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ABSTRACT 

Adopting complex number theory, a mathematic model of Green function is built for two dimension free water surface, 
and an analytic expression of Green function is obtained by introducing two parameters. The intrinsic properties of 
Green function are discussed on vertical line and horizontal line. At last, the derivation expression of Green function is 
obtained from the formula of Green function. 
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1. Introduction 

The analysis of interaction between waves and ship by 
singularity distribution method involves calculation for 
Green function [1,2]. After computer was used to com- 
pute hydrodynamics, finding a fast way to calculate Green 
function became a science research work [3,4]. Newman 
[5] published theories and numeric methods for comput- 
ing the velocity potential, and its derivatives, for lin- 
earized wave motions due to a unit source with harmonic 
time dependence beneath a free surface. Shen [6] gave an 
approximated algorithm to estimate Green function and 
its derivatives by using truncated series expansion of the 
Green function were to avoid the conventional time- 
consuming numerical integration. Zhu [7] showed a sub- 
domain approximate method to evaluate frequency do- 
main free surface Green function with sufficient accuracy. 
Yang [8] compared the classical Green function and a 
simpler Green function associated with the linearized 
free-surface boundary condition for diffraction radiation 
by a ship advancing through regular waves. Shen [9] 
proposed the ordinary differential equations about depth 
Green function and its derivative, and a rapid Green 
function calculation method combining solving ordinary 
differential and interpolation between nodes. John [10,11] 
showed a variety of representations for Green function 
with finite and infinite water depth. Other expressions for  

the free-surface Green’s function, in two dimensions and 
for infinite water depth, have been improved by Liu [12], 
Thorne [13], Kim [14], Greenberg [15], Macaskill [16], 
and Dautray and Lions [17]. Some representations for the 
Green’s function are also discussed in [18-21]. A more 
general two-dimensional water-wave problem that con- 
siders surface tension is treated in [22-24]. 

This paper will discuss mathematic model of Green 
function with two dimension free water surface. In Sec- 
tion 1, the Green function is represented by using two 
parameters. In Section 2, intrinsic properties of Green 
function are discussed. In Section 3, special value of 
Green function is given for vertical line and horizontal 
line. In Section 4, the derivation of Green function is ob- 
tained for two dimension free water surface. 

2. Two Dimension Green Function 

Suppose velocity potential φ satisfies Laplace equation: 

 P Q                   (2.1) 

Here P is field point Z x iy  , . Q is source 
point 

0y 
i    , 0  . The right of equation is delta 

function. The boundary condition is: 
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velocity potential satisfies linear condition. We easy find 
its solution [12]: 
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Here  ,G z   is called green function, I is principle 
value integration of below 
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where the integral lower limit is 0, The integral upper 
limit is ,  is zero point of denominator, upper 
subscribe (, K) shows that it is principle value integra- 
tion at point . From the expression of integration, 
the value I is determined by the parameters of K, 

u K

u  K
 x  , 

 y  . Let unit transfer as 

 X i Z R R Z            (2.4) 

The principle value integration may be written as 
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where  ,H a   is called H-function with two parame- 
ters: 
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here parameters take value as 0 ,  0.a     5



. 

3. Intrinsic Properties 

First, confirm that you have the correct template for your 
paper size. This template has been tailored for output on 
the custom paper size (21 cm × 28.5 cm). 

Let Re(H) and Im(H) are real part and imaginary part 
of  ,H a   respectively. We will discuss Re(H) and 
Im(H) with parameters a and . 

3.1. Parameter  = 0 

In the case  = 0, from expression of  , 0H a   , we 
easy know, Im(H) = 0, and    ,aRe H H  , or 
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Above formula is principle value integration with one 
parameter, and may be rewritten as: 

 

1

0 1

d d
,0 e e e

e e d d
d e e

a
a x x

a a

a x x
x x

a

x x
H a

x x

x x
x

x x x


 




 

 


  

 

  
 

We easy obtain 
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And by adopting subsection integration method, we 
have: 
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So that: 
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Here constant is: 
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At last, we have 
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The integral value of H(a,0) is shown in Figure 1. 
From Figure 1, we have below theorem: 

Theorem 1. 1)  ,0H a    as . 0k 
2)  ,0H a  0 k  as . 
3) The lowest value  when a = 

1.347. 
 ,0H a 0.7423 

4) On the domain 0 1.34a 7  , the curve is down. 
5) On the domain 1.347 a   , the curve is rise. 

3.2. Parameter   0 

If the value of parameters  is not zero, we have 
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Figure 1. One parameter principle value integration H(a, 0). 
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From above formula, we have below theorem: 
Theorem 2. The real part of function  ,H a   is 
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The imaginary part of   is antisymmetric func- 
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By using expression of Green function, we have ordi- 
nary equation: 

 ,H a iaXH



i 


 

So that we may express Green function as: 
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Here constant Ca = −0.577215. It is easy to calculate 
H-function by using above formula with given parame- 
ters. The numeric results are shown in Figures 2 and 3. 

 
Figure 2. Real part Re(H) varied with parameters. 

 

 

Figure 3. Imaginary part Im(H) varied with parameters. 

3.3. Property of  = /2 

Consider = /2, then H-function may be written as: 
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Here 

 1
1, 2

1

2
1, 2 1

2 2 1
1 2 0

2

log
!

2
!

tan

n n

a
k n k

n n

k n k

R

a i
f C a

n n

a i
f

n n

f
f f f a a

f

 



  

  

  

 
    

 



  

4. Properties of Green Function 

By using expression of H-function, we have below theo- 
rem: 

Theorem 3. Consider field point Z x iy   and source 
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point i   

 

 are below free surface, the Green 
function may be expressed as: 
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where constant Ca = –0.577215. 

4.1. Vertical Line 

Consider field point Z x iy   and source point ζ = ξ + 
iη take value at vertical line 0 , 0 . 
According to the define of X, we have X = –1, or  = 0. 
In this case, the Green function is 
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From above formula, last term is imaginary part of 
Green function, others at right is real part. Above for-
mula also show that the Green function may represented 
by using H-function at  = 0. 

4.2. Horizontal Line 

Consider field point Z x iy   and source point ζ = ξ + 
iη take value at horizontal line S: , 0y y 1 2x x x  . 
According to the define of X, we have  
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On the free surface, y0 = 0, X = i. Consider X = –i, or 
δ = π/2, the Green function can be written as: 
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On the free surface, the Green function may repre-

sented by using H-function at 2   . 

5. Derivation of Green Function 

We know, the derivation of potential are: 
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It is easy to obtain the derivation of Green function as: 
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Consider field point Z x iy   and source point ζ = ξ 
+ iη take value at vertical line S: 0x x
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6. Conclusion 

In the paper, the Green function is simplified from inte- 
gral formula by using two parameters. The intrinsic prop- 
erties of Green function are discussed on vertical line and 
horizontal line. The derivation of Green function is ob- 
tained by using complex theory. 
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