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ABSTRACT

This paper concerned with the quantized synchronization analysis problem. The scope of state vectors of dynamic sys-
tems, based on the matrix measure, is estimated. By using the general intermittent control, some simple yet generic cri-
teria are derived ensuring the exponential stability of dynamic systems. Then, both the general intermittent networked
controller and the quantized parameters can be designed, which guarantee that the nodes of the complex network are
synchronized. Finally, simulation examples are given to illustrate the effectiveness and feasibility of the proposed

method.
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1. Introduction

Since its origins in the work of Fujisaka and Yamada [1-
3], Afraimovich, Verichev, and Rabinovich [4], and Pe-
cora and Carrol [5], the study of synchronization of cha-
otic systems [6-19] is of great practical significance and
has received great interest in recent years. In the above
literatures, the approach applied to stability analysis is
basically the Lyapunov’s method. As we all know, the
construction of a proper Lyapunov function usually be-
comes very skillful, and the Lyapunov’s method does not
specifically describe the convergence rate near the equi-
librium point of the system. Hence, there is little com-
patibility among all of the stability criteria obtained so
far.

The concept named the matrix measur [20-25] has been
applied to the investigation of the existence, uniqueness
or stability analysis of the equilibrium. Intermittent con-
trol [26-29] has been used for a variety of purposes in
engineering fields such as manufacturing, transportation,
air-quality control and communication. A wide variety of
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synchronization or stabilization using the periodically
intermittent control method has been studied (see [27-
32]). Compared with continuous control methods [7-14],
intermittent control is more efficient when the system
output is measured intermittently rather than continuously.
All of intermittent control and impulsive control are be-
long to switch control. But the intermittent control is
different from the impulsive control, because impulsive
control is activated only at some isolated moments, namely
it is of zero duation, while intermittent control has a non-
zero control width.

But it should be mentioned that the influence caused
by quantization has not been considered in their results. It
is well known that in modern networked systems, quanti-
zation is an indispensable step that aims at saving limited
bandwidth and energy consumption [33]. Quantization
cannot be avoided in the digital control setting, and it is
indeed a natural way to be inserted into the control de-
sign complexity constraints of the controller and com-
munication constraints of the channels which connect the
controller and the plant [34]. The important application
of quantization in real world can be found in human-
machine interaction, for instance, see [35-37]. Therefore,
it is essential and important to investigate the exponential
quantized synchronization problem of networks with
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mixed delays by periodically intermittent control.

Our interest focuses on the class of commonly inter-
mittent controller with time duration, where the control is
activated in certain nonzero time intervals, and is off in
other time intervals. A special case of such a control law
is of the form

o) —k(y(t)-x(t)),(nT <t<nT +5),
t)=

0, (nT+o<t<(n+1)T),
where Kk denotes the control strength, 6 >0 denotes

the switching width, and T denotes the control period.
The general intermittent controller

) —k(y(t)=x(t)),(h(n)T <t<h(n)T +5),
t =

0, (h(n)T+s<t<h(n+1)T),
where h(n) is a strictly monotone increasing function
on n, has been studied (see [38]).

Moreover, a logarithmic quantizer g(«) has quanti-
zation levels give by

H:{iac a, =,OC/10,C=03—“1’J—”2""}U{0}’

where the quantization densitie is pe€ (0,1) , and the
scaling parameter is 4, >0 . Then, the quantizer q(a)
is defined as follow

c Py Py

£ Hys 1f1+/3<a_1—ﬁ
q(a)=10, if =0 (1)

—q(-a), ifa<0

1- . .
where ﬁzl—p. Based on (1), it is obvious that
+p

q(a)—a=Aa and the quantization synchronization error

Ae [—ﬂ,ﬂ] (see [39-43)).
In this paper, based on matrix measure and Gronwall
inequality, the general intermittent controller

U(t)= —kq(x (t)=s(t)), (h(n)T <t<h(n)T +5),
o (h(n)T+5£t<h(n+1)T),

where h(n) is a strictly monotone increasing function
on n,

u(t)
B —ka(x (t)=s(t)).(h(n+1)T <t <h(n+1)T +5),
o, (h(n+1)T +5<t<h(n)T),

where h(n) is a strictly monotone decreasing function
on n, is designed. Then the sufficient yet generic crite-
ria for synchronization of complex networks with and
without delayed item are obtained.

Copyright © 2013 SciRes.

This paper is organized as follows. In Section 2, some
necessary background materials are presented. In Section
3, the state vectors scope estimated via matrix measure
are formulated. Section 4 deals with the quantized syn-
chronization. The theoretical results are applied to com-
plex networks, and numerical simulations of delayed
neural network systems are shown in this section. Finally,
some concluding remarks are given in Section 5.

2. Preliminaries

Let X be a Banach space endowed with the I*-norm
|| , i.e. ||X||=\/XT =1/<X,X>, where <,> is inner

product, and Q be a open subset of X . We consider
the following system:

dx

@ Cx(t)+F(x(1)+G(x(t-7))., @
where F,G are nonlinear operators defined on Q, and
x(t), x(t-7)eQ, and 7 is a time-delayed positive
constant, and F(0)=G(0)=0.

Definition 1 [12,26,28,44] System (2) is called to be
exponentially stable on a neighborhood Q of the equi-
librium point, if there exist constants x>0, « >0, such
that

"x(t)" <aexp(—ut)|x,| (t>0),

where X(t) is any solution of (2) initiated from
X(t)) =%,

Definition 2 [20-25] Suppose that M € R™" is a ma-
trix. Let ,u(M) be the matrix measure of M defined
as

I +6M ||— I
M )= lim "—
/1( ) 5Lo* ) ’
where | is the identity matrix.
Lemma [20-25] The matrix measure x(M) is well

defined for the I*-norm ||x|| =/x"x =, I(X, X> , the induced

matrix measure is given by

ﬂ(M):ma{ﬂ,, (M+ MT)}

i 2

where 4, (M +M T) denotes all eigenvalues of the ma-
trix M+MT.
3. Estimating the Scope of the State Vectors

We consider the following system:
dx

E:—Cx(t)+f(x(t),y(t))+g(x(t—r)), (3)
Yoyt +m(x(V).y(0) +a(v(t-7). @
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where f,m,g are nonlinear operators defined on Q,
and x(t),y(t) x(t—7),y(t-7)eQ,and 7 isa time-
delayed positive constant, and
f (0,0) = m(0,0) = g(O) =0.
Theorem 1 For any X,y €Q in the system (3), (4), if
the operator f,m,g satisfies

la(x)-a(y)|<I|x-y]. )

f,m is bound, where | is a positive constant. The solu-
tions x(t),y(t), initiated from x(t;)=x,€Q, y(t))
=Y, € Q, ofthe system (3) and (4) satisfy

Ix= Y| <% = Yollexp{p(t—t,)}, Vt=0,

".n=u(-C)+4,
1 = OO (F (O ¥(0) =m0 ()
vt>0 "X(t)— y(t)nz

where p=n+le”

Proof Under the initial conditions X(to): Xy €2,
y(t, ) Y, €Q, we have

difx(t
B dt ety
= lim = (IIXH(S y(t+ ) =1+ (=C)ffx(t)-y (o))
< lim —(|x(t+6)- y(t+3) ||
Jr+o -y
forany t>0.
Let u(t,6)=x(t+5)- (t+5)

v(t.8)=(1+8(-C))(x(t)- (1))
=(1 +5( C))u(t,0),

then

dlx(t)-y(0)
T_ﬂ(_

i L u' (t,5)u(t,o)-v" (t5) (t.9)

C)|x(t)-y(t)] = tim (\/u (t.8)u(t,0) -V (Lo (1.6))

(t.5)v(t.5))

5208 JuT (1,6)u(t,8) + V' (1.5)v(t.5)

u' (t,0)u(t,5)-

! lim

QR MO T

u' (t,0)u(t,0)

50" 1)

~2fx()- y<t>||[
_ 1 {d(uT (t,O)u(t,O))
2x(1)-y(0)]

+(x(t)- y(t))T (C +CT)(X(I)_ y(t))J ||x
+(x(V)-y(1) (9 (x(t-7))-g(y(t-7)))

l . 1 T T
; t! ts

AT (£,0)(C+CT)u(t,0)+ lim Su” (t,O)(CTC)u(t,O))

50"

a((x(®)-y(1) (x(®)-y(1)

T T 1
- +u' (t,0)(C+C )U(t,O)Jzux(t)y(t)”L dt

y(0)" (£ (x(t).y(t)-m(x(t).y(t))

Using Cauchy-Bunyakovsky Inequality and condition (5), we obtain

d||X yol_,

y(1) (f(x(1).y(1)-m(x(t). y(1))) o (x(t=e))-g(y(t-0)

(o)e()-y(< 2O

g (X(t)— y(1) ((x(1),y(1))-m(x(1),y(1)))
[x(®)-yOf

Ay =) yie-o)]

So
LI mnx (o)
+|||xt 7) 7).

Copyright © 2013 SciRes.

~||x(t)—y(t

t)-y(t)

)||+I||x(t—r)— y(t—r)"

[x(6)=y (O] <[, = yofle !

JEOA (5 e) -y (- s,
fo
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Namely
e*'l(‘*‘o) ||X(t) -y (t)"

<%0 = Yo + j ") ||x(s ~7)-y(s- r)||ds
i

t-r
=% = Yo +1e j ¢ 57) ||x(s)— y(s)"ds.
1,

0—T

Using the Gronwall inequality [45,46], we have
¢ (t-) ||X (t)-y (t)" < ||X0 Y, ||exp {Ie_’” (t-t, )} ,
that is

Ix(@®) -y <% - y0||exp{(a+|e"”)(t—t0 )}

<|% = Yollexp{p(t—t,)}.

4. Synchronization via the General
Intermittent Control and Examples

Consider a delayed complex dynamical network consist-
ing of N linearly coupled nonidentical nodes described
by
dx, (t)
dt

==Cx (t)+ p(x (1) +9(x (t-7))
N Q)
+> ax (t)+u (1), i=12,-,N,
=1
where X = (X, Xz, 5 Xy )T eR" is the state vector of
the ith node, p,g:R" — R" are nonlinear vector func-
tions, U;(t) is the control input of the ith node, and
A:(aij) N is the coupling figuration matrix repre-
senting the coupling strength and the topological struc-
ture of the complex networks, in which a; >0 if there
is connection from node i to node j (i j), and is
zero, otherwise, and the constraint
N N
a=—p a;=—y a;, (i,j=12,--,N),isset.
j=L,j=i i=Li% |
A complex network is said to achieve asymptotical
synchronization if

X () =% (t)=--=x(t)=s(t)ast > o0, (7
where s(t)eR" is a solution of a real target node, sat-
isfying

ds(t)

= Cs(O)+p(s(t)+g(s(t-7))-

For our synchronization scheme, let us define error
vector and control input U, (t) as follows, respectively:

e (t)=x(t)-s(t),i=12,--,N.,

When h(n) is a strictly monotone increasing func-
tion on n with h(0)=0, lim h(n) =+,

nN—+owo

Copyright © 2013 SciRes.

. (t):{—kq(ei (1), (h(M)T <t<h(n)T +85),
| 0, (h(n)T+5st<h(n+1)T), (®)
(k>0,i=12,--,N)

When h(n) is a strictly monotone decreasing func-
tion on n with h(0) =+, lim h(n)=0,
n

R (CIO)) (h(n+13?st<h(n+l)T+5),
(1) = 0, (h(n+DT+s<t<h(nT). )

(k>0,i=1,2,--,N)

In this work, the goal is to design suitable function
h(n) and parameters &, T and Kk satisfying the
condition (7). The error system follows from the expres-
sion (6), (8) and (9)
de, (1)

L= ==C (5 (1)-5(t)+ p(x (1)~ p(s(1))

(10)
When h(n) is a strictly monotone increasing func-
tion on n with h(0)=0, lim h(n)=+0, we obtain
the following result: A
Theorem 2 Suppose that the operator g in the net-
work (6) satisfies condition (5), and x(—C) is defined
as Definition 2,

py=—m—le™ g = u(-C)+A-k(1+4),
P, =1, +le™™" 17, = 1(~C)+ A, where the constant
LxO=sO) (1 (x(0). () =m{x(t) (1))
V>0 ||X('[)—S(t)||2
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..,[p(sN (t))éamsj (t)ﬁ’

e (0,81 (1) b () 1= ma ol
(t— z’)) g(s(t—‘[))"SIi”ei(t—‘[)".

Then the synchronization of network (6) is achieved if
the parameters 6, T, k, A and ¢ satisfy

_p2]24>05 (11)

where h™'(+) is the inverse function of the function

h(s).
Proof From Theorem 1, the following conclusion is
valid:

"e(t)"s"e(h(n)T)"exp{—pl(t—h(n)T)} (12)
forany h(n)T <t<h(n)T+6;
le(t)]|< ||e T+5||exp P (t=h(MT-5)} (13)

forany h(n)T+s<t<h(n+1)T.
In the following, we use mathematical induction to
prove, for any nonnegative integer n,

Je(®)
le(0)]exp{-pit+(p + ()T =n(p, + ,)5}.
- (h(MT <t<h(n)T +5),
~le(@)exp{pt-(n+1)(p+£2)5},
(h(nT+s<t<h(n+1)T),
(14)

1) For n=0, from (12) and (13), we can see that
a)For h(0)T <t<h(0)T+5,

e(t):(

I, satisfies "g

p >0, p,>0,

™ ((t=8)/T)

inf| (p,+p,)0 .

le®)l<[e(o)|expiph(i+1)T

=||e 0 ||exp{—p1t+(p1 +p,)h(j+1)T

"e J+1T+5|| le(o |exp{ p(h(J+1)T +9)

+(p+p)h(J+ )T =(j+1)(p + p,) 5},

and also, for te[h(j+1)T +5,h(j+2)T), it follows

from above results that

Copyright © 2013 SciRes.

Je(®)]<[e(n(

le(®)] < Je(h(0)T)|exp{-p: (t—h(0)T)}

=||e(0)||exp{—p,t+(p, +9,)0(0)T =0-(p, +p,) 5},
le(h(0)T +5))
< |e(h(0)T)|exp{-p, (n(0)T +5—h(0)T)}
:||e(0)||exp{—p15}.

b) For h(0)T+5<t<h(I)T,

le ()] <[e(n(0)T +8)exp{p: (t-n(0)T -0)]
<|e(0)|exp{-p5} exp{p, (t—(0)T -5)}
"eXp{pz ~(p+p,)5)
||exp pt—(0+1)(p, +p,)5}.

So (14) is true for n=0.
2) Assume that (14) is true for all n < j, that is

leco)]
<[e(0)exp{-nt+(o+2)h ()T =i(p +p,)5},
te[h(j)T.h(j)T +5),

/—\

St

\_/\_/v

=[e(0

e <[e(@)exp{oat=(i+1)(a +£2)5}.

te[h(J)T+8.h(j+1)T),
le(n(i+D)T)|
S||e(0)||exp{p2h(j+1)T—(j+1)(pl+p2)5}.

We will prove (14) is also true when n= j+1. From

(12) and (13), it is easy to see that

)"exp{—p1 (t—h(j+1)T)},
te[h(j+1)T.h(j+1)T +05),

le®l<[e(n(i+1)

j+1)T +é')||exp{p2(t—h(j+1)T_5)}’
te[h(j+1)T+o,h(j+2)T).

Then, for te[h(j+1)T,h(j+l)T +§),wehave

—-(i+1) (o +p2)5}exp{—p] (t—h(j+1)T)}

~(j+1)(p +p,)5},

()]

<[e(O)exp{-p, (N(i +1)T+8)+(p+p,)(i+1)T
—(j +1)(p1 +p2)5}exp{p2 (t—h(j+1)T —5)}

[eoewn{o-(1+2(0,+ )3}
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From above discussion, we can see that the (14) is al-
ways correct for any nonnegative integer n.

When h(n) is a strictly monotone increasing func-
tion on n and h(n)T <t<h(n)T+45, it is easy to

obtain ﬂ<h(n)£l, h! (ﬂj<ngh-‘ (L)’
T T T T
—p1t+(p1 +p2)h(n)T _n(p1 +p2)5

t-o

S_p1t+(p1+p2) (,01+p2)5h (T )
t—o
=pt=(p +p,)oh" (T ]

@

- t.
" P>

- (,01+/O2)5

When h(n) is a strictly monotone increasing func-
tion on n and h(n)T+5<t<h(n+1)T, it follows

that
h™! (lj <(n+1)<h” (—t_5j+l,
T T

aft
pzt_(n+1)(p1 +p2)§Sp2t—(p1 +p2)h 1(_j

:
a0
T
ot

(2l
pt—=(n+1)(p+p,)0

R

t

- (p] 2

then

- (p1+p2 -p |t

Therefore

0l fe0fse|-{(a 0™ 42T

<[e(O)exp{-¢ct}, te[n(n
when n— 4o, t—+oo, [e(t )" — 0 is obtained un-
der the condition (11). So the synchronization of the net-
work (6) is achieved.

When h(n) is a strictly monotone decreasing func-
tion on n with lim h(n)=0,h(0)=+w, we obtain
the following resulf: ™"

Theorem 3 Suppose that the operator g in the net-
work (6) satisfies condition (5), and x(—C) is defined
as Definition 2, p, =-n, —le™,
m=u(-C)+A-k(1+A), p,
n, = u(-C)+4,
where the constant

PO SO (F(x(0):5(0) ~m{x(V). (1)
vt=0 ||X(t)—s(t)||2 >
e(t) are the same as Theorem 2. So the synchronization

of networks (6) is achieved if the parameters &,T,k, 4,
and ¢ satisfy

)T.h(n+1)T ],

—hT
=7, +le™™,

h™(t/T
(t/ )—p2J2§>0,
(15)
where h™'(+) is the inverse function of the function
h(e).
Proof From Theorem 1, the following conclusion is
valid:

P >0,p,>0, inf{(pl +p,)0

le(®)] < Je(h(n+1)T)|exp{-p, (t=h(n+1)T)} (16)
<t<h(n+)T+6;
DT +6)|exp{p, (t=h(n+1)T -5)}

a7

forany h(n+1)T

||e(t)||£||e(h(n+

forany h(n+1)T+8<t<h(n)T
From (16) and (17), imitating Theorem 2,we can prove

” " {"e h(n+1)T "exp g, (t.n)}, (h(n+)T <t<h(n+1)T +5),
e <

Copyright © 2013 SciRes.

)T+
(h(n+1)T+s5<t<h(n)T),
h(n+1)T <t<h(n+1)T +5),

( +
(h(n+1)T+5<t<h(n)T),

h™ (t/T) -p, }t} < "e(O)"exp{—(St},
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where
g, (t,n)=—pt+(p+p,)h(n+)T —(n+1)(p, +p,)5 .

9, (t,n)=pt—(n+2)(p, +p,)5,
g; (t’n):_((ﬂ +p2)5w—/72} ’
JCLLIN

g4(t’n):_[(pl+p2)5 t

when t — +oo,|e(t)| — 0 is obtained under the condi-
tion (15). So the synchronization of network (6) is
achieved.

Corollary 1 Supposing that h(n)=pn, &=p,T,
p, >0,p, >0, and the rest of restricted conditions are
invariable. Then the synchronization of the network (6) is
achieved if the parameters ¢, T and k,{ satisfy

p
£ >0,p,> Oa(pl +pz)5f_p2 2¢>0.
1
Corollary 2 when we add normally distributed white
noise randn (size(t)), the result similar to Theorem 2 and
Theorem 3 is obtained if the condition (11) or (12) , re-
spectively, is satisfied.

In the simulations of following examples, we always
choose N=5T=4,0=24,k =10, the matrix

-5 4 1 0 0
2 6 0 2 2
A={0 1 -1 0 O

31 0 4 0

0 0 0 2 =2

Let the initial condition be
(xlT,sz,x;,xJ,xsT,sT)
=(17,12.8,0.5,0.6,0.7,0.8,1,1.3,1.8,1.9,3,4).

Example 1 Consider a delayed system [47]:

t
dxé—t() — 0.1, (t)+ 0.4sinx, (t-2)
(1)
d"(Zi—t(t)=-o.1x2 (t)+0.3sinx, (t-2).

The function h(n)=2n+In(n+1) , h(n)=3/n+
(n+1) / n*, which are the strictly monotone increasing
or decreasing function on n, respectively, then they can
be clearly seen that the synchronization of network (6),
which is composed of system (18), is realized in Figures
1-4 (Excited by parameter white-noise), respectively.

Copyright © 2013 SciRes.

o kN w » 0 o N ® ©

0 1‘0 2‘0 3‘0 4‘0 5‘0 éO ';0 8‘0 90
(®)
Figure 1. Synchronization error when h(n) =2n + 1n(n + 1).

(a) The error X;; — S, (1 =1, 2, 3, 4, 5); (b) The error X, — S,
(i=1,2,3,4,5).

0 20 40 60 80 100 120 140

0 2‘0 4‘0 éO 8‘0 160 1‘20 140
(®)

Figure 2. Synchronization error when h(n) = 2n + In(n + 1),

white noise 0.5 (X; — S) randn (size(t)), (i = 1, 2, 3, 4, 5). (a)

The error Xj; — S, (i =1, 2, 3, 4, 5); (b) The error X;; — S,, (i =

1,2,3,4,5).
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(2)

0 1‘0 Z‘O 3‘0 4‘0 5‘0 6‘0 7‘0 éO 90
(b)

Figure 3. Synchronization error when h(n) =3/n+ (n + 1)/n’.

(a) The error Xj; — Sy, (i =1, 2, 3, 4, 5); (b) The error Xj; — S,

(i=1,2,3,4,5).

0 20 40 60 80 100 120 14C

(b)

Figure 4. Synchronization error when h(n) =3/n+ (n + 1)/n?,
white noise 0.5 (X; — S) randn (size(t)), (i = 1, 2, 3, 4, 5). (a)
The error Xj; — Sy, (i=1, 2, 3, 4, 5); (b) The error Xj; — S, (i =
1,2,3,4,5).

Copyright © 2013 SciRes.

5. Conclusion

Approaches for quantized synchronization of complex
networks with delayed time via general intermittent which
uses the nonlinear operator named the matrix measure
have been presented in this paper. Strong properties of
global and exponential synchronization have been achieved
in a finite number of steps. Numerical simulations have
verified the effectiveness of the method.
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