
Applied Mathematics, 2013, 4, 1381-1391 
http://dx.doi.org/10.4236/am.2013.410187 Published Online October 2013 (http://www.scirp.org/journal/am) 

The Dynamics of Vector-Host Feeding Contact Rate with 
Saturation: A Case of Malaria in Western Kenya 

Josephine Wairimu, Ogana Wandera 
School of Mathematics, University of Nairobi, Nairobi, Kenya 

Email: jwndirangu@uonbi.ac.ke 
 

Received July 15, 2013; revised August 15, 2013; accepted August 22, 2013 
 

Copyright © 2013 Josephine Wairimu, Ogana Wandera. This is an open access article distributed under the Creative Commons At- 
tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop- 
erly cited. 

ABSTRACT 

In this study, we develop an expression for a saturated mosquito feeding rate in an SIS malaria model to determine its 
effect on infection and transmission dynamics of malaria in the highlands of Western Kenya. The basic reproduction 
number  is established as a sharp threshold that determines whether the disease dies out or persists in the 

population. Precisely, if 
0

0 1 , the disease-free equilibrium is globally asymptotically stable and the disease always 

dies out and if , there exists a unique endemic equilibrium which is globally stable and the disease persists. The 

contribution of the saturated contact rate to the basic reproduction number and the level of the endemic equilibrium are 
also analyzed. 

0 1
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1. Introduction 

Malaria is an infectious disease caused by a parasite of 
the genus, Plasmodium. It is transmitted between human 
hosts by female anopheles mosquitoes as they seek blood 
meal for their eggs development. When a mosquito bites 
an infected person, a small amount of blood is taken in, 
which contains microscopic malaria parasites. When the 
mosquito takes its next blood meal, these parasites mix 
with the mosquito saliva and are injected into the person 
being bitten and the transmission process is perpetuated. 

Malaria constitutes a big health problem especially 
within sub-saharan Africa and Asia. World Malaria Re- 
port 2011 estimates that it causes between 250 - 260 mil- 
lion infections and more than a million deaths (mostly 
among children in Africa), annually. In Kenya, reports 
show that despite the many control strategies to eliminate 
malaria, it has re-emerged and increased in incidence. 
The disease continues to wreck havoc on millions espe- 
cially from the poor countries [1]. 

Vector abundance in Western Kenya is driven by tem- 
perature variation, ecosystem characteristics and human 
activities. The population varies depending on the site, 
the season and the species of the vector. Some sites in 
Western Kenya have 12.7 fold indoor resting densities 
during the long rainy season (March-June) and 23.3 fold  

during the dry season (January-March) [2]. This implies 
that the vector population is never constant as assumed in 
many models. On the other hand host population changes 
due to seasons and economic activities, natural deaths and 
death due to diseases like malaria and migration to urban 
centers and other regions for greener pastures. For our 
model to capture the reality of the epidemics in Western 
Kenya highlands, we assume that the host and mosquito 
populations change with time. 

Most malaria models assume a constant human biting 
rate in their models, which means that hosts are freely 
available whenever a mosquito wants to bite, but in prac- 
tice, this is more of a simplifying assumption. Research 
shows that for small host population, this rate is propor- 
tional to the host population size, and for large host popu- 
lation, it is constant [3,4]. The feeding cycle of a mos- 
quito involves, host-seeking, feeding, resting, site-seeking, 
oviposition and host seeking resumes [5,6]. The prob- 
ability of finding a host and successfully obtaining a blood 
meal depends on many factors. Among them is human 
avoidance and defensive behaviour [7,8]. 

If the mosquito survives this process, and has a suc- 
cessful blood meal, it rests, finds a larval habitat, oviposits 
and continues host seeking. Since this process drives ma- 
laria transmission, it is necessary to address the specific 
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form of the mosquito-human contact process. Arditi [9], 
argues that the rates of (successful predation) contact 
between a predator and a prey is most properly a function 
of the ratios of their proportions. This would fit into ma- 
laria mosquitoes which inhabit homesteads and other 
areas where human hosts are available, like farms and 
urban areas [10]. It is also clear that this contact rate does 
not increase without bound, as the predator-prey ratio 
increases, this is because once a mosquito is fed, it rests 
before ovipositing, to resume host seeking and biting 
again [11]. 

When the predator-prey ratio value is low, the contact 
rate will be limited by the predators ability to find the 
prey, on the other hand if the ratio is high, the contact 
rate is limited by the predators satiation (desired preda- 
tion rate) [4,9]. For malaria, the contact rate takes a 
similar course where the mosquito bites will increase as a 
function of host-vector ratio until the ratio reaches a criti- 
cal level [12]. 

Saturation models are also not lacking in literature. A 
cholera model with saturation in the incidence was pro- 
posed by Capasso [13]. They argue that when there is a 
real threat to infected people becoming cautious and tak- 
ing preventive measures which control further infection. 
Heesterbeek [14] formulated a saturated individual con- 
tact rate in relationships such as courting and marriage, 
where they assume that the population mixes randomly. 
Zu and Ma [15] analyzed a SEIR epidemic model whose 
latent period is described by delay and included a satu- 
rated incidence rate. Zhang and Ma [16] studied a SEIR 
model with saturation in contact rates and did a thorough 
analysis of its global dynamics. 

In 2010, Ming and Li [17] formulated vector borne 
disease model, where they argue that increasing the den- 
sity of the susceptible hosts with respect to infected ones 
leads to Holling type II saturation on the force of infec- 
tion of host. In this model the biting rate of vectors and 
both populations are assumed to be constant. Further the 
model neglects disease related deaths a very crucial fac- 
tor in malaria infection. 

A model by [18] on dengue with variable human 
population is formulated and analyzed for both local and 
global dynamics. Ngwa et al. [19] analyzed the stability 
of a malaria model, with disease deaths, recovery and 
variable host and vector populations. However they as- 
sumed that the biting rate of vectors is constant hence 
their infection term is the one described in [20]. Realis- 
ing then the need to predict the dynamics and transmis- 
sion of malaria with great precision, we are motivated to 
engage in this study, as we pay particular attention to 
saturation in mosquito feeding habits and the varying 
host and vector populations. 

The rest of the paper is subdivided as follows. Section 
2 covers vector-host contact with saturation. In Section 3, 

the saturated contact process model is formulated. Sec-
tion 4 is dedicated to the existence of equilibiria, while 
Section 5 studies the stability of the Disease Free and the 
Endemic equilibrium. Finally in Section 6 we give some 
results on numerical simulation. 

2. Vector-Host Contact with Saturation 

Vector-host contact results from the need for mosquitoes 
to obtain a blood meal for their eggs development. A 
given vector’s biting rate is limited by both host population 
density and its own feeding frequency [21]. 

Therefore the per vector biting rate should increase as 
a function of the host-vector ratio until the ratio reaches a 
critical threshold, which we denote v , above which, 
biting rate saturates and the average vector can feed at its 
preferred rate v  (contacts per vector per time). Below 
this threshold, the relative scarcity of hosts constrains the 
rate at which a vector can feed on the given type of hosts 
(it must seek other sources). 

Q

b

We assume that an average host can receive bites at a 
maximum rate h  beyond which it successfully defends 
itself against the vector (including leaving the place 
altogether) [12]. Then this threshold density ratio is given 
by 

b

.v
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h

b
Q

b
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There are two ways of modeling the biting rate which 
increases for small host population and then approaches a 
maximum for large populations. The first is using a 
smooth verhulst-type function of the form 
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here v  is the preferred biting rate, and A, the population 
density ratio at which there is  saturation, and it 
measures how soon the saturation occurs. Dietz [22] and 
Ming [17] have used an equivalent form of saturation 
[23]. 

b
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The other way of modeling the vector biting rate satu- 
ration is by using a continuous and piecewise function 
with a “switch point”, v  deleanating the boundary 
between the two ranges as used by kribs in [23,24]. This 
function takes the form 
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where v  is the maximum preferred biting rate and v  
is the threshold density ratio. There are other Holling- 
type responses suggested in [14]. The difference between 
the two saturation models is the saturation sharpness, that 
is, how quickly the per vector biting rate levels off as the 
hosts become plentiful, that a vector can feed at its 
preferred rate, v . The saturation is gradual for the func- 
tion 1

b Q

b
f  model and sudden for the model described by 

2f  see Figure 1. 
The sharpness is crucial for our malaria model because 

mosquito populations can change drastically in a short 
span of time [23]. We also choose the predator-prey type 
or response since the biting in malaria transmission is 
vector initiated. The fact that the second model is also 
easy and captures more dynamics adds to the reason we 
apply it here in this malaria model. 

From the reasons above, we shall assume a saturated 
contact process as used in [23,24] with the so-called Holl- 
ing Type 1 form. Under this assumption, the per-vector 
contact rate can be described as a function of the host-  

vector density ratio h

v

N
z

N
  as 

   min ,1 .v vf z b z Q  

When v  (many host per vector) the rate com- 
pletely saturates at the maximum desired biting rate 

z Q

v f z  b , while for  (i.e. few hosts per vector)  vz Q

  v
v

z
f z b

Q
 , and the rate rises linearly with the host-  

vector ratio. The later is our interest in this study since 
the saturated contact process   vf z b  has been used 
in the classical Ross model for malaria [20]. Substituting  

h

v

N
z

N
  in the function  f z  and multiply by , we  vN

obtain the total biting rate which is  

 min , .v h vb N Q Nv  

 

 

Figure 1. A graphical comparison between f1 and f2. 

which can be rewritten in the form 

 min , .h h v vb N b N  

We note that for the current host density the maximum 
number of vectors that can effectively bite hosts at one 
given time is v v . Therefore the parameter v  is an 
important determinant in our model. It determines which 
of the two population densities is driving the biting con- 
tact rate. 

Q N Q

To examine the rate of appearance of new malaria 
infections from the rate of mosquito feeding contacts, we 
have to take into account the probability of infection 
resulting from an effective contact where one party (host 
or vector) is infected with malaria parasite and the other 
is not. Let  be the probability that such a contact 
between an infected vector and an uninfected host results 
in infecting the host,  as the proportion of blood meal 
contacts between infected hosts and uninfected vectors 
which result in an infected vector. Further if  are 
the susceptible and infectious hosts respectively and 

 are the susceptible and infectious vectors respec- 
tively, the new infections will be given as defined in 
[12].  

πh

πv

,h hS I

,v vS I
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h h h h h h

h v v
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b N b S
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h h v h
v h v v

S I b S
b N I

N N Q N
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since v
h

v

b
b

Q
   

In many malaria models, saturation has been assumed 
to be constant [20,25,26]. Here we consider the density 
dependent biting rate, and the populations ratio plays a 
vital role in the transmission. If the vectors-host ratio is 
low, the bites are few and hence the probability of trans- 
mission reduces too. As the ratio increases the infection 
will rise as a function of the ratio until it reaches the 
threshold and it becomes a constant. We wish to model 
this change in biting rate as the vector-host ratio changes 
and study its effect on the basic reproduction ratio. 

3. The Model Equations 

The model we derive here is mathematically equivalent 
to the classical Ross model [20]. The saturation in con- 
tact processes will address how the infection rates de- 
pend on this ratio. We assume that mosquito has a vari- 
able population growth such that birth v v  . For the 
human population, we assume a density dependent mor- 
tality rate, such that the total population vary with time 
and is modified by a logistic equation that include dis- 
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ease induced deaths. 
A description of the variables and parameters used in 

the model follows in Tables 1 and 2 respectively. 
The dynamics of our model will be governed by the 

following set of equations: 

 
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








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   (2) 

The term h  in the susceptible hosts compartment 
corresponds to a constant recruitment of susceptible hosts  



by natural birth. The transmission term π v
h h h

v

I
b S

N
   

corresponds to frequency dependent infection of suscep- 
tible hosts by infectious mosquitoes, on infection they 
move to the infectious compartment. The infected hosts 
who recover h hI  become susceptible again as malaria 
has no permanent immunity. The last terms , h h h hS I    
represents per capita deaths of the susceptible, infected  

 
Table 1. Variables used in the model related to infection 
contact process. 

Variable Definition 

hS  Susceptible Host Population Density 

vS  Susceptible Vector Population Density 

hI  Infectious Host Population Density 

vI  Infectious Vector Population Density 

hN  Total Host Population Density (Constant) 

vN  Total Vector Population Density (Variable) 

 
Table 2. Parameters used in the model related to infection 
contact process. 

Parameter Definition 

,h v   Hosts, Vectors Density Dependent Birth Rate 

πh  Probability of Host Infection per Contact 

πv  Probability of Vector Infection per Contact 

h  Hosts Rate of Recovery 

vQ  Vector-Host Ratio above Which Per-Vector Biting Saturates

hb  Host Irritability Biting Threshold 

vb  Preferred (max.) Vector Feeding Rate 

,h  Disease Dependent Death Rate 

hosts respectively. In the susceptible mosquito vectors, 

v  represent the recruitment of susceptible mosquitoes  

by birth. The term 
πv v v

h
v v

b I
S

Q N
 corresponds to the trans- 

mission of malaria to an susceptible mosquito by and 
infected host. Both the susceptible and infectious mos- 
quitoes are subject to natural deaths as defined in the 
terms , v v v vS I    respectively. Infective period of 
mosquitoes ends with their death due to their relatively 
short life-cycle so we do not have recovery or immune 
term in the vector equations [27,28]. 

All the parameters in the model are non negative and 
the model equations are well posed. For initial values 
 , , , , ,h h v v h vS I S I N N  in , the solutions exist and 
remains in the region for all . 

6

t 0

In the absence of disease the host population dynamics 
is given by h h h h . In this kind of demographic 
structure, the total human and mosquito population size  

N    N

 hN t  approaches a carrying capacity h

h


 for any non  

zero initial population size. 
The mosquito population  also approaches a   vN t

carrying capacity v

v


. For ease of studying the system, 

we let setting πh hbh   and 
πv v

v
v

b

Q
  , and the equa- 

tion now takes the form 

 

,

,

,

.

.

v
h h h h h h h h

v

v
h h h h h h h

v

v
v v v h v v

v

v
v v h v v

v

h h h h h h

v v v v

I
S S I

N

I

S

I S I
N

S
S I S

N

S
I I I

N

N N I

N N

  

   

 

 

 



     


    


    



 



   


  













      (3) 

which is defined in feasible region (i.e. where the model 
makes biological sense)  

 


6, , , , ,  : , 0 , 

,  0 , 0, 0

h h v v h v h h h h

v v v v h v
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
 

where 6
  denotes the non-negative cone of  in- 

cluding its lower dimensional faces. It is clear that 

6
  is 

positively invariant with respect to (3). We denote the 
boundary and the interior of   by  and  


 re- 

spectively. 
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4. Global Stability of the Disease Free  
Equilibrium 

We recall the equations of the model and use the relation 
 and , to study the system h hS N I  h vv vS N I 

   

.

v
h h h h h h h
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4.1. A Compact Positively Invariant Set 

Using Barrier theorems (e.g. [29,30]) we prove that the 
following set 

 , , , 0 , 0h
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is a positively invariant compact set for system (4). 
Moreover K  is a global attractor on the nonnegative 
orthant . 4


Since the ODE is Lipschitz, it is sufficient to check 

that the vector field induced by the system is either tan- 
gent or entering K  on the boundary K . 

Clearly we have the following implications: 

1)  and 0 0v vN N   0v
v v
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 2 2h h h h h h hN I N          0 . 
The preceding relations prove that all trajectories tends 

to K , which ends the proof of our claim. This also 
implies that all the trajectories are forward bounded. 

We denote the demographic equilibria by h
h

h

N


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and v
v

v

N



 . 

4.2. Reduction of the Model 

We remark that in the last equation only the state  is 

appearing. Hence our system is a triangular system. Us- 
ing Vidyasagar theorem on 

vN

K  ([31], Theorem A.4 given 
in annex) we can reduce the stability study to the stability 
of the equivalent system 
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This system is considered now on 

  , , 0 , 0h v h h h h v vI I N I  N N I N        

A similar argument, as in the preceding section, shows 
that   is a global attractor on the nonnegative orthant 

3
  for system (5), as shown in Figure 2. 

4.3. Basic Reproduction Ratio 

For system (5) there exists a disease free equilibrium 
(DFE), which is (0,0,  in . According to the 
technique by van den Driessche-Watmough [32], we 
define the transmission vector and the vector of other 
transfers defined on the “infected components” 
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Figure 2. Domain of study. 
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The Jacobian of these vectors computed at the DFE 
gives 

 0 0
, ,

0
0

h
h h h h
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The spectral radius of 1FV   gives finally 
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4.4. Equilibria 

Let  , ,h v v I I N  denote an equilibria. We have the 
following system of equations 
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The following relations are satisfied : 
• From (6a) 

;v h v h
v

v v h v v
h v

v

I I
vI N

I NI
N

 
  

 







         (7) 

• From (6c) 

.h h h h
h h

h h

I
N N

 


 
   hI


         (8) 

Replacing these values in (6a) gives  

  .h v h
h h h h h h h h

h v h v v

I
N I I

I N

 
  I

  
 

       


    

We see that if 0hI  , then 0vI   and therefore 

h h . In other words, we obtain the DFE. Then we 
suppose 
N N 

0hI  . Then, from the last expression we obtain 

 

 

   0 1

v h h h h h v v

h
v h h h h

h

h h h v v

N N

I

N

     


   



   

  

 
    

 

   



 

Therefore 

 
 

0 1

h

h h h v v

h h
h h h h v

h

I

N   
     



  

  
    

  

 

(9) 

If 0  we have 1 0hI   and, from relation (7), 
0vI  . From (6a) we obtain 

 
0h h h v

h h h
h v

N
N I I

I

  


 
  



 

Now from relation (8) we get hN N h  and finally 
from (7), we get v vI N  . 

In conclusion, if 0 , we have an unique endemic 
equilibrium in the interior of . 

1


4.5. Global Stability of the DFE 

The DFE is on the boundary of . 
Theorem 4.1 
The disease-free equilibrium  of sys- 

tem (5) is globally asymptotically stable in the nonnega- 
tive orthant if and only if  and is unstable if 

. 

0 0,0, hP N 

1



0
0

Proof. 
1

When 0  the unstability of the DFE is a conse- 
quence of the theorem in [32,33]. 

1

To prove the global stability, we consider a Lasalle- 
Lyapunov function  [34-36] on the positively invari- 
ant compact set. By this definition we mean that on 

V
 , 

 is continuous and nonnegative. The function V  is 
not positive definite. We define 
V

  , .h v v h h h h vV I I I I         

We take advantage on the fact that the ODE (5 ) can 
be written  

  0

0

0 0

0

h h
h h h h

v

h h

v v
v v v v

v

h h

h h

N I

N
I I

N I
I I

N
N N

   

 

 

    
 

h

      
      
       
      
          

  







  

 





 

That we can write, in short,  X A X X b
 T
,0

  If we 
define v h , then, the derivative 
along the trajectories  is given by 

 , h hv      
V

 T TV v A X X v b   

But T 0v b  , then   TV v A X
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 

   

 

 

 

 

   

T

0

1 ,

,

,

, 0

,

1 , 0

v
v h h h h h h v

v

h h
v h h h h v

v

v
h h h v

v

h h
v h h h h v

v

v
h h h v

v

h h h v

v A X

I

N

N I
o

N

I

N

N I

N

I

N

       

     

   

     

   

   

  
         
  


   




   



   




   


   













 

For the inequality in the last row we assume  
 on . h h h

Finally, with , since 
N I N   

0 1

T h

v

I
V v

I

 
  

 
  

 

   0 1 0

v
h h h v h

v

h h h v v

I
V I

N

I

   

   

   

    






 

Now the largest invariant set contained in the set E  
defined by 

    , , , 0h v h h vE I I N V I I   

h

 

is certainly contained in the set of points for which 
 or . We have two situations: 0vI  0hI 

• To be in an invariant set with  has for conse- 
quences that  and consequently , hence 
to be at the DFE;  

0vI 
0hI  hN N 

• To be in an invariant set with  implies either 
, thus to be at the DFE, or , which is 

cannot be contained in an invariant set by the last 
equation system (5). 

0hI 
h hN I0vI  0

We have proved that the largest invariant set contained 
in  and in the positively invariant set 0V    is the 
singleton constituted by the DFE. By Lasalle’s theorem 
[35,36] this proves that the DFE is globally asymptoti- 
cally stable in , hence in the nonnegative orthant.   

4.6. Stability of the Endemic Equilibrium 

In this section we will prove that, when 0  then the 
unique endemic equilibrium which is asymptotically sta- 

ble. 

1

Theorem 4.2  
The endemic equilibrium  , ,h v hEE I I N   of system 

(5), is given by Equations (7), (8) and (9), and is 
asymptotically stable in  . 

Proof. We consider the Jacobian of system (5) 

 

   

 

, ,

0

0

h v v

h hv v
h h h h h h

v v

v v h
v v v

v v

h h

J I I N

N I

v

I I

N N

N I I

N N

     

  

 

N

 
    
 
 
 
   
 
 
   
 
 

 



 



 

We can see that our system is not monotone and 
cannot be monotone for any orthant of , since we 
have the  entry of J negative and the  entry 
positive. 

n
(3,1) (1,3)

The Jacobian computed at the EE, using the relation of 
(6), can be expressed as 

 

 

, , 0

0

h v h v
h h h h h

h vv v

v h
h v v v v

h v

h h

N I I I

I IN N

I I
J I I N

I I

    

 

 

 
   
 
 
 

  
 
 

  
 
 

 

 

We will examine the characteristic polynomial of 
 , ,h v vJ I I N , denoted by  

   3 2
1 2Char 1J X X a X a X a    . 

It is well known that 

  1 3Trace Deta A a    A  

The coefficient  is equal to the sum of the princi- 
pal minors 

2a
2 2 . 

The Routh-Hurwitz criteria ensures that  , ,h v vJ I I N  
is Hurwitz iff  for  and 0ia  1, ,3i   1 2 3 0a a a  . 

The upper 2 2 -block of  is J

 h v h
h h h h

h vv

v h
v v

h v

N I I

I IN
M

I I

I I

   

 

 
   
 

  
 

 
 



 

Hence the determinant is given by 
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   

 

det h h v h v
h v v h h h

v h v hv

h
h v v h h h

v

N I I I I
M

I I IN

N

N

     

     

   

   





I
 

The determinant of  is J

   

 

 

 

, , h
h v v h h v v h h h

v

h
h h v

v

h h h h
h v h h h h v

v

h
h v h h h h v

v

h h
h v h h h h v

v

N
J I I N

N

I

N

N I

N

N

N

N

      

  

 
      

      


      

 
     

 




   


   

   













 

 3 0 1 0h v h h ha              

We consider now the trace of  which is negative J

  1Trace 0h v h
h v h

h vv

N I I
J a

I IN
          

We have now to compute  the sum of the 2a 22  
principal minors. 

   

 
 

2

1

v h h h h hh h v v v h h h

v

v h h hh h v h h v
v h h h

v v

h h v h h v h v v
v h v h

v hv v v

v h h h h h v h h v

vh v v

h h v
h v h v

hv v

I N IN N
a

N I

I NI N

I N

I N N I I

I IN N N

I N I N

II N N

N I I
I

IN N

h v

h v

N

I N

       

    
   

   
   

     

   

  
 

     

   

  

 
   

 









  



 

 





0

v v h h h
v h

v h v

h h v h v v v h h h
h v v h

v v v h v

h h v

v

I I N

N I N

I I I I I N

I N N I N

I

I

 


   
   

 



   

 



 



  

 

The first three requirements of Routh-Hurwitz’s crite-
ria are satisfied. We have now to conduct a long calcula-
tion to prove  1 2

Let compute  
3 0a a a 

a a a1 2 3

 

1 2 3

2 2
2 2 2

2 2

h v h
h v h

h vv

h v v v h h h h h v
h v v h

vv v h v

h h
h v h h h h v

v

h v h h v h v
h v h v h h v v h

v v v v

h v
h h v v h h

v v

N I I
a a a

I IN

I I I I N I

IN N I N

N

N

N I I I I N I

N N N N

I I

N N

  

   
   


      

        

     

 
    

 

 

2

hI

    
 

 
    
 

   

 





  





   



 

2
2

2 2

2
2 2

2

2

2 2
2 2 2

2 2

h h v
h h

v h

h h v h h h
h h v h h h h v h v

v v h v v

h h
h v h v h h h h h v

v v

h v h h v h v
h v h v h h v v h

v v v v

h v
h h v v h h h h

v v

N N I

N I

N N I I N I

N N I N I

I N

I N

N I I I I N I

N N N N

I I

N N

 

         

         

        

       



   

    

   

  



 

 

  





   

 

2

hI

 

2
2 2

2 2

2
2 2

2

0

h h v h v
h h

v h v h

h h h h
h h v h v h v

vv v

h v h h h

N N I N I

N I N I

I N I I

IN I

 

      

    



  

   

 

 



 

This proves the asymptotic stability of the endemic 
equilibrium.                                   

4.7. Global Stability of the Endemic Equilibrium, 
when There Is No Disease Induced Mortality 

We suppose in this section that 0h  . In this case we 
can reduce the system to a two dimensional system, 
thanks to Vidyasagar’s theorem. The original system is 
then, for the stability point of view, equivalent to 

   v
h h h h h h

v

v v
v v h v v

v

I
hI N I I

N

N I
I I I

N

 

 


   




  














    (10) 

In this case this system is a Ross system, and the 
global stability of the endemic equilibrium is well known, 
see for example [25,35,37]. 

4.8. Estimating  vQ

The saturation threshold ratio v  is an important pa- 
rameter that determines which of the two populations, 
that is the host and the mosquito, is driving malaria in- 

Q
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as shown in Figures 3(b) and (d). If however the host 
irritation from vector bites is high, then we assume a 

3hb  , then 3vQ

fection. We will assume that the indoor resting density 
for mosquitoes is 2.5 for each household that has ap- 
proximately 6.5 persons (Githeko, personal communica- z 

1

. This implies from our model 
that there are few host for each vector and the relative 
scarcity of hosts constrains the rate at which an average 
vector can feed. The biting rate therefore will be driven 
by the host and not the vector population. For its survival 
it may be forced to seek other sources for its blood meal. 
Reduced host biting translates to lower malaria infection 
and a reduced basic reproduction number. Then  

0 0.718  , the infection dies out, and the infectious 
population goes to zero as shown in Figures 3(a) and (c). 
Using the values in Table 3 we simulate system 2, and 
show the dynamics of various populations in the figures 
below. 

tion), then 2.6h

v

N

N
 . We also assume that 9vb  , and  

10hb  , this gives . Recalling our function for  0.9vQ 

the feeding rate with saturation,   min ,1v
v

z
f z b

Q

 
  

 
,  

implies that v , and the vector feeds at its preferred 
rate, v . When v , h  must be greater than v , 
so the biting rate will depend on the vector and not the 
host population. This would result to high vector host 
contact and high malaria transmission. In this case 

 and malaria will persist in the population  

Q z

1

b

2.

Q z N N

0 495
 

   
(a)                                                          (b) 

   
(c)                                                          (d) 

Figure 3. (a) Variation of susceptible host and vector populations at the Disease Free equilibrium. Qv = 0.3 and 0
R  = 0.718 < 

1; (b) variation of susceptible host and vector populations at the Endemic equilibrium. Qv = 0.09 and 0
R  = 2.495 > 1; (c) 

variation of Infected Host, Infected Vector, Total Host and Total Vector populations at the Disease Free equilibrium. Qv = 0.3 

and 0
R  = 0.718 < 1; (d) variation of Infected Host, Infected Vector, Total Host and Total Vector populations at the Endemic 

Equilibrium. Qv = 0.09 and 0
R  = 2.495 > 1. 
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 t ed to infection 

Value Dimension 

Table 3. Parameters used in he model relat
ntact process. co

Parameter 

h  0.04 Unit Time 

v  0.13 Unit Time 

πh  0.22 Unit Time 

πv  0.48 Unit Time 

h  0.33 Unit Time 

hb  0.21 Unit Time 

vb  0.43 Unit Time 

h  0  .0329 Unit Time 

h  0.033 Unit Time 

v  0.033 Unit Time 

5. Conclusion and Discussion 

eeding habits satu-

ance from Calistus Ngong- 

REFERENCES 

Western Kenya,” 
Emerging Infe , No. 6, 2002, pp. 

enya Highlands,” Journal of Medical Ento- 

y of Chagas 

No. S45, 1965, pp. 5-60. 

of the Malaria 

. E. Thompson, “Epidemiology and 

-32. 

isodes in an Urban Cohort of Ugandan Chil- 

ission,” Ma- 

In this study, we developed a vector f  

Dis

ration model for the spread of malaria with disease 
induced deaths and varying human and host populations. 
We have shown that the two populations drive the entire 
infection process through the threshold population den- 
sity ratio vQ , which plays a vital role in the basic repro- 
duction number. Our model captures the natural fluctua- 
tions known to occur in mosquito and host populations in 
malaria dynamics, and the effect of varying contacts be- 
tween the vector and the host. The inclusion of disease- 
induced deaths was also of importance. Having in mind 
that majority of malaria deaths occur in children in 
Kenya, Mathematical analysis was done to establish that 
in the absence of the disease, a disease-free equilibrium 
will always exist if 0 1 . In the presence of the disease, 
that is when 0 1 , an endemic equilibrium is estab- 
lished with the infec opulations greater than zero. 

We observe from Figure 3 that a decrease in vQ  
increases   and vice versa. When the human popul- 

tious p

0

ation is very low, mosquitoes will turn to other blood- 
meal source, and malaria transmission goes down. Then 

vQ  controls the magnitude of malaria transmission. This 
implies that the best methods of controlling malaria in 
the highlands should target the adult mosquito, its biting 
habits and alternative sources of blood meals. Our results 
are consistent with results in literature that, 0

  is a 
threshold that completely determines the global dynamics 
of disease transmission [38]. 

6. Acknowledgements 

We wish to acknowledge guid
hala in the initial model formulation. Also Inria, France, 
the French Embassy in Nairobi and the University of 
Nairobi, Kenya, for their financial, logistic and moral, 
support during the writing of this article. 

[1] S. I. Hay, M. Simba, M.Busolo, A. M. Noor, H. L. Guyatt, 
S. A. Ochola and R. W. Snow, “Defining and Detecting 
Malaria Epidem f ics in the Highlands o

ctious Diseases, Vol. 8
555-562. 

[2] B. Ndenga, A. Githeko, E. Omukunda, G. Munyekenye, 
H. Atieli, P. Wamai, C. Mbogo, N. Minakawa, G. Zhou 
and G. Yan, “Population Dynamics of Malaria Vectors in 
Western K
mology, Vol. 43, No. 2, 2006, pp. 200-206. 

[3] R. E. Gurtler, L. A. Ceballos, P. O. Krasnowski, L. A. 
Lanati and R. Stariolo, “Strong Host-Feeding Preferences 
of the Vector Triatoma Infestans Modified by Vector 
Density: Implications for the Epidemiolog

ease,” PLoS Neglected Tropical Diseases, Vol. 3, No. 
5, 2009, p. e447. 

[4] C. S. Holling, “The Functional Response of Predators to 
Prey Density and Its Role in Mimicry and Population 
Regulations,” Memoirs of the Entomological Society of 
Canada, Vol. 97, 

[5] M. J. Klowden, “The Endogenous Regulation of Mosquito 
Reproductive Behavior,” Experientia, Vol. 46, No. 7, 
1990, pp. 660-670. 

[6] G. A. Ngwa, “On the Population Dynamics 
Vector,” Bulletin of Mathematical Biology, Vol. 68, No. 8, 
2006, pp. 2161-2189. 

[7] D. W. Kelly and C
Optimal Foraging: Modelling the Ideal Free Distribution 
of Insect Vectors,” Parasitology, Vol. 120, No. 3, 2000, 
pp. 319-327. 

[8] F. J. Lopez-Antunano, “Epidemiology and Control of 
Malaria and Other Arthropod-Borne Diseases,” Memórias 
do Instituto Oswaldo Cruz, Vol. 87, No. 3, 1992, pp. 105- 
114. 

[9] C. Jost, O. Arino and R. Arditi, “About Deterministic Ex- 
tinction in a Ratio-Dependent Predator-Prey Model,” 
Bulletin of Mathematical Biology, Vol. 61, No. 1, 1999, 
pp. 19

[10] S. G. Staedke, E. W. Nottingham, J. C. Kamya, M. R. 
Rosenthal and P. J. Dorsey, “Short Report: Proximity to 
Mosquito Breeding Sites as a Risk Factor for Clinical 
Malaria Ep
dren,” The American Journal of Tropical Medicine and 
Hygiene, Vol. 69, No. 3, 2003, pp. 244-246. 

[11] A. L. Menach, F. E. McKenzie, A. Flahault and D. L. 
Smith, “The Unexpected Importance of Mosquito Ovi- 
position Behaviour for Malaria: Nonproductive Larval 
Habitats Can Be Sources for Malaria Transm
laria Journal, Vol. 4, 2005, p. 23.  
http://dx.doi.org/10.1186/1475-2875-4-23  

[12] C. Kribs-Zaleta, “Estimating Contact Process Saturation 
in Sylvatic Transmission of Trypanosoma Cruzi in the 
United States,” PLoS Neglected Trop
No. 4, 2010, p. e656.  

ical Diseases, Vol. 4, 

http://dx.doi.org/10.1371/journal.pntd.0000656  

[13] V. Capasso and G. Serio, “A Generalisation of the Ker-
mack-Mckendrick Deterministic Epidemic Model,” Ma- 

Copyright © 2013 SciRes.                                                                                  AM 

http://dx.doi.org/10.1186/1475-2875-4-23
http://dx.doi.org/10.1371/journal.pntd.0000656
http://dx.doi.org/10.1371/journal.pntd.0000656
http://dx.doi.org/10.1371/journal.pntd.0000656


J. WAIRIMU, O. WANDERA 1391

thematical Biosciences, Vol. 42
61. 

, No. 1-2, 1978, pp. 43-

 

, 2009, pp. 3175-3189. 

lobal Analysis of a Vector-

. Shu, “A Mathematical Model for

ssion of T. cruzi,”

Zaleta, “To Switch or Taper off: The

ribs-Zaleta, “Sharpness of Saturation in Harvest-

llet, M. Tchuente and

Macmillan Publishers, 

,” Mathematical Biosciences, Vol. 28, No. 

Problème de Cauchy Pour les 

Optimization, 

Interactions: Stability 

ria for Com- 

 

for Industrial and Applied Mathematics, Phila- 

nal of Differential Equations, Vol. 4, No. 

nsmission of Gonorrhea,” Sexually 

ear 

 Huma

[14] J. A. P. Heesterbeek and J. A. J. Metz, “The Saturating 
Contact Rate in Marriage and Epidemic Models,” Journal 
of Mathematical Biology, Vol. 31, No. 5, 1993, pp. 529- 
539.

[15] R. Xu and Z. Ma, “Global Stability of a Sir Epidemic 
Model with Nonlinear Incidence Rate and Time Delay,” 
Nonlinear Analysis: Real World Applications, Vol. 10, 
No. 5

[16] J. Zhang and Z. Ma, “Global Dynamics of an SEIR Epi- 
demic Model with Saturating Contact Rate,” Mathemati- 
cal Biosciences, Vol. 185, No. 1, 2003, pp. 15-32. 

[17] L. M. Cai and X. Z. Li, “G  

Opér

Host Epidemic Model with Nonlinear Incidences,” Ap- 
plied Mathematics and Computation, Vol. 217, No. 7, 
2010, pp. 3531-3541. 

[18] L. Esteva and C. Vargas, “A Model for Dengue Disease 
with Variable Human Population,” Journal of Mathe- 
matical Biology, Vol. 38, No. 3, 1999, pp. 220-224. 

[19] G. A. Ngwa and W. S  

and S

Endemic Malaria with Variable Human and Mosquito 
Populations,” Mathematical and Computer Modelling, 
Vol. 32, No. 7-8, 2000, pp. 747-763. 

[20] R. Ross, “The Prevention of Malaria,” Springer-Verlag, 
Berlin, 1911. 

[21] C. Kribs-Zaleta, “Vector Consumption and Contact Proc- 
ess Saturation in Sylvatic Transmi  

duct

Mathematical Population Studies, Vol. 13, No. 3, 2006, 
pp. 135-152. 

[22] K. Dietz, “Overall Population Patterns in the Transmission 
Cycle of Infectious Disease Agents,” Springer, Berlin, 
1982. 

[23] C. M. Kribs-  Dy- delphia, 1976.  

[36] J. P. LaSalle, “Stability Theory for Ordinary Differential 
Equations,” Jour

namics of Saturation,” Mathematical Biosciences, Vol. 
192, No. 2, 2004, pp. 137-152. 

[24] C. M K  1, 19

ing and Predation,” Mathematical Biosciences and Engi- 
neering, Vol. 6, No. 4, 2009, pp. 719-742. 

[25] P. Auger, E. Kouokam, G. Sa  B. 
Tsanou, “The Rossmacdonald Mode in a Patchy Envi- 
ronment,” Mathematical Biosciences, Vol. 216, No. 2, 
2008, pp. 123-131. 

[26] J. Tumwiine, J. Y. T. Mugisha and L. S. Luboobi, “A 
Mathematical Model for the Dynamics of Malaria in a 

 

n Host and Mosquito Vector with Temporary Im- 
munity,” Applied Mathematics and Computation, Vol. 
189, No. 2, 2007, pp. 1953-1965. 

[27] N. J. T. Bailey, “The Mathematical Theory of Infectious 
Diseases and Its Application,” 
London, 1975. 

[28] H. W. Hethcote, “Qualitative Analysis of Communicable 
Disease Models
3-4, 1976, pp. 335-356. 

[29] Bony and J. Michel, “Principe du Maximum, Inégalite de 
Harnack et Unicitédu 

ateurs Elliptiques Dégénérés,” Annales de l’institut 
Fourier, Vol. 19, No. 1, 1969, pp. 277-304. 

[30] M. Quincampoix, “Differential Inclusions and Target 
Problems,” SIAM Journal on Control and 
Vol. 30, No. 2, 1992, pp. 324-335. 

[31] M. Vidyasagar, “Decomposition Techniques for Large- 
Scale Systems with Nonadditive 

tabilizability,” IEEE Transactions on Automatic 
Control, Vol. 25, No. 4, 1980, pp. 773-779. 

[32] P. Van Den Driessche and J. Watmough, “Reproduction 
Numbers and Subthreshold Endemic Equilib
partmental Models of Disease Transmission,” Mathe- 
matical Biosciences, Vol. 180, No. 1-2, 2002, pp. 29-48. 

[33] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, “On 
the Definition and the Computation of the Basic Repro-

ion Ratio R0 in Models for Infectious Diseases in 
Heterogeneous Populations,” Journal of Mathematical 
Biology, Vol. 28, No. 4, 1990, pp. 365-382. 

[34] J. K. Hale, “Ordinary Differential Equations,” Krieger, 
1980. 

[35] J. P. LaSalle, “The Stability of Dynamical Systems,” 
Society 

68, pp. 57-65. 

[37] J. A. Yorke, H. W. Hethcote and A. Nold, “Dynamics and 
Control of the Tra
Transmitted Diseases, Vol. 5, No. 2, 1978, pp. 51-56. 

[38] C. C. McCluskey, “Global Stability for an SIR Epidemic 
Model with Delay and Nonlinear Incidence,” Nonlin
Analysis: Real World Applications, Vol. 11, No. 4, 2010, 
pp. 3106-3109. 

Copyright © 2013 SciRes.                                                                                  AM 


