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ABSTRACT 

This paper concerned with the quantized synchronization analysis problem. The scope of state vectors of dynamic sys- 
tems, based on the matrix measure, is estimated. By using the general intermittent control, some simple yet generic cri- 
teria are derived ensuring the exponential stability of dynamic systems. Then, both the general intermittent networked 
controller and the quantized parameters can be designed, which guarantee that the nodes of the complex network are 
synchronized. Finally, simulation examples are given to illustrate the effectiveness and feasibility of the proposed 
method. 
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1. Introduction 

Since its origins in the work of Fujisaka and Yamada [1- 
3], Afraimovich, Verichev, and Rabinovich [4], and Pe- 
cora and Carrol [5], the study of synchronization of cha- 
otic systems [6-19] is of great practical significance and 
has received great interest in recent years. In the above 
literatures, the approach applied to stability analysis is 
basically the Lyapunov’s method. As we all know, the 
construction of a proper Lyapunov function usually be- 
comes very skillful, and the Lyapunov’s method does not 
specifically describe the convergence rate near the equi- 
librium point of the system. Hence, there is little com- 
patibility among all of the stability criteria obtained so 
far. 

The concept named the matrix measur [20-25] has been 
applied to the investigation of the existence, uniqueness 
or stability analysis of the equilibrium. Intermittent con- 
trol [26-29] has been used for a variety of purposes in 
engineering fields such as manufacturing, transportation, 
air-quality control and communication. A wide variety of  

synchronization or stabilization using the periodically 
intermittent control method has been studied (see [27- 
32]). Compared with continuous control methods [7-14], 
intermittent control is more efficient when the system 
output is measured intermittently rather than continuously. 
All of intermittent control and impulsive control are be- 
long to switch control. But the intermittent control is 
different from the impulsive control, because impulsive 
control is activated only at some isolated moments, namely 
it is of zero duation, while intermittent control has a non- 
zero control width. 

But it should be mentioned that the influence caused 
by quantization has not been considered in their results. It 
is well known that in modern networked systems, quanti- 
zation is an indispensable step that aims at saving limited 
bandwidth and energy consumption [33]. Quantization 
cannot be avoided in the digital control setting, and it is 
indeed a natural way to be inserted into the control de- 
sign complexity constraints of the controller and com- 
munication constraints of the channels which connect the 
controller and the plant [34]. The important application 
of quantization in real world can be found in human- 
machine interaction, for instance, see [35-37]. Therefore, 
it is essential and important to investigate the exponential 
quantized synchronization problem of networks with 
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mixed delays by periodically intermittent control. 
Our interest focuses on the class of commonly inter- 

mittent controller with time duration, where the control is 
activated in certain nonzero time intervals, and is off in 
other time intervals. A special case of such a control law 
is of the form 

 
     

  
,

0, 1 ,

k y t x t nT t nT
U t

nT t n T
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where  denotes the control strength, k 0   denotes 
the switching width, and T denotes the control period. 
The general intermittent controller 
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where  is a strictly monotone increasing function 
on , has been studied (see [38]). 

 h n
n

Moreover, a logarithmic quantizer  q   has quanti- 
zation levels give by 

  0 , 0, 1, 2, 0c
c c c            , 

where the quantization densitie is , and the 
scaling parameter is 

 0,1 
0 0  . Then, the quantizer  q   

is defined as follow 
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where 
1

1








. Based on (1), it is obvious that 

 q    


  and the quantization synchronization error 
,    (see [39-43]). 

In this paper, based on matrix measure and Gronwall 
inequality, the general intermittent controller 
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where  is a strictly monotone increasing function 
on , 

 h n
n
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0, 1 ,

i
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kq x t s t h n T t h n T

h n T t h n T
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where  is a strictly monotone decreasing function 
on , is designed. Then the sufficient yet generic crite- 
ria for synchronization of complex networks with and 
without delayed item are obtained. 

 h n
n

This paper is organized as follows. In Section 2, some 
necessary background materials are presented. In Section 
3, the state vectors scope estimated via matrix measure 
are formulated. Section 4 deals with the quantized syn- 
chronization. The theoretical results are applied to com- 
plex networks, and numerical simulations of delayed 
neural network systems are shown in this section. Finally, 
some concluding remarks are given in Section 5. 

2. Preliminaries 

Let X  be a Banach space endowed with the l2-norm  

, i.e. T ,x x x x x  , where ,  is inner  

product, and   be a open subset of X . We consider 
the following system: 

      d
,

d

x
Cx t F x t G x t

t
         (2) 

where ,F G  are nonlinear operators defined on  , and 
  ,x t   x t   , and   is a time-delayed positive 

constant, and    00F G 0  . 
Definition 1 [12,26,28,44] System (2) is called to be 

exponentially stable on a neighborhood  of the equi- 
librium point, if there exist constants 


0, 0   , such 

that 

     0exp 0 ,x t t x t     

where  x t  is any solution of (2) initiated from  
 0 0x t x . 
Definition 2 [20-25] Suppose that n nM R   is a ma- 

trix. Let  M  be the matrix measure of M  defined 
as 

 
0

lim
I M I

M







 
 , 

where I  is the identity matrix. 
Lemma [20-25] The matrix measure  M  is well  

defined for the l2-norm T ,x x x x x  , the induced  

matrix measure is given by 

 
 T

max ,
2

i

i

M M
M




 
 
 
 

 

where  T
i M M 

T
 denotes all eigenvalues of the ma- 

trix M M . 

3. Estimating the Scope of the State Vectors 

We consider the following system: 

        d
, ,

d

x
Cx t f x t y t g x t

t
        (3) 

        d
, ,

d

y
Cy t m x t y t g y t

t
        (4) 

Copyright © 2013 SciRes.                                                                                  AM 



Q. L. ZHANG 

Copyright © 2013 SciRes.                                                                                  AM 

1419

Proof Under the initial conditions  0 0 ,x t x   
 0 0 ,y t y   we have 

where , ,f m g  are nonlinear operators defined on  , 
and    ,x t y t  , and    ,x t y t      is a time- 
delayed positive constant, and  

.   0,0f m   0 0g  
,x y

0,0    
     

          

   
        

0

0

d

d
1

lim

1
lim

x t y t
C x t y t

t

x t y t I C x t y t

x t y t

I C x t y t







  


 













  

       

   

   

 

Theorem 1 For any  in the system (3), (4), if 
the operator , ,f m g  satisfies 

   g x g y l x y   ,          (5) 

,f m  is bound, where  is a positive constant. The solu- 
tions 

l
   , ,x t y t  initiated from   0 0 ,x t x   0y t  

 of the system (3) and (4) satisfy 0y  ,
for any . 0t 
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Using Cauchy-Bunyakovsky Inequality and condition (5), we obtain  
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Namely 
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Using the Gronwall inequality [45,46], we have 

        0
0 0 0e exp et t xx ly t yt t t      , 

that is 
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4. Synchronization via the General  
Intermittent Control and Examples 

Consider a delayed complex dynamical network consist- 
ing of  linearly coupled nonidentical nodes described 
by 

N

         

   
1

d

d

, 1,2, ,

i
i i i

N

ij j i
j

x t
Cx t p x t g x t

t

a x t u t i N





    

    ,
    (6) 

where  T

1 2, , , n
i i i inx x x x R 

, : n np g R R
 iu t

 ij

  is the state vector of 
the ith node,  are nonlinear vector func- 
tions,  is the control input of the ith node, and 

N N
 is the coupling figuration matrix repre- 

senting the coupling strength and the topological struc- 
ture of the complex networks, in which  if there 
is connection from node i to node  , and is 
zero, otherwise, and the constraint  

A a

0ija 
i jj 



1, 1,

,
N N

ii ij ij
j j i i i j

a a
   

     a  , 1, 2, ,i j N  , is set. 

A complex network is said to achieve asymptotical 
synchronization if  

       1 2 asNx t x t x t s t t     ,     (7) 

where   ns t R  is a solution of a real target node, sat- 
isfying 

         d

d

s t
Cs t p s t g s t

t
     . 

For our synchronization scheme, let us define error 
vector and control input  as follows, respectively:  iu t

      , 1, 2, ,i ie t x t s t i N    . , 
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In this work, the goal is to design suitable function 
 h n  and parameters  ,  and  satisfying the 

condition (7). The error system follows from the expres- 
sion (6), (8) and (9) 
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When  h n
n

 is a strictly monotone increasing func- 
tion on  with  0 0h ,   we obtain 
the following result: 

 lim ,
n
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Theorem 2 Suppose that the operator g  in the net- 
work (6) satisfies condition (5), and  is defined 
as Definition 2,  
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From above discussion, we can see that the (14) is al- 
ways correct for any nonnegative integer 

When is a strictly monotone increasing fun  
tion on 
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where  

         1 1 1 2 1 2, 1 1g t n t h n T n             , 
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Example 1 Consider a delayed system [47]: 

     

     

1
1 2

2
2 1

d
0.1 0.4sin 2

d

d
0.1 0.3sin 2 .

dt

x t
x t x t

t

x t
x t x t


   



    

    (18) 

The function ,    2 ln 1h n n n     3h n n   
  21 ,n n  which ne incr sing 
or decreasing functio n they can 
be clearly seen that the synchronization of network (6), 
w n Figures 
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Figure 1. Synchronization error when h(n) = 2n + 1n(n + 1). 
(a) The error xi1 − s1, (i = 1, 2, 3, 4, 5); (b) The error xi2 − s2, 
(i = 1, 2, 3, 4, 5). 
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Figure 2. Synchronization error when h(n) = 2n + 1n(n + 1), 
white noise 0.5 (xi − s) randn (size(t)), (i = 1, 2, 3, 4, 5). (a) 
The error xi1 − s1, (i = 1, 2, 3, 4, 5); (b) The error xi2 − s2, (i = 
1, 2, 3, 4, 5). 
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(b) 

Figure 3. Synchronization error when h(n) = 3/n + (n + 1)/n2. 
(a) The error xi1 − s1, (i = 1, 2, 3, 4, 5); (b) The error xi2 − s2, 
(i = 1, 2, 3, 4, 5). 
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Figure 4. Synchronization error when h(n) = 3/n + (n + 1)/n2, 
white noise 0.5 (xi − s) randn (size(t)), (i = 1, 2, 3, 4, 5). (a) 
The error xi1 − s1, (i = 1, 2, 3, 4  5); (b) The error xi2 − s , (i = 
1, 2, 3, 4, 5). 

5. Conclusion 

Approaches for quantized synchronization of complex 
networks with delayed time via general intermittent which 
uses the nonlinear operator named the matrix measure 
have been presented in this paper. Strong properties of 
global and exponential synchronization have been achieved 
in a finite number of steps. Numerical simulations have 
verified the effectiveness of the method. 
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