- 
tive structures” or “self-organizing systems” [1-3], when 
the increase of entropy connected with energy dissipation 
is compensated by a negative flow of entropy due to the 
action of an external periodic field. 

4) At the phase transition in a ferromagnet, the dissi- 
pative structures in the form of equilibrium PBS can be 
originated not only in the presence of the bifurcation 
point, but also in a more general case: when the energy 
of PBS state is small enough. 
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5) The compensation of energy and entropy is ac- 
companied by the fact that PBS during the precession are 
delayed by phase behind the precession of a periodic 
field. The magnitude of this delay depends on the radius 
and the maximum delay is at the center of PBS. 

6) On the side of the positive values of frequencies, 
amplitude and frequency of precession of equilibrium 
PBS are defined by the following relations:  

2
0 1  if zm zmm h m    0,  

and 0 h   if . 0zmm 
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