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ABSTRACT 

We study a well-known problem concerning a random variable uniformly distributed between two independent random 
variables. Two different extensions, randomly weighted average on independent random variables and randomly 
weighted average on order statistics, have been introduced for this problem. For the second method, two-sided power 
random variables have been defined. By using classic method and power technical method, we study some properties 
for these random variables.  
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1. Introduction 

Van Asch [1] introduced the notion of a random variable 
Z uniformly distributed between two independent ran- 
dom variables X1 and X2 which arose in studying the dis- 
tribution of products of random 2 × 2 matrices for sto- 
chastic search of global maxima. By letting X1 and X2 to 
have identical distribution, he derived that: 1) for X1 and 
X2 on [−1, 1], Z is uniform on [−1, 1] if and only if X1 
and X2 have an Arcsine distribution; and 2) Z possesses 
the same distribution as X1 and X2 if and only if X1 and X2 
are degenerated or have a Cauchy distribution. Soltani 
and Homei [2] following Johnson and Kotz [3] extended 
Van Asch’s results. They put 1, , nX X  to be inde- 
pendent, and considered  

1 1 2 2 1 1 ,  2n n nS R X R X R X R X n− −= + + + + ≥ n n

U

. 

where random proportions  

( ) ( )1 ,  1, , 1,i i iR U U i n−= − = −  

( ) ( )

1

1
0

1 ,  , ,
n

n i n
i

R R U
−

=
= −    

are order statistics from a uniform distribution on [0, 1], 
and ( )0 . These random proportions are uniformly 
distributed over the unit simplex. They employed Stielt- 
jes transform and that: 1) n  possesses the same distri- 
bution as 1

0U =

S
, , nX X  if and only if 1, , nX X  are de- 

generated or have a Cauchy distribution; and 2) Van 
Asch’s result for Arcsine holds for Z only. 

In this paper, we introduce two families of distribu- 
tions, suggested by an anonymous referee of the article, 

to whom the author expresses his deepest gratitude. We 
say that Z1 is a random variable between two independ- 
ent random variables with power distribution, if the con- 
ditionally distribution of Z1 given at 1 1 2,  2X x X x= =  is 

( )

( )

( )

1 1 2

1 2

1
1 2

2 1

,

1
2 1

2 1

1 2

1 max

,

1 ,

1 max

, ,
n

Z x x z n

z x x

z x
x z x

x x
F

z x
x z x

x x

z x

≥

 − < <  − = 
  −− < <  − 
 ≥ , .x

    (1.1) 

The distribution ( )
1 1 2,Z x xF z

2

 will be said to follow a 
conditionally directed power distribution, When n is an 
integer. For n = 1, the distribution given by (1.1) simpli- 
fies to the distribution Z that was introduced before. Also 
we used Stieltjes methods, for more on the Stieltjes 
transform, see Zayed [4].  

For n = 2, we call Z1 directed triangular random vari- 
able. For further generalizing Van Asch results, we in- 
troduce a seemingly more natural conditionally power 
distribution. We call Z2 two-sided power (TSP) random 
variable if the conditionally distribution of Z2 given at 

1 1 2,X x X x= =  is  

( )2 1 2

2

1
1,

2 1

1

1 ,

.

0 .

n

Z x x z

z y

z y
2F y z y

y y

z y

≥

 −= < − 
 ≤

<       (1.2) 
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The distribution 
2 1 2,Z x x  will be said to follow a con- 

ditionally undirected power distribution, when y1 = min 
F

( )1 1min , 2y x x= , ( ),2 1 2maxy x x=  and n is an integer.  
Again for n = 1, the distribution given by (1.1) simpli- 

fies to the distribution Z that was introduced by Van Asch. 
The main aim of this article is providing a generalization 
of notion to the results of Van Asch for some other values 
of n (other than n = 1). This article is organized as follows. 
We introduce preliminaries and previous works in Section 
2. In Section 3, we give some Characterizations for dis- 
tribution of Z1 given in (1.1), when n = 2. In Section 4, we 
find distribution of Z2 given in (1.2) by direct and power 
method, and give some examples and Characterizations of 
such distributions by use of Soltani and Homei’ results [5]. 

2. Preliminaries and Previous Works  

In this section, we first review some results of Van Asch 
[1] and then modify them a little Bit to fit in our frame- 
work, to be introduced in the forthcoming sections. Us- 
ing the Heaviside function , 
we conclude that for any given distinct values X1 and X2 
the conditional distribution 

( )( )0, 0, 1, 0U x x x x= < = ≥

( )
1 1 2,Z x xF z  in (1.1) is  

( ) ( )

( )

1 1 2

1
1,

2 1

1
2

1 2 1

.

n
 

Z x x

i
n

i

z x
F z U z x

x x

n z x
U z x

i x x=

−= − − 

   −− −   −  


   (2.1) 

Lemma 2.1. For distinct real’s x1, x2, z and integer n, 
we have 

( )( )
( )

( ) ( ) ( )

( )( )

1

1
1 2 1 2 2 12

1 2

11 d 1

1 ! d

1
.

n n

n

n

z x x x n z x x xx

x z x z

−

−

 −− + ⋅  − − − − − 

=
− −

1

 

Proof. It follows from the Leibniz formula. 
Let , where  is an interval, and 

 is the set of all real functions f that are -  
( )h D Iα∈

)I
I ⊆ 

(Dα α

Times differentiable on I. If ( ) ( )
1

g z
z x

=
−

. for some  

constants c and { }1, ,k ∈  n . Then 

( ) ( ) ( ) ( ) ( ){ }

( ) ( ){ }

1

1

d d

d d

d
.

d

k k

k k

k

k

P M g z h z kg z h z g z P
z z

h z g z
z

−

−
= − + − 

=
 

We use the Leibnitz formula for the th deriva- 
tive of a product, namely  

( 1k − )

( ) ( ){ }

( ) ( )

1

1

1

0

d

d

1 d d
.

d d

k

k

i k ik

i k i
i

h z g z
z

k
N h z

i z z

−

−

−−

−
=

−   
= =   

  


Let 

( ) ( ){ } ( ) ( ){ }
1

1

d d d
.

dd d

k k

k k
h z g z h z g z M N

zz z

−

−= = +  

where  

( ) ( )
1 11

1 1
0

1 d d
,

d d

i k ik

i k i
i

k
M h z g z

i z z

+ − −−

+ − −
=

−    
=    

  



  

( ) ( )
1

0

1 d d

d d

i k ik

i k i
i

k
N h z

i z z

−−

−
=

−
g z

   
=    

  



. 

Since ( )
( ) 1

d
.

d

r

r

!r
g z

z z x
+=

− r
 It follows that  

( ) ( ) ( )
1

1

d d

d d

r r

r rg z rg z g z
z z

−

−

 
=  

 
. Consequently,  

( ) ( ) ( ){ }
1

1

d

d

k

k
N kg z h z g z P

z

−

−= −  where after some al- 

gebraic work ( ) ( )dk

P M g z h z= −
d kz

.  

Therefore, 

( ) ( ) ( ) ( ){ }
1

1

d d
.

d d

k k

k kM N g z h z k h z g z
z z

−

−

 
+ = + 

 
 

This completes the proof. 
Another tool for proving our main theorem is the fol- 

lowing formula taken from the Schwartz Distribution 
theory, namely, 

( ) [ ] ( ) ( ) ( )1 d
d

! d

n n
n

nx x
n x

ϕ ϕ
∞ ∞

−∞ −∞

−Λ = Λ  x x     (2.2) 

where  is a distribution Function and  is the n-th 
distributional derivative of . 

Λ [ ]nΛ
Λ

The conditional distribution ( )
1 1 2,Z x xF z  given by (1.1) 

leads us to a linear functional on complex Valued func- 
tions f: , defined on the set of real numbers : →  

( )
( )

( ) ( ) ( )
( )

1 1 2,

1
2

12 1 2 1

1 d
.

d!

Z x x

n in

n i n
i

F f

f x
i f x

zx x n i x x

−

−
=

= −
− − −


 

It easily follows that 

( ) ( ) ( )
1 1 2 1 1 2 1 1 2, , .Z x x Z x x Z x x,F af bg aF f bF g+ = +  (2.3) 

For any complex-valued functions f, g and complex  
constants a, b. We note that ( ) ( )

1 1 2 1 1 2, , ,zZ x x Z x xF z F f=  

Whenever ( ) ( ) (n

z )f x z x U z x= − −  and 

( )

g z




 ( )
( ) ( ) ( )

( )

1 1 2,

1
2

12 1 2 1

1 d
.

d!

Z x x

n in
z

zn i n i
i

f x

F f

 
f x

zx x n i x x

−

−
=

= −
− − −


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Also we note that ( ) ( ) ( )1 d
.

! d

n n

zn
U z x f x

n x

−
− =  Thus 

( ) ( ) ( )

( ) ( )

1

1 1 2
2

1

2

,
1

d

d ,
i

Z

X iZ x x
i

P Z z U z x F x

F z F x
=

≤ = −

=



∏





 

can be viewed as: 

( ) ( ) ( )

( ) ( )

1

1 1 2
2

2

,
1

1 d
d

! d

d .
i

n n

z Zn

z X iZ x x
i

f x F x
n x

F f F x
=

−


∏


= 


         (2.4) 

Therefore by using (2.3) along with (2.4) and a standard 
argument in the integration theory, we obtain that 

( ) ( ) ( )

( ) ( )

1

1 1 2
2

2

,
1

1 d
d

! d

d .
i

n n

Zn

X iZ x x
i

f x F x
n x

F f F x
=

−

=



∏





         (2.5) 

For any infinitely differentiable functions f for which 
the corresponding integrals are finite. Now (2.5) together 
with (2.2) lead us to 

( ) ( ) ( ) ( ) ( )
1 1 1 2

2

2

,
1

d
i

n d .Z X iZ x x
i

f x F x F f F x
=

= ∏ 
 

  (2.6) 

For the above mentioned functions f, where 
1

( )n
ZF  is the 

(n)-th distributional derivative of the distribution of Z1. 
Let us denote the Stieltjes transform of a distribution H 

by  

( ) ( ) ( )1
, d .  S H z H x

z x
=

−


For every z in the set of complex numbers  which 
does not belong to the support of H, i.e., .  


( )suppH

c
z ∈

The following lemma indicates how the Stieljes trans-
form of Z1 and X1, X2 are related. 

Lemma 2.2. Let Z1 be a random variables that satisfies 
(1.1). Suppose that the random variables X1 and X2 are 
independent and continuous with distribution functions 

1XF  and 
2XF  respectively. Then 

( ) ( ) ( ) ( ) ( )
( )

1 1

11
, ,

suppH .

n n
Z X X

c

S F z S F z S F z
n

z

−= −

∈

2
, ,

 

Proof. It follows from (2.6) that 

( )( ) ( ) ( )
1 1 1 2

2

2

,
1

,
i

n dZ z XZ x x
i

S F z F g F x
=

= ∏


i .  

And 

( ) ( ) ( )
1 1 1 2

2

2

,
1

1 d
, d

! d i

n

Z z XZ x xn
i

S F z F g F x
n z =

= ∏


i  

for ( ) 1
zg x

z x
=

−
. Now, it follows that 

( )

( ) ( ) ( )

1 1 2,

1

1 22 1 2 1

1
1 d 1

.
d!

zZ x x

n in

n i
i

F g

z x

z z xx x n i x x

−

−
=

−= −
−− − −

 n i

 

And by using Lemma 2.1, we have 

( ) ( )
( )( )1 1 2,

1 2

1
.

n

zZ x x n
F g

z x z x

−
=

− −
 

Therefore, 

( ) ( )
( )( )

( )
1

2

2

11 2

11 d
, d

! d i

nn

Z Xn n
i

S F z F x
n z z x z x =

−
=

− −
∏



,i  

and 

( ) ( ) ( ) ( ) ( )
( )

1 1

11
, ,

suppH .

n n
Z X X

c

S F z S F z S F z
n

z

−= −

∈

2
, ,

)2
,

   (2.7) 

This finishes the proof. 
Note that Van Asch’s lemma is the case of n = 1: 

( ) ( ) (1 1
, ,Z X XS F z S F z S F z′− = . 

We also note that the Stieltjes transform of Cauchy 

distribution, i.e., ( ) 1
,S F z

z c
=

+
 satisfies (2.7). 

3. Characterizations 

Now, we apply Lemma 2.2 for some characterizations, 
when X1 and X2 are not identically distributed.  

Theorem 3.1. Let X1 and X2 be independent random 
variables and Z be a randomly weighted average given in 
(1.1). 

For n = 2 we have, 
a) if X1 has uniform distribution on [−1, 1], then Z1 has 

semicircle distribution on [−1, 1] if and only if X2 has 
Arcsin distribution on [−1, 1]; 

b) if X1 has uniform distribution on [−1, 1], then Z1 has 
power semicircle distribution on [−1, 1] if and only if X2 
has power semicircle distribution i.e., 

( ) ( )23 1
,  1 1

4

z
f z z

−
= − ≤ ≤ . 

c) if X1 has Beta (1,1) distribution on [0, 1], then Z1 has 

Beta 
3 3

,
2 2



 


  distribution if and only if X2 has Beta 
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1 1
,

2 2


 


  distribution; 

d) if X1 has uniform distribution on [0, 1], then Z1 has 
Beta (2, 2) distribution if and only if X2 has Beta (2, 2) 
distribution. 

Proof. 1) For the “if” part we note that the random 
variable X1 has uniform distribution and X2 has Arcsin 
distribution on [−1, 1]; then 

( ) ( )
1

1
, ln 1 ln

2XS F z z z= + − −1 .  

And ( )2 2

1
, .

1
XS F z

z
=

−
 

From Lemma 2.2 and substituting the corresponding 
Stieltjes transforms of distributions, we get 

( )
( )

1 3
2 2

2
, .

1
ZS F z

z

′′ =
−

 

The solution ( ) ( )1

2, 2 1 .ZS F z z z= − −  

Which is the Stieltjes transform of the semicircle dis- 
tribution on [−1, 1]. 

For the “only if” part we assume that the random 
variable Z1 has semicircle distribution. Then it follows 
from Lemma 2.2 that 

( )
( )

2 2 3
2 2

1 1
,

1
1

XS F z
z

z

−=
−

−
. 

The proof is completed. 
2) By an argument similar to that given in 1) and 

solving the following differential equations, 

( )

( ) ( )( )( )
1

2

,

2
6 ln ln 1 6

1

ZS F z

z z z z z
z z

′′

−= − − − −
−

3 .+
 

(for the “if” part), and 

( ) ( )( )
2

2S , 6 ln ln 1 6X 3F z z z z z z= − − − + − . 

(for the “only if” part). 
The proof can be completed. 
3) By Lemma (2.2), we have 

( )
( ) ( )

1 1
, ,

2 1 1
ZS F z

z z z z

−′′− =
− −

 

(for the“if” part), and  

( ) ( )
( ) ( )2

1 1
,

1 1 1
XS F z

z z z z z z

−− =
− − −

, 

(for the “only if ” part). 
The proof can be completed by solving the above dif-

ferential equations. 
4) By Lemma (2.2), we have 

( )

( ) ( )( )( )
1

2

,

2
6 ln ln 1 6

1

ZS F z

z z z z z
z z

′′

−= − − − −
−

3+
 

(for the “if” part), and 

( ) ( )( )
2

2S , 6 ln ln 1 6X 3F z z z z z z= − − − + −  

(for the “only if ” part). 
Solving the differential equations, can complete the 

proof. 

4. TSP Random Variables  

In Section 3, we used a powerful method, based on the 
use of Stieltjes transforms, to obtain the distribution of z1 
given in (1.1). It seems that one can not use that method 
to find distribution of z2 given in (1.2). So we employ a 
direct method to find the distribution of z2. Let us follow 
Lemma 4.1 to find a simple method to get the distribu- 
tion of z2 following [2] and the work of them leads us to 
the following lemma. 

Lemma 4.1. Suppose W has a power distribution with 
parameter n, n ≥ 1, n is an integer, and let  

2 1 2= 1, , n( )1 1min ,y X X= , ( ),y X2 max X  where X X  
 random variables are. Let independent

( )1 2 1X Y W Y Y= + − . 

Then 
1) X is a TSP random variable. 
2) X can be equivalently defined by  

( )1 2 1 2

1 1

2 2
X X X W X X = + + − − 

 
. 

Proof. 1) 

( ) ( )( )

( )( )

1 2 1 2 1 1 1 2,

1
1 2 1

2 1

,

.

X x x

n

2F z PY W Y Y z X x X x

z y
P y W y y z

y y

= + − ≤ = =

 −= + − ≤ =  − 

 

Proof. 2) 

( ) ( )1 1 2 2 1 2 1 2,  min , , max , ,X X x X x U x x x x= =     

( )
( ) ( ) [ ]1 2

1 2 1 2

min ,
0,1 ,

max , min ,

X x x
W U

x x x x

−
=

−
  

and also  

( ) 1 2 1 2
1 2min , ,

2

x x x x
x x

+ − −
=  

( ) 1 2 1 2
1 2max , .

2

x x x x
x x

+ + −
=  
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then 

1 21 2

1 2

2 2 ,

x xx x
X

W
x x

−+− −
=

−
 

so 

( )1 2 1 2

1 1
.

2 2
X x x W x x = + + − − 

 
 

4.1. Moments of TSP Random Variables 

The following theorem provides equivalent conditions 
For . 2

Theorem 4.1.1. Suppose that z2 is a TSP random vari- 
able satisfying (1.2). If X1 and X2 are random variables 
and 

k
X Ezμ′ =

k

iE x = ∞ ,  for all integers k then 1, 2i =

( )
1) ( )

( )
( ) ( )2

0

1

1 1
k

i

Ez n E y y
n k k i

−

=
=

Γ + + Γ − + 1 2
i k i

kk k i n−Γ + Γ +
.  

2) ( )2 1

1 1

2 2

k i i
ik ik k

Ez E W E X X X X
i

−
−    = − +    

    
2 1 2+ . 

3) ( )( )2 1

ik k ik n
Ez E y y y

i n i
−  = −  +  

2 1 . 

Proof. 1) By using Lemma 2.1, we obtain that 

( )( ) ( )

( )( ) ( )
( )

( )
( )
( ) ( )

2 1
0

2 1
0

1 2
0

1

1

1
.

1 1

k
ik i k i i

i

k
ik i k i i

i

k
i k i

i

k
E W W E Y Y

i

k
E W W E Y Y

i

k k i n
n

n k k i

− −

=

− −

=

−

=

 
= − 

 
 

= − 
 
Γ + Γ − +

=
Γ + + Γ − +





 E y y

 

Proof. 2) This can be easily proved by Lemma 4.1 2). 
Proof. 3) 

( )( )

( )( )
( ) ( )( )

2 1 2 1

1 2 1
0

1 2 1
0

kk

k
ii k i

i

k
i ik i

i

Ez Y W Y Y

k
E W y y y

i

k
E W E y y y

i

−

=

−

=

= + −

 
= − 

 
 

= − 
 





 

( )( )2 1

ik k ik n
Ez E y y y

i n i
−  =   +  

2 1− . 

Let us consider expectation and variance of z2. First, we 
suppose that 1 1EY μ= , 2 2EY μ=

12σ
, ,  

, and . Then  

2
1 1VarY σ= 2Y =Var

2
2σ ( )1 2,Y Y =Cov
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, 

and also, if  then 1 2 0EX EX= =

( ) ( )2 1 21
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n
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By 1 2 1 2X X Y Y+ = + . We have 
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1
2
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n n
E Z E Y EY EY

n n

−= + − =
+ + 1 .  (4.2) 

It can easily follow from (4.2) that the Arcsin result of 
Van Asch [1] is only true for n = 1, about the variance, we 
have 

( ) ( ) ( )( )
( ) ( )

2

2 2 2 2
1 2 2 1 12

2

Var

1 2 1
.
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Z

n n n n n
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=
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Following the computation of expectation and vari- 
ance, we evaluate them for some well-known distribu- 
tions. If X1 and X2 have standard normal distributions, 
then from Theorem 3.1.1 2) and the fact that 1 2X X−  
and 1 2X X+  are independent, it follows that their first, 
second and third order moments are equal, respectively, 
to 

2

1 1

1π

n
EZ

n

− =  + 
, 

( ) ( )
2

2
2

2
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n n
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and 
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Also, in case X1 and X2 have uniform distributions, 
Theorem 4.1.1 2) implies that,  
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Var
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. 

Theorem 4.1.2. Suppose that z2 is a TSP random 
variable satisfying (4.1), then 

1) z2 is location invariant; 
2) If X1 and X2 have symmetric distribution around μ , 

then z2 has symmetric distribution around μ , only when 
n = 1. 

Proof.  
1) Is immediate. 
2) We can assume without loss of generality that 0μ =  

If Z2 has a symmetric distribution around zero, then  
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( ) (1 2 1 1 2 1

d

Y W Y Y Y W Y Y+ − =− + −  ) . 

We note that 

( ) ( )( )1 2 1 1 2 1

d

Y W Y Y Y W Y Y + − = − + − − −  . 

Since ( ) (1 2 1 2min , max , )X X X− = − X 1 1

d

− , X X=− , 

And 2 2

d

X X=− , we have 

( ) (1 2 1 2 1

d

Y W Y Y Y W Y Y+ − = + − )2 .       (4.3) 

By equating the conditional distributions given at 

1 1X x=  and 2 2X x=  in (3.3), we conclude that n = 1 It 
can also easily follow from Theorem (4.1.1) that the 
Cauchy result of Van Asch [1] is true only for n = 1. 

4.2. Distributions of TSP Random Variables 

In this subsection, we investigate computing distributions 
by the direct method. We will give two examples of 
derivation based on (4.1). This method may be compli- 
cated in some cases, but we have chosen some easy to 
find examples. We use randomly weighted average on 
order statistics to find the distribution of z2. Gauss hyper 
geometric function ( , , ; )F a b c z  which is a well-known 
special function that we used in this way. 

Example 4.2.1. Let X1, X2 and W be independent ran- 
dom variables such that X1 and X2 are uniformly distrib- 
uted over [0, 1], and W has a power function distribution 
with parameter. We find the value (

2
; )Zf z n  by means 

of ( )2 z
;

Z W w
f  therefore  

( ) ( )2

2
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)

         (4.4) 

By using the distribution of W, the density function 

2
( ;Zf z n , can be expressed in terms of the Gauss hyper 

geometric function ( , , ; )F a b c z  which is a well-known 
special function. Indeed according to Euler’s formula, the 
Gauss hyper geometric function assumes the integral 
representation  
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where a, b, c are parameters subject to , 
, whenever they are real and z is the variable. 

a−∞ < < ∞
0c b> >
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2

1

;

2
1 2 1 1, , 1,

1
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n n

f z n

nz
z z z F n n
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−

where n > 0 and . There are some important func-
tions as a Gauss hyper geometric function. 

1n ≠

,z

)

  (4.5) 

( ) (log 1 1,1;2;z zF Z+ = − . 

e lim , ; ; .  z
b

z
F a b b→∞
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z F a z
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When n = 1 similar calculations lead to the following 
distribution 

( ) ( ) ( )
2

log 1 2 log ,  0 1Z ( )2 1f z z− z z z= − − − < <z . 

When n is an integer, we obtain the following distribu- 
tion. 

( ) ( )

( ) ( ) ( )( )
2

1

1

0

, 2 1
1

1 1
2 1 1 1

0 1.

n
Z

in
i

i

n
f z n z z

n

n
nz z z

i i

z

∗ −

−

=

= −
−

− − − − − − 
 

< <

 ,  

The probability density function 
2Z ( )f z  was introduced 

by Johnson and Kotz [3], for the first time, under the title 
“uniformly randomly modified tine”. So 

2
( ;Z )f z n  can 

be seen as an extension of the above mentioned distribu- 
tion. We note that, from (4.1) and a simple Monte Carlo 
procedure using only simulated uniform variables, one 
can to simulate the distribution (4.5). 

Theorem 4.2.2. Let z2 be a undirected triangular ran- 
dom variable that satisfies (1.2). Suppose that the random 
variables X1 and X2 are independent and continuous with 
the distribution Functions 

1XF  and 
2XF , respectively. 

Then 

( ) ( ) ( ) (1 2 1 2
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Proof. By using an argument similar to that given in 
section 3, we can conclude that 
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5. Conclusion  
And by using partial fractional rule, we have 

We have described how directed methods could be used 
for obtaining the distributions, Characterizations and 
properties of the random mixture of variables defined in 
(1.1). The TSP random variable when X1 and X2 have 
uniform distributions, led us to a new family of distribu- 
tion which can be regarded as some generalization of 
“uniformly randomly modified tine”. The proposed 
model in the direct method can easily lead to distribution 
generalizations, though this is not possible for the Stielt- 
jes method, but here the characteristics can be easily 
computed. 
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Therefore, 
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