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ABSTRACT 

Numerical solutions are obtained for non-steady, incompressible fluid flow between two parallel disks which at time t 

are separated by a distance  1 2
1H t  and a magnetic field proportional to   1

0

2
1B t   is applied perpendicular 

to the disks where H denotes a representative length,  denotes a representative magnetic field and 0B 1  denotes a repre- 

sentative time. Similarity transformations are used to convert the governing partial differential equations of motion into 
ordinary differential form. The resulting ordinary differential equations are solved numerically using SOR method, Ri- 
chardson extrapolation and Simpson’s (1/3) Rule. Our numerical scheme is straightforward, efficient and easy to program. 
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1. Introduction 

The quest for similar solutions is particularly important 
with respect to the mathematical character of the solution. 
In cases where similar solutions exist, it is possible, to 
reduce the system of partial differential equations to one 
involving ordinary differential equations, which evi- 
dently constitute, a considerable mathematical simplify- 
cation of the problem. Wang [1] studied a viscous fluid 
between two parallel plates, which are being squeezed or 
separated with normal velocity proportional to 
  1 2
1 t   and found similarity solutions of the un- 

steady Navier-Stocks equations. Ishizawa [2] derived a 
similarity solution to the case of the unsteady laminar 
flow between two parallel disks. Tichy and Bourgin [3] 
found that a similarity solution does exist for the steady 
flow in a narrow channel of a gap width varying as 

, where  and  are constants. Bhupen- 
dra et al. [4] considered the problem of forced flow of an 
electrically conducting viscous incompressible fluid due 
to an infinite rotating disk under the influence of uniform 
magnetic field, applied normal to the flow. Pavlov [5] 
found an exact similarity solution of MHD boundary  

 m
a bx

layer equations for the steady two dimensional flow of an 
electrically conducting incompressible fluid due to rota- 
tion of a plane elastic surface in the presence of a uni- 
form transverse magnetic field. Guria et al. [6] obtained 
exact solution of hyderomagnetic flow between two po- 
rous disks rotating with same angular velocity about two 
non coincident axes in the presence of a uniform trans- 
verse magnetic field. Attia [7] studied the problem of 
steady flow and heat transfer of a conducting fluid due to 
the rotation of an infinite, non conducting porous disk in 
the presence of an external magnetic field. Sajid et al. [8] 
examined the MHD rotating flow of a viscous fluid over 
a shrinking sheet. Asir et al. [9] gave a new hybrid ana- 
lytical algorithm to study the effects of uniform suction 
of a laminar, steady, incompressible magnetohyderody- 
namic electrically conducting fluid over a rotating disk. 
The purpose of present study is to obtain numerical solu- 
tion for similar flows of a Newtonian fluid between two 
disks in the presence of a magnetic field. Usha and 
Vasudevan [10] studied a similar flow between two ro- 
tating disks in the presence of a magnetic field and ob- 
tained rather expensive solution of the problem to ob- 
serve the effect of flow parameters on the velocity fluid. 

 ,a b m
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2. Mathematical Analysis 

It has been assumed the flow is axisymmetric, income- 
pressible and non-steady. The flow is between two paral- 
lel infinite disks, which are separated a distance  h t  
apart, where t  denotes time. A magnetic field of 
strength  is applied perpendicular to the two disks. 
The upper disk is moving with velocity  towards 
the lower fixed disk. Cylindrical polar coordinates 

 are used. The lower disk is at  and the 
upper one is at  where .  

B t




 h t

0z  , ,r z
 z h t  0h H

The equations of motion in component form become 
as follows: 

1 0r
uu v w
r r    z              (1) 

 

2 2

2 2 2
1 1 1 2

r z

r rr r z

v v Buu u wu u
r r

up u u u v u
r r r r



 







   

        z

  (2) 

2

2 2 2
1 1 1 2

r z

rr r zz

v uv Buv v wv v
r r

vp v v v u v
r r r r r



 







   

         
 

 (3) 

 2
1 1 1

r z z rr r
vuw w ww p w w w w
r r r 


        zz

(4) 

where the subscripts denote the partial differentiation with 
respect to space coordinates   is the density,  the 
pressure and 

p
  the coefficient of kinematics viscosity. 

The boundary conditions are: 

 
0, 0, at 0

0, , at

u w z

u w h z h t

  
  

             (5) 

The following similarity transformations are used: 

   
2 1

r
u f

t







y  

 
1

H
w f

t








y  

0

1

B
B

t



 

where 

1

z
y

H t



 

is the dimensionless variable. The equation of continuity 
is identically satisfied. Equations (2) and (3) take the 
forms below respectively. 

 
 

2
2 2

2

1

1
2 2

Re4 1

p

r r

f yf f f ff M f
t







           
 



(6) 

 
2 2 1

2
2 1 Re

p H
f yf f ff

y t




           
      (7) 

where 
2

Re
2

H


 , 
2

2 0B
M




 , here   denotes  

viscosity and   denotes fluid electrical conductivity. 
Whence the differentiation of Equation (6) with respect 

 and that of Equation (7) with respect to r yield: y

  2Re 3 2 ivyf f ff M f f               (8) 

Equation (8) is integrated to get: 

  2 2Re 2 2yf f ff f M f f               (9) 

where   is constant of integration. 
The boundary conditions in dimensionless form be- 

come; 
0, 0 at 0

0.5, 0 at 1

f f y

f f y

  
  

            (10) 

3. Finite-Difference Equations 

In order to solve Equation (9) numerically, we let 
q f  ,                  (11) 

and we obtain 

 2 2Re 2 2fq q fq q M q q              (12) 

The boundary conditions (10) become as: 

0, 0 at 0

0.5, 0 at 1

f q y

f q y

  
  

            (13) 

The derivatives involved in Equation (12) are ap- 
proximated by central difference approximation at a 
typical point ny y  of interval [0,1], we get. 

  2 2 2
1

2
1

1 Re 2 2
2

1 Re 0
2

n n n

n n

y
h f q h M h R q

y
h f q h 





         
  

        
  

nq

 

(14) 

where  denotes a grid size and Equation (11) is inte- 
grated numerically. Also the symbols used denote 

h

 nq q ny  and  .n nf f y  

4. Computational Procedure 

Finite difference Equation (14) and the first order ordi- 
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accuracy  5O h  in the solution of f . Higher order 
accuracy in the solution of  on the basis of above 
solutions is achieved by using Richardson’s Extrapola- 
tion Burden [14, p.168]. The solution of order of accu- 
racy 

q f 

 6O h  in the following tables for computation of 
q f   is the most accurate and accepted solution. 

nary differential Equation (11) are solved simultaneously 
by using SOR method Smith [11, p.262] and Simpson’s 
(1/3) rule Gerald [12, p.293] with the formula given in 
Milne [13, p.48] respectively subject to the appropriate 
boundary conditions. 

The order of the sequence of iterations is as follows: 
1) The Equation (14) for the solution of  is solved 

subject to the boundary conditions (13). 
q

5. Results and Discussion 
2) For the solution of f  we use the computed values 

of  from above step in to Equation (11) and in- 
tegrate by Simpson’s (1/3) rule. 

q f  The numerical solutions examine the way in which the 
flow pattern changes with the squeeze Reynolds number 
Re and Hartmann number M. Hamza [15] investigated 
this problem for the range , 0.0 < M ≤ 
30.0. We extended the previous work and analyzed the 
problem for the parameters involved in the range 

0.0 Re 10.0 

0.0 Re 20.0   and 0.0 50.0M  .  

3) The optimum value of the relaxation parameter 

opt  is estimated to accelerate the convergence of the 
SOR method. 

4) The SOR procedure is terminated when the follow- 
ing criterion is satisfied for q: 

Table 1 shows the values of different parameters used 
in the numerical procedure. The numerical results for 

,f f   have been computed for different values of flow 
parameters namely Re and M . The accuracy of nu- 
merical results is checked by comparing the results on 
three different grid sizes namely h = 0.025, 0.012 and 
0.006. The comparison of f   is shown in the Tables 2- 
4 using Richardson extrapolation method. Graphically, 
the results have been demonstrated in Figures 1-6. It is 
found that for fixed Re, there is a slight increase in the  

1 6

1
max 10

n
n n
i i

i
U U 


  , 

where  denotes the number of iterations and U  
stands for q. 

n

The above steps 1 to 4 are repeated for higher grid 
levels 2h  and 4h . The SOR procedure gives the 
solution of  of order of accuracy  due to 
second order finite differences used to approximate the 
derivatives while Simpson’s (1/3) rule gives the order of  

q f   2O h

 
Table 1. Optimum value of relaxation parameter used in SOR method. 

Number of Iterations in SOR method with opt 

h = 0.025 h = 0.012 h = 0.006 Re M   
NI opt NI opt NI opt 

10 62.5154 38 1.60 122 1.70 282 1.80 

30 482.206 18 1.80 40 1.85 96 1.90 0.01 

50 1302.32 17 1.70 65 1.75 88 1.85 

0 14.10885 75 1.70 322 1.75 678 1.85 

4 23.24505 72 1.70 216 1.75 469 1.85 5.0 

8 49.98825 43 1.70 108 1.75 121 1.90 

5 43.1535 49 1.40 99 1.60 185 1.80 
15.0 

10 83.81528 54 1.40 58 1.60 243 1.95 

0 36.7535 44 1.70 102 1.75 126 1.90 

5 50.3977 51 1.70 84 1.80 172 1.90 20 

10 90.8242 53 1.70 79 1.80 155 1.90 

 
Table 2. M = 40.0, Re = 0.01, M = 50.0, Re = 0.01. 

y h = 0.025 f   h = 0.012 f   h = 0.006 f  Extrapolated f  h = 0.025 f  h = 0.012 f  h = 0.006 f   Extrapolated f 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.526146 0.526196 0.526205 0.526208 0.526146 0.526196 0.526205 0.526208 

0.4 0.526388 0.526388 0.526389 0.526389 0.526388 0.526388 0.526389 0.526389 

0.6 0.528224 0.526388 0.526388 0.526429 0.528224 0.526388 0.526388 0.526429 

0.8 0.526091 0.526197 0.526208 0.526211 .526091 0.526197 0.526208 0.526211 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 3. M = 10.0, Re = 10.0, M = 0.0, Re = 15.0. 

y h = 0.025 f   h = 0. 012 f   h = 0.006 f  Extrapolated f  h = 0.025 f  h = 0.012 f  h = 0.006 f   Extrapolated f 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.541581 0.542817 0.543309 0.543490 0.510636 0.514646 0.516699 0.517477 

0.4 0.600984 0.601243 0.601333 0.601366 0.654030 0.655700 0.656898 0.657367 

0.6 0.601583 0.601533 0.601479 0.601457 0.659464 0.658411 0.658082 0.657966 

0.8 0.544910 0.544446 0.544130 0.544007 0.525608 0.522125 0.520289 0.519591 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 .000000 0.000000 0.000000 

 
Table 4. M = 10.0, Re = 15.0, M = 5.0, Re = 20.0. 

y h = 0.025 f   h = 0. 012 f   h = 0.006 f  Extrapolated f  h = 0.025 f  h = 0.012 f  h = 0.006 f   Extrapolated f 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.542199 0.543740 0.544404 0.544650 0.528226 0.531500 0.533022 0.533591 

0.4 0.596544 0.596838 0.596932 0.596965 0.624295 0.625261 0.625685 0.625843 

0.6 0.597276 0.597190 0.597125 0.597100 0.627317 0.626752 0.626428 0.626304 

0.8 0.546665 0.545932 0.545486 0.545313 0.539719 0.537186 0.535850 0.535342 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 .000000 0.000000 0.000000 
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Figure 1. Graph of  for different values of M when Re = 
0.01. 

f
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Figure 2. Graph of f  for different values of M when Re = 
1.0. 
 
value of near the disks and a slight decrease in the 
region of the mid plane with increase in 

f 
M . This in-  

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1y

f'
M=0, 4, 6 and 8

 

Figure 3. Graph of f  for different values of M when Re = 
5.0. 
 

 

Figure 4. Graph of f  for different values of M when Re = 
10.0. 
 
crease and decrease become more prominent with more 
increase in M , also the radial velocity profiles become 
more flat in the interior region for all values of Re. On  
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Figure 5. Graph of f for different values of M when Re = 
15.0. 
 

 

Figure 6. Graph of  for different values of M when Re = 
20.0. 

f

 
the other hand, for fixed values of M , the magnitude of 
radial flow decreases with increase in Re. The value of 
  is determined by hit and trial to satisfy the approxi- 
mate zero-order perturbation results given in [15] as 

 2 3 2f y y  . 
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