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ABSTRACT 

The main purpose of this note is to investigate equiangular polygons with rational edges. When the number of edges is 
the power of a prime, we determine simple, necessary and sufficient conditions for the existence of such polygons. As 
special cases of our investigations, we settle two conjectures involving arithmetic polygons. 
 
Keywords: Equiangular Polygon; Arithmetic Polygon 

1. Introduction 

A simple way of extending the class of regular polygons 
is to maintain the congruence of vertex angles while no 
longer requiring that the edges be congruent. In this 
generality, the newly obtained equiangular polygons are 
not all that interesting given one can find plenty of such 
(nonsimilar) polygons with a given number of edges. 
Indeed, drawing a parallel line to one of the edges of a 
regular polygon through an arbitrary point on an adjacent 
edge yields a trapezoid and a new equiangular polygon 
with the same number of edges as the initial one (see 
Figure 1). However, if we also require that all edge 
lengths be rational numbers and that at least two of these 
numbers be different (thus excluding regular polygons), 
in general, such equiangular polygons may not even exist. 
For example, if we start with the regular pentagon 

1 2 3 4 5  and draw the parallel P P P P P 1 2Q Q  to 1 2P P  as in 
Figure 1 and if  and 1 1  are rational numbers 
then, except for  all edge lengths of the equian-
gular pentagon  are rational. However, 

1 2P P

1 2 ,Q Q

21QQ

PQ

5P43PP
 51 2 1 2 1 1  is irrational. While this, 

by no means, proves that equiangular pentagons with 
2 cQ os 2P Q Q P P

 

 

Figure 1. New equiangular pentagons from old. 

rational edges must be regular, it gives some credibility 
to the non-existence claim above. 

An interesting investigation of equiangular polygons 
with integer sides is provided in [1], where the author 
considers the problem of tiling these polygons with either 
regular polygons or other pattern blocks of integer sides. 
In particular, he points out that every equiangular hexa-
gon with integer sides can be tiled by a set of congruent 
equilateral triangles, also of integer sides, and also pro-
poses a general tiling conjecture with an extended tiling 
set. On the other hand, if one no longer requires integer 
edges but asks that the vertices be integer lattice points, 
the only equiangular polygons that will do are squares 
and octagons (see [2,3]). 

Further restricting the class of equiangular polygons 
with integer sides, in [4], R. Dawson considers the class 
of arithmetic polygons, i.e., equiangular polygons whose 
edge lengths form an arithmetic sequence (upon a suit-
able rearrangement) and shows that the existence of 
arithmetic n-gons is equivalent to that of equiangular 
n-gons whose side lengths form a permutation of the set 
 1,2, , .n  In addition, some interesting existence as 
well as non-existence results are obtained, but the classi-
fication problem for arithmetic polygons with an arbi-
trary number of edges is left open. 

In this note, we address the more general problem of 
determining all equiangular polygons with rational edges 
and, as a special case, we settle the classification problem 
above. 

2. Preliminaries 

First, we derive a necessary and sufficient condition for 

Copyright © 2013 SciRes.                                                                                  AM 



M. MUNTEANU, L. MUNTEAN 1461

the existence of closed polygonal paths in terms of edge 
lengths and angle measures. 

Proposition 1 Let 1 2  and , , , nl l l 1 2, , , n  
.j n

  be 
positive real numbers with 2 ,1j   

P

P



1, n nP l
P P 1P P

 There ex-
ists a closed polygonal path n  (with  

1 2  oriented counterclockwise) having 
edge lengths 1 2 1  and the 
measures of the angles* formed by 1 2  with  

 with  1n  with 1n n  equal to  

1 2P P 

2 3 2, ,l P P l 

P P

1

P P

nP P P P   
P P

2 3P P ,2 1P P

1 2, , , n

,n

   , respectively, if and only if  

     11 21
1

1 2e e 1 e nn iii
nl l l              0  (1.1) 

and 

 1 2 2n n k        ,          (1.2) 

for some integer   .k
Proof Assuming that such a polygon exists, let jz

n
 be 

the complex number associated to . As the 
vector  is the 

,1jP j 
1 2P P 1 -nl l multiple of the rotation of 

 in  through 1 nP P 1P 12   (see Figure 2), we have  

 1 1
2 1 1e .i

n
n

l
z z z z

l
    

Based on the same type of argument, regardless of the 
orientation of triangles  we have  1 2 ,1 ,j j jP P P j n   

 
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 
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1

1 22

1

1 1

1

1
2 1 1

22
3 2 2 1 1

1

1 1 2
2

1 1
1

1 1
1

1

e ,

e 1 e

1
e

1 e ,

e

1 e .

n
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i
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n

i n
n n n n

n

n i n
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n

i n
n n n

n

n i
n
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l l
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l

l
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z z
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l
z z z z
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z z
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 
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

  
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      


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2 ,
l

 

Combining these relations with 
 

 

Figure 2. The polygon 1 2 .nP P P  

     2 1 3 2 1 0nz z z z z z        

yields  

       

     

1 21

1

21 2
1 1

1

e 1 e

1 e 0,n

ii
n n

n n

n i n
n

n

l l
z z z z

l l

l
z z

l

 

 

 

  

    

    
 

thus proving relation (1.1) from the conclusion. Relation 
(1.2) follows easily as a consequence of the last relation 
in the set of  relations above. n

Conversely, to prove the existence of a closed po-
lygonal path with given , ,1 ,j jl j n  

, , nP P

P P

1 2P P 
P P

 satisfying (1.1), 
observe that, starting with an arbitrary point 1  we can 
always consider the points 2  such that, with the 
exception of 1  and the measure of the angles formed 
by 1 2  with 1 n  and 1n  with n n  all edge 
lengths and angle measures are as needed. We will prove 
that the closed polygonal path  satisfies the 
requirements. To do so, if we let 1 n  and denote 
the measure of the angle formed by 1 2  with 1 n  
by 1

,P

,1

n

nP P
P PP P P P

nP
l

P P P P
   and  with 1  by 1nP P n nP P  n 

, ,
 then, we need 

to show that n n n nl l      and 1 1.    By applying 
the direct implication to our polygonal path (with edge 
lengths n1 2l l 1,n, , , l  l

1,n n

 and angle measures  

1 2, , ,      ), we have 

     11 21
1

1 2e e 1 e nn iii
nl l l            0.      

Equivalently,  

       2 31

1 21 e 1 e en n n
n ni i i

n nl l l l   
1 .    
         

(1.3) 

By factoring out e ni   and applying the modulus on 
both sides of the equality above, we have  

       2 1 3 11

1 21 e 1 en nn ni i
n nl l l l       

         1 .  

However, the same type of operations can also be 
applied to the relation in our hypothesis (involving 

 1 2, , , ,nl l l 1 2, , , n   ) to obtain  

       2 1 3 11

1 21 e 1 e .n nni i
n nl l l l       

        1  

But then n nl l  based on the two formulas above. 
Now, factoring out e ni   and replacing  by  in 
(1.3), we have  

nl nl

   
    

2 1

3 1

1

1

2 1

e 1 e .

1 e

nn

n

n ii
n

n i
n

l l

l l

 

 





 

  


 

   



 
  (1.4) 

But we also have  

*All angles are measured counterclockwise from the first to the second 
referenced ray. 
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   
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2 1

3 1

1

1

2

e 1 e .

1 e

nn

n

n ii
n

n i
n

l l

l

 

 





 

  


 

   



  1l
  (1.5) 

Comparing relations (1.4) and (1.5), it follows that 
.n n    To show that 1 1,  

nP
 let’s note that relation 

(1.2) applied to  implies  1 2P P 

 1 2 2 ,n n k          

for some integer  By hypothesis, .k 

 1 2 2 .n n k         

Combining the two relations above finishes the proof.  

3. Equiangular Polygons 

If we consider a convex equiangular gon, then, with 
notations as in the previous section, we have  

n 

 
1 2

2
.n

n

n
  

 
    In addition, if we let  

2

e ,
i

n
n



  then, based on Proposition 1, we obtain 

Theorem 1 Given 1 2  there exists a 
convex equiangular n-gon with side lengths  
(listed counterclockwise) iff 

, , , ,nl l l  
1 2, , , nl l l

2 1
1 2 3 0.n

n n n nl l l l         

Definition 1 A rational polygon is a polygon all of 
whose edge lengths are rational number. 

Observation 1 The edges of a non-convex equiangular 
polygon can be rearranged to form a convex equiangular 
polygon, so we will only concentrate on the latter. 

As a consequence of Theorem 1, we obtain  

Proposition 2 Let 
2

e
i

n
n



  and let  N n  be  

the degree of the cyclotomic polynomial  .n X  There 
exists a convex, rational, equiangular n-gon with edge 
lengths 1 2  (ordered counterclockwise) iff the 
following equalities are satisfied:  

, , , nl l l

1 1, 1
1

0,
n

j j
j N

l l a 
 

   

2 2, 1
1

0,
n

j j
j N

l l a 
 

   

, 1
1

0,
n

N j N j
j N

l l a 
 

   

where  are defined by  ,i ja
1

1,
0

.
N

j i
n i j

i

a n 





   

for all  1,0 1.N j n i N     
Proof Let us first note that the definition of  makes 

sense. Indeed, since 

ija

 21, , , , N
n n n    1  forms a basis of 

  ,n  for a fixed , ,j N j n   we can define  
to be the coefficients of 

,i ja
j

n  in this basis. 
For each 1,nN j    if we replace j

n  in the 
equality from Theorem 1 by 

1

1,0

N

i ji
a i

n



1

1
1

0

1

1,
0

0.

N

, we obtain  

1 2 1,
N i

i N

N

i

l l an N n N
i

i
n i n n

l l

l a

n   





    
 

  



 








 

   
 



1 1, 1 2
1 1

1
, 1

1

n n

 

By reorganizing the terms, the formula above becomes  

2, 1

0.

j j j
j N

n
N

N j N j n
j N

a l

l l a

j n
j N

l l l a 



 




 

  
    

  

 
 

 

 



 
 

  





 

But then we get a polynomial of degree 1N   with 
rational coefficients having n  as a root. This is only 
possible iff all the coefficients are zero, thus proving the 
proposition.  

Observation 2 By fixing 1 2 1  the con-
ditions in the proposition above generate a system of 
equations  

, , , Nl l l 

, 1 ,1s j j sa l l s

,

1

n

j N

N
 

   

n N

  

with N equations and   variables 1, , .N nl   l  Com-
paring the number of equations and the number of vari-
ables, we obtain three cases depending on whether 

     , ,n n n N n n N     or  
   .n  n n  
To better understand the three cases above, we have 
Lemma 1 For any positive integer  we have the 

following  
,n

1)  2n  n  iff  for some odd prime  
and some positive integer  

kn p
.k

p

2)  2n  n  iff 2kn   for some positive integer  .k
3)  2n  n

,
 iff  where the nonnegative 

integer  and the odd integer  are such that 
either  or, if 

2 ,kn m
,m m 

0,k
k

1
3

k   then  is the product of the 
powers of at least two distinct primes. 

m

, , , rp p p

Proof Since the third case is the complement of the 
first two, it is enough to prove the first two cases. So let 

r , where 1 2  are distinct primes 
and  are nonnegative integers. 

1 2k k k
rp p

(1),

1 2n p
ki

To prove  observe that the inequality  n n2  
is equivalent to  

  1 21 1
1 1 22 1k kp p p p 1 2

2 1r rk k
r rp p1 2

k kp p  1,     

or    2 1 1r rp p p 1p1 2p p 1 2 .  

1p 



2.r  2

  To show 
that n has the desired form, let us assume by contradic-
tion that  But then, since  and  2p 3,
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we have  or equivalently  
 This implies  

  
Together with  the second inequal-
ity above yields  which contradicts the hy-
pothesis. Thus  But then we must also have p1 > 2 
since otherwise  Conversely, 
it is easy to see that if  then 

   1 22 2p p  
2 2 22 2 2 0.p p p   

1 2 1 22 2 2p p p p   
1,3i ip p  
 2 ,n n

1.r 
2 2k kn   

kn p

6,

1 .

n

1p

1 2p p   1 22 2 1p p  
,i r

 1 1 12 2 . 
, 2,p   2 .n n

2.

  2 n

k

 
For  by considerations similar to the ones above 

we must have  Since, by (1), we cannot have 
 it must be that  Also, it is clear that if 

 then  

(2),
1.r 

1p 
 2 .n n

n 

, , ,

1 2,p 
2kn 

Next, we consider convex, rational, equiangular poly-
gons in each of the three cases given by the lemma. For 
the overdetermined case  we have the fol-
lowing: 

Proposition 3 If 1 2 p
l l l

1 1

1 1

1

2

1 2 1

2

k k

k k

p p

 are the lengths of the 
edges of a convex, rational, -gon with p > 2 prime, 
then the polygon is equiangular iff  

kp
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1 1 1
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,
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  21 p p
n X X

  

Proof Let  
        

be the minimal polynomial of n  over  X  (see [5], 
page 31). In order to apply Proposition 2, we need to 
write ,j

n  for all  
as a linear combination with integer coefficients of 

n n n  Starting with the equation in n

 N p 

2 1, , .N 

  1k kp p  1 1j p ,k 

1, ,    
given by its minimal polynomial and multiplying by 

 we have  2 1, ,n N
n
 

1 1

1 1

2

1 1

1 2 1 3

k k

k k
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N p p
n n n
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n n n

p p p
n n n

  
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   
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

1, 1i ja   
  1 11 , 2 ,k kp p p  

, ,n n  
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 

1

11 1

1

2

2 12 1

1 11

1 ,
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






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 
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





 1, 1 kp  a

,

0i j

 

Thus,  if  
 and 1,   

otherwise. With these values of  the conclusion 
follows. 

1, ,i ja 

Consequence 1 Any rational equiangular polygon with 
a prime number of edges is regular. 

Proof This follows based on Observation 1 and the 
 case in Proposition 3.  1k 

Observation 3 The consequence above proves con-
jecture 6 from [4]. 

For the fully determined case  we have 
the following characterization: 

  2n n 

Proposition 4 Given a convex, rational polygon whose 
number of edges is a power of two, the polygon is equi-
angular iff opposite edges are congruent.  

Proof Let 2kn   be the number of edges of the poly-
gon. Since  

2k

12 1,
k

X X


  
2 2 , ,

k k

 it follows that  
1 1 1 1 1k2 1 21, .

k

n n n n n    
           Thus, the re- 

lation from Theorem 1 becomes  
1 1

1 1 1
2 1 2 1

1 2 2 2 1 2 2 1 2
,

k k

n k k k kn nl l l l l l  
 

   n
 

 
         

or 

      1

1 1 1
2 1

1 22 2 1 2 1 2
0.

k

k k k kn nl l l l l l 


  


 
        

But then n  is a root of a rational polynomial of 
degree less than that of .n  This is only possible if the 
polynomial is identically zero, which implies the conclu-
sion.  

As a consequence of the proposition above, we obtain 
a different proof of Theorem 3 from [4]. 

Consequence 2 There does not exist an equiangular 
-gon with integer edge lengths, all distinct. 2k

For the underdetermined case , given the 
lack of a simple formula for 

  2n n
 n


X  in this case, we 

will only consider the following example. 
Lemma 2 1 2 15  are the edge lengths of a 

convex equiangular 15-gon, with the edges ordered 
counterclockwise, iff  

, , ,l l l  

3 8 6 11 9 14 12 2 15 5l l l l l l l l l l          

and  

1 6 4 9 7 12 10 15 13 3.l l l l l l l l l l          

Proof In this case,  15 8,    
  8 7 3

15 1.X X X5 4X X X X    
15 ,

    By letting 
   we have  

8 7 5 4 3 9 2 3 6 7
1, 1 ,                      

10 5 11 6 12 2 71 , , ,                 

13 4 5 71 .          

Based on these relations and Proposition 2, we must 
have  

1 9 10 11 14 15 2 9 12 140, 0,l l l l l l l l l l           

3 10 13 15 4 9 10 150, 0,l l l l l l l l         

5 9 14 15 6 9 11 140, 0,l l l l l l l l         

7 10 12 15 8 9 10 13 14 150, 0.l l l l l l l l l l           

If we let  

3 8 1 6 11 2 9 14 3, , ,l l c l l c l l c       

12 2 4 15 5 5,l l c l l c     

Copyright © 2013 SciRes.                                                                                  AM 



M. MUNTEANU, L. MUNTEAN 1464 

and  

1 6 1 4 9 2 7 12 3, ,l l d l l d l l d      ,

0.

 

10 15 4 13 3 5, ,l l d l l d     

the relations above become  

1 2 3 4 3 4 4 5 2 40, , , ,d c c d c c d d d d        

5 3 2 3 3 4 1 5 4 3, , ,c c c c d d c d d c         

Clearly, these relations are equivalent to  

1 2 3 4 5  and c c c c c    1 2 3 4 5 ,d d d d d     thus 
proving the lemma. 

4. Arithmetic Polygons 

Following the terminology from [4], a polygon is said to 
be arithmetic if it is equiangular and its edge lengths (in 
some order) form a nontrivial arithmetic sequence. As 
shown in the same paper, an arithmetic -gon exists iff 
there exists an equiangular polygon with edge lengths (in 
some order)  In this section we find a neces-
sary and sufficient condition for the existence of arithme-
tic polygons in terms of the number of edges. First, we 
have the following:  

n

1,2, , .n

Consequence 3 There are no arithmetic polygons 
whose number of edges is the power of a prime. 

Proof This follows as a consequence of Propositions 3, 
4, and Observation 1. 

One case when arithmetic polygons do exist is pro-
vided by the example below. 

Example 1 There exists a (convex) arithmetic 15-gon.  
Proof If we select  

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

15, 7, 4, 11, 8, 5, 12, 9,

1, 13, 10, 2, 14, 6, 3,

l l l l l l l l

l l l l l l l

       

      
 

then the conditions in Example 2 are satisfied since  

3 8 6 11 9 14 12 2 15 5 5l l l l l l l l l l            

and  

1 6 4 9 7 12 10 15 13 3 10.l l l l l l l l l l           

Observation 4 The proposition above provides a 
counterexample to conjecture 7 from [4] claiming that no 
arithmetic n-gons exist if  is odd. n

The example above suggests the following: 
Theorem 2 There exists an arithmetic n-gon if and 

only if  is not the power of a prime, i.e.,  has at 
least two distinct primes factors.  

n n

Proof By Consequence 3, it is enough to prove the 
converse. So, let’s consider  for some positive 
integers  Since  is not the power of a prime,  
and q can be chosen to be relatively prime. If 

,n pq
, .p q n p

  denotes 
a primitive th root of unity, then   pq -

 121 q pp p       

and 

 121 p qq q                (1.7) 

Multiplying relations (1.6) by  and (1.7) 
by 

,1aa a   p
 1 ,1 ,bb p b q  

1q

 we have  

0

0a kp

k

a 



              (1.8) 

and  

 
1

0

1
p

b lq

l

b p






0.            (1.9) 

Let us now observe that every integer between 1 and 
 appears exactly once as an exponent in both (1.8) 

and (1.9) due to the fact that p and q are relatively prime. 
If we add all  equations (1.8) and all  equations 
(1.9), we obtain  

pq

p q

 
1 1

1 0 1 0

1 0
p q q p

a kp b lq

a k b l

a b p 
 

 

   

.     

Whenever ,a kp b lq    the sum of the correspond-
ing coefficients  1a b 

t 
p  is an integer between 1 

and pq Moreover, differen a  and b  with  1 a p  , 
1 b q, 

p
 generate different values for a b  be-

cause  and  are relatively prime. Since there are 
exactly pq pairs 

 1 p 
q
 , ,a b  the values of  will 

represent a permutation of the set  
 1 p 

.
a b

 , pq1, 2,

5. Conclusions 

In this note we determined all rational equiangular poly-
gons whose number of sides a prime power. Although we 
also determined all rational equiangular 15-gons, the 
general problem remains open. In addition, we provided 
a complete characterization of arithmetic polygons. 

As an interesting application, we note that, as men-
tioned in [6], there is a nice correspondence arising from 
the Schwarz-Christoffel transformations between equi-
angular n-gons and certain areas determined by binary 
forms of degree n with complete factorizations over  
It would be interesting to investigate the consequences of 
our results in the language of binary forms. 

.
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