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ABSTRACT 

Confounding of three binary-variable counterfactual model with directed acyclic graph (DAG) is discussed in this paper. 
According to the effect between the control variable and the covariate variable, we investigate three causal counterfac-
tual models: the control variable is independent of the covariate variable, the control variable has the effect on the co-
variate variable and the covariate variable affects the control variable. Using the ancillary information based on condi-
tional independence hypotheses and ignorability, the sufficient conditions to determine whether the covariate variable is 
an irrelevant factor or whether there is no confounding in each counterfactual model are obtained. 
 
Keywords: Causal Effect; Independence Hypothesis; Counterfactual Model; Confounding Bias; Irrelevant; Ancillary 
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1. Introduction 

Causal inference has become an important research field 
in statistics, data mining, epidemiology and machine learn-
ing etc. in recent decades [1-7], and directed acyclic 
graph (DAG) is involved in describing the relationship 
between causal connections [4]. Confounding and con-
founder are two basic concepts for epidemiology causal 
inference [1,3]. Several models have been presented for 
causal inference, two of which are the causal diagram 
model and counterfactual model [6,8,9]. 

To assess confounding and confounder, two main ap-
proaches, “collapsibility-based” and “comparability-based”, 
are discussed in [10], which regard confounding bias as 
arising from differences between stratified measures of 
association and the corresponding original measure or 
from the exposed and unexposed populations which are 
not comparable. The comparability-based approach de-
termines a factor to be a confounder if adjusting for it can 
reduce confounding bias [3,10]. Geng et al. (2002) [11] 
point out that the effect of exposure on the rate of a dis-
ease cannot be assessed correctly in the presence of con-
founding bias. They propose probability criteria for con-
founding and discuss confounding with multi-value co-
variate variables. However, their work does not clearly 
analyze general causal DAG even with three binary- 
variables, since the simple case of their definition about 
covariate can only be expressed by Figure 1 (see Figure 

6.2 in p. 61, [12]). 
As to three binary-variable DAGs, [5,13] discussed 

identifiability of the causal effect of the other two kinds of 
counterfactual models (Figures 2 and 3) using the inde-
pendence hypotheses respectively. Yet, the confounding 
and confounder in these two simple causal DAGs are not 
discussed explicitly. For Figure 2 (see Figure 6.5 in p. 64, 
[12]), the covariate C is an intermediate variable in the 
causal chain. [6,12] (p. 30) discuss the intermediate vari-
able causal chain, however more variables are involved 

 

 

Figure 1. The first model. 
 

 

Figure 2. The second model. 
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Figure 3. The third model. 
 

in fitting “Back-door” formula and “Front-door” formula. 
Traditionally, a confounding variable (the precise defi-

nition of a confounder) is a variable which is a common 
cause of both the control variable and the response vari-
able [14] (see Figure 1). Whether the covariate variable, 
which is not a common cause of both the control variable 
and the response variable in three binary-variable coun-
terfactual models, is a confounder? [1,10] develop a 
qualitative definition of confounder: controlling a vari-
able can reduce confounding, then the variable is called a 
confounder. Hence, the covariate variable, which is not a 
common cause of both the control variable and the re-
sponse variable, but affects the response variable, may be 
a confounder. Recently, the confounder and confounding 
detection attracts more attention in gene network discov-
ery [15], the question arises from how to investigate the 
causal DAG in a pure gene network and how to analyze 
the role of covariate from statistical data if we think that 
there is causation structure in gene network? It is neces-
sary to discuss the confounder and confounding in the 
general causal DAG diagram. These motivations drive us 
to investigate the confounding and confounder in general 
causal DAG with the definitions in [11]. 

In this paper, according to the precise definition, one 
model as shown in Figure 1 is discussed: the covariate 
variable affects the control variable and the response 
variable at the same time, and the control variable affects 
the response variable. By the qualitative definition, we 
investigate other two models: one, as shown in Figure 2, 
is that the control variable has the effect on the covariate 
variable and the covariate variable affects the response 
variable; the other, as shown in Figure 3, is that the con-
trol variable is independent to the covariate variable and 
the covariate variable affects the response variable. Ob-
viously, the third model is the special case of the other 
two models with independence of the control variable 
and the covariate variable. Then we use the formal defi-
nitions of a confounder and an irrelevant factor in [11] 
and the ancillary information based on conditional inde-
pendence hypotheses [5,13] to discuss the confounding 
of above-mentioned counterfactual models. 

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce the main notation and definitions, 
and discuss the relationship between confounder and ir-

relevant factor. In Section 3, confounding and irrelevant 
factor of three kinds of three binary-variable counterfac-
tual models with DAGs are discussed respectively. The 
conclusion is given in Section 4. 

2. Notation and Definitions 

Let E, D, C be binary variables. Let the control variable 
E be an exposure with the values  and e e  represent-
ing “exposed” and “unexposed” respectively. Let the 
response variable  be an outcome with the values 0 
and 1 denoting the presence or absence of a disease, 
where e  is the corresponding response when 

D

D E e  
and eD  is the corresponding response when E e , 
both of which take values 1 or 0 denoting the presence or 
absence of a disease. Let  be a covariate variable with 
possible values 0 or 1. 

C

Many kinds of studies focus on the effects of exposure 
on the rate of a disease in the exposed population. Let 
 1eP D E e   and  1eP D E e   be the propor-

tions of diseased individuals in the unexposed population 
and the exposed population. Let  1eP D E e   be the 
hypothetical proportion of individuals in the exposed 
population who would have attacked by the disease even 
if they had not been exposed. Since  1eP D E e   is 
a hypothetical proportion, the model is a counterfactual 
model [8,9]. 

In order to identify the casual effect of exposure on 
response, confounding bias  is defined as the differ-
ence between the hypothetical proportion of diseased 
individuals in the exposed population [16,17], that is  

B

  1 1e eB P D E e P D E e              (2.1) 

If 0B  , then there is no confounding. 
By the common standardization in epidemiology [1,2, 

11,18-20], the standardized proportion  1eP D E e  , 
which is obtained by adjusting the distribution of  in 
the unexposed population to that in the exposed popula-
tion, is 

C

 

   
1

0

1

1

e

e
k

P D E e

P D E e C k P C k E e


 

      



  (2.2) 

Definition 1 [11]. A covariate  is a confounder if  C

   1 1e eP D E e P D E e B          (2.3) 

From the definition, we find that the standardized 
proportion  1eP D E e   obtained by adjusting for 
the irrelevant factor is closer to the hypothetical pro-
portion  1eP D E e   than the observed proportion 
 1eP D E e  . 
Definition 2 [11]. A covariate  is an irrelevant 

factor if  
C
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   1 1e eP D E e P D E e            (2.4) 

Since the estimation of the hypothetical proportion is 
still unchanged after being adjusted for an irrelevant fac-
tor, we do not need to adjust it to reduce confounding 
bias. And, the relationship between irrelevant factor and 
confounder is obtained in Lemma 1: 

Lemma 1. If a covariate  is an irrelevant factor, it 
is not a confounder. Inversely, if  is a confounder, it 
is not an irrelevant factor. 

C
C

Proof. 
According to the condition that C  is an irrelevant 

factor, we can obtain that  

   1 1e eP D E e P D E e       

Then,  

   
   

1 1

1 1

e e

e e

P D E e P D E e

P D E e P D E e B

    

      




 

which means  is not a confounder.  C
From the condition that  is a confounder, we can 

obtain  
C

   
   

1 1

1 1

e e

e e

P D E e P D E e

B P D E e P D E e

    

      


 

Then, 

   1 1e eP D E e P D E e       

In fact, if 

   1 1e eP D E e P D E e     , 

Then, 

   
   

1 1

1 1

e e

e e

P D E e P D E e

P D E e P D E e B

    

      




 

This is a contradiction! 
Hence,  is not an irrelevant factor. □ C
[11] (pp. 7-8) gives an example, and illustrates two 

cases of irrelevant factor and confounder respectively. To 
illuminate conceptions of confounding and irrelevant 
factor and Lemma 1, we continue to discuss the relation-
ship based on their original example and give two exam-
ples as follows.  

Example 1. For example in [11]. Let a factor  ex-
press groups categorized by every 10 years of age, and its 
values 1, 2, 3 and 4 denote the original age groups 20 - 
29, 30 - 39, 40 - 49 and 50 - 59 years respectively, we 
denote it as 

C

        1 , 2 , 3 , 4   . Suppose that there is 
no exposure effect, i.e. there are only individuals of type 
1 (individual ’doomed’) and type 4 (individual immune 
to disease), and that the joint distribution of disease, ex-

posure and a factor  is given in Table 1 of [11] (p. 7), 
where 

C

 
 

1 0

1 0

0 06

e

e

P D E e

P D E e

B

52

58

    

   

  

  

When the individuals are regrouped by “younger than 
50”, we denote it as     1,2,3 , 4p  , which means we 
adjust the distribution of C, a coarse subpopulation is 
given in Table 1. 

Then,  

 

 

1

122 250 52 50

200 300 100 300

0 595 0 58 1

p e

e

P D E e

P D E e

 

   

      

 

And,  

   1 1

0 595 0 52 0 075

e p eP D E e P D E e

B

    

       
 

That is,  is not a confounder, and it is not an ir-
relevant factor. 

C

Example 2. To continue the discussion of above ex-
ample in [11], when the individuals are regrouped by 
“younger than 40 but older than 30”, we denote it as 

    1,3,4 , 2p  , we can obtain a coarse subpopulation 
given in Table 2. 

Then, 

 
 

26 100 148 200
1

50 300 250 300
0 568 0 58 1

p e

e

P D E e

P D E e

     

      
 

 
Table 1. Example of a factor C which is neither a con-
founder, nor an irrelevant factor. 

Distribution for the values of  C
Type  1 2 3C     4C  

 E e  E e  E e  E e  

1 (“doomed”) 133 122 23 52 

4 (“immune”) 117 78 27 48 

Total 250 200 50 100 

 
Table 2. Example of a factor C which is not an irrelevant 
factor, but is a confounder. 

Distribution for the values of  C
Type  1 3 4C     2C  

 E e  E e  E e  E e

1 (“doomed”) 46 26 110 148 

4 (“immune”) 54 24 90 102 

Total 100 50 200 250 
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Hence, 

   1 1

0 568 0 52 0 048

e p eP D E e P D E e

B

    

       
 

To sum up, is not an irrelevant factor, but is a 
confounder. 

As announced in [11], regrouping

C  

     1,2 , 3,4p  , 

co
C  is a confounder, but not an irrelevant factor. Exam-
ple 2 shows that nfounder is not unique,  

    1,3,4 , 2  is another case, and -
t values of 

p  they have differ
en B . 

Conclusion: According to Lemma 1, Example 1, Ex-
ampl 11], whether a factor C  is a confounder 
or an irrelevan actor depends on the adjusting distribu-
tio

e 2 and [
t f

ow

n p

ing the confounding of three binary-variable coun-
dels 

n of C . That is, even for a fixed factor C  in a spe-
cific experiment, for example, age, h  to judge it as a 
confounder or an irrelevant factor relies on the “right” 
adjustme t of its distribution. And, more im ortant, the 
non-uniqueness of confounder makes the causal analysis 
be more complex. 

If we transform the adjustment of covariate variable in 
Figure 1 to the intervention distribution in counterfactual 
models in Figures 2 and 3, the definition 1 and definition 
2 would be easily employed in the discussion of con-
founding and irrelevant factor in the other general causal 
DAGs. 

3. Confounding of Counterfactual Model 

Consider
terfactual models, there are three counterfactual mo
of causal DAGs as follows (Figures 1-3): 

To discuss whether there be confounding in our con-
sidering models, we use the conditional independence 
hypotheses as follows as the ancillary information (H): 

1) eE D  
2) 0eE D C   
3) 1eE D C    
4) E C   
5) eD C   
6) eD C E e    
7) eD C E e    

3.1. The First Model 

A own in Figure 1,  has effect on  and  at 
the same time, and ffects . In or o ca ate 

s sh C
 a

E
der t

D
lcul C  E

simply, suppose that  

 
   
 
 
 

0

1

1 0

0,1.

1 0

1 1

e j

e

e

C j b j

P D E e C u

P D E e C u



    

     

     

 
1 0

1

1

P C t

P E e C a P E e C a

P D E e

  

      

 

0 0 1 11 1 1 1j jt t a a a a b b             

where 0 1 jt a a b    

0 1u u
can be observed from original data, 

but   can not 
roportions

be observed because they are hypo-
th . 

Then, we obtain the following formulae, 
etical p

 

   
1

0

0 0 1 1

1 E e C k P C k E e

a t b a t

1e

e
k

P D E e

P D

b


 

0 1a t a t

 







    






 

 

   
1

0

0 0 1 1

0 1

1

1

e

e
k

P D E e

P D E e C k P C k E e

u a t u a t

a t a t



 

      






  

 

   
1

0

0 0 1 1

0 1

1

1

e

e
k

P D E e

P D E e C k P C k E e

b a t b a t

a t a t



 

      


 



  

And, 

   
0 0 1 1 0 0 1 1

0 1 0 1

1 1e eB P D E e P D E e

b a t b a t b a t b a t

a t a t a t a t

     

 
  

 

 

Using the above formulae, we translate each condition 
of o parameter form:  

1) 

 ( H ) int

0 0 1 1 0 0 1 1

0 1 0 1
e

b a t b a t b a t b a t
E D i e

a t a t a t a t

 
   

 
 

0 00eE D C i e u b       2) 

1 11eE D C i e u b      3) 
4) 0 0 0 0 1 1 1 1eC D i e u a b a u a b a       
5) 0 1eC D E e i e b b      
6) 0 1eC D E e i e u u      
7) 0 1C E i e a a     
Theorem 1. If one of the following conditions holds, 
a) E C  
b) eD C E e   
c) ,e eD C E e E D C    
The covariate is an irrelevant factor.  

of.  
der to prove  irrelevant factor, we only 

ne

C  
Pro
In or is anC  
ed to prove  

0 0 1 1 0 0 1 1

0 1 0 1

b a t b a t b a t b a t

a t a t a t a t

 
 

 
 

That is, 
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b  0 1 0 1 0b a a     

a) From the conditi  E C , we can obtain  on

Then,  

0 1a a   

   1 1e eP D E e P D E e      

b) From the condition eD C E e  , we can obtain  

Then,  

0 1b b   

   1 1e eP D E e P D E e      

c) From the condition eE D C , we can ob ain  t

0eE D C 0 ,   i.e. 0u b

1eE D C   i. . e. 1 1u b

Since, 

0 1eC D E e i e u u      

Hence,  

We obtain, 

0 1b b   

   1 1e eP D E e P D E e       □ 

Theorem 2. If one of the following con itions holds, 
a) 

d

e

b) 
E D  

eC D E ee E D C    
c) 0e eE D C C D E     
d) 1e eE D C C D E     
e) eE D C E C   
There is no confounding. 
Proof. 
a) From the condition eE D , we can obtain  

0 0 1 1 0 0 1 1

0 1 0 1

b a t b a t b a t b a t

a t a t a t

 
 

 
 

n,  

a t

The

0 0 1 1b a t b a t
B


 

 
0 0 1 1

0 1 0 1

0
b a t b a t

a t a t a t a t


   

b) From the condition eE D C , we can obtain   

0eE D C   i.e. 0 0u b . 

1eE D C   i.e. 

Furthermore, 

1 1u b   

eC D E e   i.e. . 0 1b b

We obtain,  

0 0 1 1 0 0b a t 1 1

0 1 1

0
b a t b a t b a t

B
a t a t a t

 


0a t
  

 
 

c) From the condition eC D E , we can obtain  

eC D E e  i.e. 0 1b b ; 

eC D E e   i.e. 

From the other condition, we obtain 

0 1u u   

i.e. 0 0u b . 0eE D C   

Then,  

0 0 1 1 0 0 1t b 1
0 0

0 1

0
b a t b a t b a a t

B u b
a t a t a t t



0 1a


   

 
 

d) From the condition eC D E , we can obtain  

eC D E e   i.e. 0 1b b , 

eC D E e   i.e. 

Furthermore, according to the next condition, we have 

0 1u u . 

i.e. 1 1u b . 1eE D C   

Then,  

0 0 1 1 0 0 1t b 1
1 1

0 1

0
b a t b a t b a a t

B u b
a t a t a



0 1t a t


    

 
 

e) From the condition 



eE D C , we ca ain  n obt

0E D Ce   i.e. u b ; 0 0

1eE D C   i.e. 1 1u b   

Furthermore,  

0 1C E i e a a      

Then, 

0 0 1 1 0 0 0
t

a t
1 1

0 1 0 1

b a b
B

a t a t a t

b a t b a t a t 
   

 
 □ 

3.2. The Second Model 

As shown in Figure 2,  and ve effect on 
at the same time, and ffects r to 
la pose: 

E
 a

C  
C

ha
. In orde

D  
calcu-E

te simply, sup

 
   
 
 
 

01 0

1 1

e

e

P D E e C u

P D E e u

1 0

1

1 1

j

P E e a

P C E e c P C E e c

j b

C

  



1eP D E e C

      

 

 



    

   

    

0 0 1 11 1 1 1j ja a c c c c b b             
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ja b  
, 1u  
 prop

where can be observed from original data. But 
can not be observed because they are hyp
ortions, also can be treated as counterfact

model by intervention [13]. 
Then, we obtain the following formulae, 

0c , 
o-

ual 
1c , 

thet
0u

ical

 

   
1

0

0 1 1 1b c 

1

1

e

e
k

P D E e

P D E e C k P C k E e

b c



 

      



 

 

   
1

1eP D E e 

0

1e
k

P D E e C k P C k


     

0 1 1 1

E e

u c u c



 

 

 

   
1

0

0 0 1 0

1

1

e

e
k

P D E e

P D E e C k P C k E e

b c b c


 

     

 

  

Then,  

   
0 1 1 1 0 0 1 0

1 1e eB P D E e P D E e

u c u c b c b c

     

   
 

Using the above formulae, we translate each condition 
of (H) into parameter form: 

1) 0 1 1 1 0 0 1 0eE D i e u c u c b c b c       
2) 0 00eE D C i e u b      
3) 1 11eE D C i e u b      

4) eC D  i.e. 0 0 0 1 1 1 1 0

1 0 0 1

u c a b c a u c a b c a

c a c a c a c a

 


 
 

5) eC D E e   i.e. 
6) 

0 1b b  

eC D E e   i.e. 

ollowing conditions holds, 

0 1u u  
7) C E  i.e. 0 1c c  
Theorem 3. If one of the f
a) E C  
b) eD C E e   
c) e eD C E e E D C     
The c C
Pro

ovariate is an irrelevant factor. 
of. 
rom the condi e can obtain  

 

a) F tion  wE C ,

0 1c c   

Then,  

 
 

0 1 1 1 0 0 1 01

1

e

e

P D E e b c b c b c b c

P D E e

     

  


 

b) From the co ition nd eD C E e  , we can obtain  

Then,  

0 1b b   

   
   

0 1 1b c1 0 1 1

0 0 0 0 1 0

1

1

e

e

P D E e b c b c c

c c b c b c P D E e

     

0b       


 

c) From the condition eD C E  e , we can obtain  

i.e. , 0 1b b0eE D C   

1eE D C   i.e. 

ore,  

0 1u u   

Furtherm

eD C E e   i.e. 

Then,  

0 1b b   

  P D E 1 1e eP D E e e     □  

Theorem 4. If one of the f ng con n holds, 
a) 

ollowi ditio

eE D  
0e eE D C C D E  b)    

c) 1eE D C 
d) 

eC D E   

eE D C E C    
There is no confounding. 

e condition that 

 
Proof. 
a) From th eE D , we can obtain  

0 1 1 1 0 0 1 0u c u c b c b c    

Then, 

0 1 0 1 0B u t u t b t b t       

rom the condition b) F eC D E , we can obtain  

eC D eE   i.e. 0 1b b , 

eC D E e   i.e. 0 1u u . 

Furthermore, 

i.e. 0 0u b . 0eE D C   

Then, 

0 1 1 1 0 00 0 1 0 0B u c u c b c b c u b         

c) From the condition e E n obtC D , we ca ain  

eC D E e   i.e. 0 1b b   

eC D E e   i.e. 

Furthermore, 

0 1u u . 

1eE D C   i.e. 

Then, 

1 1u b . 

0 1 1 1 1 1 0B u c u c u b0 0 1 0b c b c        

d) From the condition e C an obtE D , we c ain  

i e.0eE D C   .  0 0u b , 

i.e. 1 1u b . 1eE D C   
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and,  Furthermore,  

i. 1 . C E  e. 0c c

Then, 

   
0 1 0 1

0 0 0 0 0.u b c c   1 1

B u t u t b t b t

u t b

   

 
 

3.3. The Third Model 

As shown in Figure 3, both nd ave effects on E  a h C  
D , and E C . 

Denote, 

   
 
 
 

0

1

1

1 0

1 0

1 1

e j

e

e

P E e a P C t

P D E e C j b j

P D E e C u

P D E e C u

     

      

     

     

,1.
 

1 1 1j j

w ere 

a a t    t b b      

h ja ca  be obser  from ginal data, but t b   
ot
or

n ved  ori
 be observed because they are hypothetical 
 the probability with intervention [5]. 

Then, 

0 1u  can n
ortions, 

u
prop

 

   

   

1

0

1

0

0 1b t b t 

1

1

1

e

e
k

e
k

P D E e

P D E e C k P C k E e

P D E e C k P C k





 

      

     







 

 

   

   
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0

1

0

0 1

1

1

e

e
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e
k

P D E e C k P C k E e

P D E e C k P C k
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



      

     

 




 

1P D E e 

 

   

   

1

0

1

0

0 1

1

1

1

e

e
k

e
k

P D E e

P D E e C k P C k E e

P D E e C k P C k

b t b t





 

     

     

 




 



Then,  

   
0 1 0 1

1 1e eB P D E e P D E e

u t u t b t b t

     

    
 

   1 1e eP D E e P D E e     . 

Hence, the covariate  is an irrelevant fact  but 
not a confounder, and it can not reduce confounding. 

Using the above formulae, we translate each condition 
of (H) into parameter form, where  is naturally 
tru .  

C or,

E C
e in Figure 3
1) 0 1 0 1eE D i e u t u t b t b t       
2) 0 00eE D C i e u b      

1 11eE D C i e u b      3) 

0 0 1 1eC D i e b a u a b a u a       4) 
5) 0 1eC D E e i e b b      
6) 0 1eC D E e i e u u      

discussed above, in the caAs usal DAG Figure 3 with 
E C , the covariate C  s naturally an irrelevant factor. 
To keep the same expression as other DAGs, we have

i
 the 

fo
of Fi

llowing theorem. 
Theorem 5. In the causal DAG gure 3 with 

E C , the covariate is an irrelevant factor.  
orem 5 shows that in the causal DAG Figure 3, 

co ate is always an irrel factor regardless of 
an justment or intervention on it. 

eorem 6. If one of the following conditions holds, 

C  
The
vari evant C  
y ad s 
Th
a) eE D  
b) 0 1e eE D C E D C      
c) 0e eD C E E D C     
b) 1e eD C E E D C     
There is no confounding. 
Proof.  
a) From the condition eE D , we can obtain  

0 1 0 1u t u t b t b t     

Then,  

0 1 0 1 0B u t u t b t b t       

b) F e conrom th ditions  

0eE D C   and 1eE D C  , 

w n obtain  e ca

0 0u b  and .  1 1u b

Then,  

0 1 0 1 0B u t u t b t b t      

e condition c) From th eD C E , we can obtain  

eD C E e   i.e.  0 1b b , 

eC D E e   i.e. 

Furthermore,  

0 1u u . 

0eE D C   i.e. 

Then,  

0 0u b  
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0 1 0 1 0 0 0B u t u t b t b t u b        

d) The proof is similar to c). □ 

4.

Using the formal definition confounder, non-
founding and irrelevant fact  discus he confound-
ing of three kinds of three bi variable counterfactual
m logy studies and statistics, where t
general causal DAG is invo n the d scussion
sufficient conditions of determ ing non-confound
an nt factor in a three binary-variable causal 
are discussed. Our work focuses on the ge ral three 
bi o other variable
in

founder and confounding are two dif-
ased on probability criteria, our dis-

ion would be more complex as 
sh

, New York, 1982. 

Epidemiology,” Little Brown,

 Conclusions 

s of con- 

 
or, we s t
nary-

odels in epidemio he 
lved i i

in
. The 

ing 
DAG d irreleva

ne
nary-variable causal DAG, and n
volved in discussion. 

s are 

Furthermore, con
ferent conceptions b
cussions are definitely different from relative literatures, 
for example, [5,11,13]. In addition, the non-uniqueness 
of irrelevant factor and confounder in theory makes it 
more difficult to detect them and discuss the sufficient 
and necessary condition. The ancillary information (H) 
involved in our discussion is only a part of [5,13], hence 
we only obtain some sufficient conditions, another cause 
of this design lies in the thought that we want to discuss 
the causation along causal path. The sufficient and nec-
essary condition discuss

own in our results. The future work will extend the 
three-variable counterfactual model to multi-variable 
counterfactual model. And, we will apply the theoretical 
results to the confounder detection in gene network. 
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