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ABSTRACT 

A three-stage-structured prey-predator model with discrete and continuous time delays is studied. The characteristic 
equations and the stability of the boundary and positive equilibrium are analyzed. The conditions for the positive equi- 
librium occurring Hopf bifurcation are given, by applying the theorem of Hopf bifurcation. Finally, numerical simula- 
tion and brief conclusion are given.  
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1. Introduction 

In the natural world, there are many species whose indi- 
vidual members have a life history that takes them 
through two stages: immature and mature. In 1990, 
Aiello and Freedman [1] introduced single-species stage- 
structured model with time delay, and the stability of the 
system was studied. In 1997, Wang and Chen [2] intro- 
duced single-species stage-structured model without time 
delay and found that an orbitally asymptotically stable 
periodic orbit existence. In these papers [3], the authors 
assume that the life history of each population is divided 
into distinctive stages: the immature and mature mem- 
bers of the population, where only the mature member 
can reproduce themselves. However, in the nature many 
species go through three life stages: immature, mature 
and old. For example, many female animals lose repro- 
ductive ability when they are old.  

A single species with three life history stage and can- 
nibalism model have considered by S. J. Gao [4], and 
shown that the stability of the positive equilibrium can 
change a finite number of times at most as time delay is 
increased when the model under some parameters values. 
Recently, a nonautonomous three-stage-structured preda- 
tor-prey system with time delay have studied by S. J. 
Yang and B. Shi [5], by using the continuation theorem 
of coincidence degree theory, the existence of a positive 
periodic solution is obtained. And the local Hopf bifurca- 
tion and global periodic solutions for a delayed three- 
stage-structured predator-prey considered by Li et al. [6, 
7]. 

2. Formulation of the Model 

In this paper, we consider following three-stage-struc- 
tured prey-predator model with discrete and continuous 
time delays 
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(2.1) 

where 

 1
1 0

e d e d
t t s s    

  


1,    

     1 2 3, ,x t x t x t  are the densities of immature preys, 
mature preys and old preys population at time  ,t y t  is 
the density of predator population at time t, respectively. 
All of the parameters are positive,   is the birth rate of 
mature prey population, and 1 1, ,b   are the death rate 
of immature, mature and old prey population, respec- 
tively.   and  are the maturity rate and ageing rate 
of the prey population, respectively. 

a
  and f  are the 

density dependent coefficients of immature prey popula- 
tion and predator population, respectively.  0 1k k 

E
 

is the rate of conversing prey into predator and  is the 
predation coefficient.   and 1  are the gestation delay 
and density dependent for predator population, respec- 
tively. 
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Note that in (2.1),  3x t  is linear dependent on 
 2x t . That is, the asymptotic behavior of  3x t  is de- 

pendent on  2x t . Therefore, we just need to study fol- 
lowing subsystem 

           
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Q t y t Q t
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

     

   
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 (2.2) 

where 
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The initial conditions for (2.2) are 
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3. Local Stability Analysis and Hopf  
Bifurcation 

3.1. Local Stability Analysis 

Obviously, system (2.2) has two boundary equilibrium 
,  (if condition  

1

 0 0,0,0,0E 
: 0C
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Let ,            T

1 2, , ,U t x t x t y t Q t
 1 2, , ,x y QE x  be any arbitrary equilibrium. The 

linearized equations are 
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and the characteristic equation about E  is given by 

det e 0.A B I   

Theorem 1. 1) 0  is local stable if E    , local 
unstable if     and  exist. 1

2)  is local stable if , local unstable if 
 and  exist. 

E
kE1E

d
1x d

1 2

Proof. 1) From (3.2), the characteristic equation about 
 is given by 

kEx E

0E

    2 0.d                   (3.3) 

Then, 3 40, 0d        , and 1 2,   are the 
two other roots of 

 2 0.            

By Routh-Hurwitz criterion,  is local stable if 0E
   , local unstable if     and  exist. 1

2) From (3.2), the characteristic equation about  is 
given by 

E
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(3.4) 

Then, 1 2,   are the two roots of 
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1 12 0x x      ,      

with negative real parts. 3 1 4, 0kEx d      
E 1kEx

, by 
Routh-Hurwitz criterion, 1  is local stable if d , 
local unstable if  and  exist. 1kEx d 2E

3.2. Existence of Local Hopf Bifurcation 

The characteristic equation about the positive equilibrium 
 is given by 2E
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When 0  , (3.5) becomes to 
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if condition  holds. By Routh-Hurwits 
criterion, all ro ve negative real parts. Then, 
the equilibri

Suppose 

2
3 :C f kE 

ots of (3.6) ha
um 2E  is local stable. 

i  , 0   is a root of (3.5) and 
separating the real and imaginary parts, one can get that 

) 

From (3.7), we have 
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Thu 0,1, 2, correspondins, the g tojn n   j are 
given by 

   
 

4 2 2 2 2
2 0 2 1 1 3

22 2 2
0 2 1j j j n  



 

1

2 π
,

j j j j j

jn

j

m n n n m m

n n

n

    






     
  

(2.10) 

And the direction of



 jn  pass through the imaginar
axis [8] when 

y 

j   is given by 
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tinct positive roots of 

 0 min , 1, 2,3, 4; 0,1,2, .jn j n       (3.11) 

According to the Hopf bifurcation theorem for func- 
tional differential equations [9], (2.2) can undergoes a 
Hopf bifurcation at the positive equilibrium  when  2E

0  . Furthermore, if condition  4 : 0 1,2,3jC f , j 
0 0f   holds, then (3.9) have unique positive root , 

and the

, since  four dis- 
(3.9). 

 1,2,3, 4j j 
Let 

  0,1,2,n n    corresponding to  are given 
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(3.1 ) 

and 

2

  1sign  
 for functional

undergoes 
 2E  when 

, accord
 differential equations [9], (2.2) can 

a Hopf bifurcation at the positive equilib- 
rium

ing to the Hopf bifurcation theo- 
rem

 0,1,2,n n    .
e following result. 

 Based on above 

Theorem 2. 1) If condition  holds, th
there exists a 

analysis, we have th
2

3 :C f kE  en 
, when  00,   the positive 

tica

pto

0 equilib- 
rium of ) is asym lly stable and unstable 
when

2E  
 

(1.2

0  , where 0  is defined by (2.11). 
2) If condition  4 0: 0 1, 2,3 , 0jC f j f    holds, then 

there exists a 0 , when  00,   the positive equilib- 
rium 2E  of (2.2) is asymptotically stable and unstable 
when 0  , (2.2) can undergoes a Hopf bifurcation at 
the positive equilibrium 2E  when  0,1,2,n n    , 
where n  is defined by (3.12). 

Remark 1. It must be pointe eorem 2 can 
not determine the stability and the direction of bifurcat- 
ing periodic solutions, that is, the periodic solutions may 
exists either for 

d out that Th

0   or for 0  , near 0 . To de- 
termine the stability, directio her properties of 
bifurcating periodic solutions, the normal form theory 
and ce er manifold argument should be considered [10]. 

4. Numerical Simulation 

n and ot

nt

We consider following stage-structured delay system 

           
     
       
      

2
1 2 1 1 1

2 1 2

3.3 1.04 0.81 1.05 ,

0.91 7 ,

0.7455 0.16 0.23 ,

2.4 ,

0.6

x t x t x t x t x t y t

x t x t x t

y t y t x t Q t
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     
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        
   

(4.1) 
where 

   
1 0.25, 0.42, 0.71, 0.16, 0.23,

2.4, 0 2, 2,2,2 .

a k d f

X

13.3, 0.13, 0.91, 0.81, 1.05,E  



     
   

 

  
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System (4.1) has an unique positive equilibrium point 
 . We solve model 

, and compute that 

  

ing to Theorem 2, the positive equilibrium 
symptotically stable when 

5. Conclusion 
2 0.9903,1.3450, 2.5142,2.5142E 

(4.1) using function dde23 in MATLAB
In this paper, we considered a three-stage-structured 
prey-predator system with discrete and continuous time 
delays and analyzed the stability of the boundary and 
positive equilibrium, obtained the conditions of the posi- 
tive equilibrium occurring Hopf bifurcation by analyzing 
the characteristic equation about it. Numerical examples 
by time-series plot have shown that the system consid- 
ered local asymptotically stable when 0   and stable 
Hopf bifurcation periodic solutions when 0   and   
near 0 . That is to say, time delay can make the positive 
equilibrium lose stability. It is shown that populations 
can be coexistence with periodic fluctuating under some 
conditions and such fluctuation is caused by the time 
delay. The bifurcating periodic solution (limit cycle) is 
stable when   from 5 to 40 and the amplitudes of pe-
riod oscillatory are increasing as time delays increased. 
But, too large time delay would make the population to  

3 2 1

0 0 0

37.3624, 101.0105, 43.4939,

9.2655, 0.3930, 4.5113.

f f f

f  
  

   

Accord
E2 is a

point 

04.4    (see Fig- 
ure 1). When 04.6  

 and the Hopf
uilibrium E
 periodic so

, the po m point 
E2 is unstable  bifurcat ng a und 
the positive eq 2 are Figure 2). 
The bifurcating lution (lim re 

sitive equilibriu
ion occurri

shown (see 
it cycle) of (4.1) a

ro

stable when 5,7,10, 20,30,40   (see Figure 3), the 
 increasing as time 

delays increased. But, too large time delay would make 
amplitudes of period oscillatory are

the population to be die out, because the population very 
close to zero as time delay increase to some critical 
value. 
 

 

Figure 1. The time-series plot show that positive equilibrium point E2 of (4.1) are asymptotically stable for τ = 4.4 < τ0. 
 

 

Figure 2. The time-series plot show that (4.1) undergoes Hopf bifurcation for τ = 4.6 > τ0. 
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Figure 3. The Hopf bifurcating periodic solution (limit cycles) of (4.1) when τ = 5, 7, 10, 20, 30, 40.  
 
be extinct, because the population arbitrary close to zero 
as time delay increase to some critical value. These are 
very interesting in mathematics and biology. 
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