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ABSTRACT

In this article, by using Schaefer fixed point theorem, we establish sufficient conditions for the existence and uniqueness
of solutions for a class of impulsive integro-differential equations with nonlocal conditions involving the Caputo frac-

tional derivative.
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1. Introduction

Fractional differential equations appear naturally in a num-
ber of fields such as physics, engineering, biophysics,
blood flow phenomena, aerodynamics, electron-analyti-
cal chemistry, biology, control theory, etc., An excellent
account in the study of fractional differential equations
can be found in [1-11] and references therein. Undergo-
ing abrupt changes at certain moment of times like earth-
quake, harvesting, shock etc, these perturbations can be
well-approximated as instantaneous change of state or
impulses. Furthermore, these processes are modeled by
impulsive differential equations. In 1960, Milman and
Myshkis introduced impulsive differential equations in
their papers [12]. Based on their work, several mono-
graphs have been published by many authors like Se-
moilenko and Perestyuk [13], Lak-shmikantham et al.
[14], Bainov and Semoinov [15,16], Bainov and Cova-
chev [17] and Benchohra et al. [18]. Impulsive fractional
differential equations represent a real framework for ma-
thematical modelling to real world problems. Significant
progress has been made in the theory of impulsive frac-
tional differential equations [19-21].

We consider a class of impulsive fractional integro-
differential equations with nonlocal conditions of the
form

"Dy (t) = f(t,y(t),j;h(t,r)y(r)dr),

ted=[0,T] t#t, k=12--m,

L1
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Ay (0], =1e(v(%)), (1.2)

y(0)+a(y(t)=Ye. (1.3)
Where °D“ is the Caputo fractional derivative, the
function f(t,-):JxR®—> R is continuous and the func-
tion h(t,r):D—>R,D={(t,r)eIxJ:0<r<t<T} is
continuous, h, =max {h(t,r):(t,r)e D};
IL:R—=>RO0=t, <t <--- <t <t , =T,

Ay(t)'t:tk = y(t;)_ y(t':)’
y(t)= lim y (t, +h)
and y(tk’):hlirp y(t,+h) represent the right and left

limits of y(t)at t ., andg:PC(J,R)>R is a con-
tinuous function, y,eR.

Nonlocal conditions were initiated by Byszewski [22]
who proved the existence and uniqueness of mild and
classical solutions of nonlocal Cauchy problems. As re-
marked by Byszewski [23,24], the nonlocal condition can
be more useful than the standard initial condition to de-
scribe some physical phenomena. For example, g(y(t))
may be given by

g(y(t)):éciy(z—i),

where ¢,,i=12,---,p are given constants and
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O<py<r, <<, <T.

In this article, our aim is to show sufficient conditions
for the existence and uniqueness of solutions of solutions
to impulsive fractional integro-differential equations with
nonlocal conditions.

2. Preliminaries

In this section, we introduce some notations, definitions
and preliminary facts which are used throughout this
paper. By C(J,R) we denote the Banach space of all
continuous functions from J into R with the norm

IV =sup{ly(t):ted}.

Definition 2.1 [5,8]: The fractional (arbitrary) order
integral of the function he L'([a,b],R,) of order
aeR, =[0,+0) isdefined by

a 1 t a-1
|ah(t)=mL(t—5) h(s)ds,
where T is the gamma function, when
a=0,17h(t)=1"h(t).
Definition 2.2 [5,8]: For a function h given on the

interval [a,b], Riemann-Liouville fractional-order de-
rivative of order « of h, is defined by

l d " n-a-1
Dih(t)=—— t—s h(s)ds,
0= gyl Ms) (s
here n=[a]+1 and [«] denotes the integer part of
a ,when a=0,D{h(t)=Dh(t).
Definition 2.3 [14]: For a function h given on the

interval [a,b], the Caputo fractional-order derivative of
order a of h,isdefined by

L[l s O (s) s,

CDg‘h(t):m

where n=[a]+1.

Lemma 2.4 [25]: (Schaefer’s fixed point theorem).
Let X be a Banach space and F:X — X be a com-
pletely continuous operator. If the set

={yeX:y=1F(y),0<A<1} is bounded, then F
has at least a fixed point in X.

3. Existence of Solutions
Consider the set of functions
PC(J,R)

={y(t): 3 > Riy(1) eC((t t1].R),k=0,1-,m

and there existy (t, )and y(t; ),k =1,2,--,m

with y(t;) = y(t, )}
Definition 3.1: A function y(t)e PC(J,R) whose
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a -derivative exists on J is said to be a solution of
(1.1)-(1.3), if y satisfies the equation

‘Dry(t)=f (t y(t I h(t )7
on J' and satisfies the conditions
ay (O, = (v(t))k=22,00m

y(0)+9(y(t) =Y,

where J'=[0T]/{t, t,, -, } .

To prove the existence of solutions to (1.1)-(1.3), we
need the following auxiliary lemmas.

Lemma 3.2: Let « >0, then the equation

‘D*h(t)=0
has solutions
h(t)=c, +ct+--+c t",
(¢ eRi=12-n-1Ln=[a]+1).
Lemma 3.3: Let « >0, then
1“°Dh(t) =h(t)+cy+Ct+-+c, t",
forsome ¢ eR,i=12,--,n-1n=[a]+1.
As a consequence of Lemma 3.2 and Lemma 3.3, we
have the following result
Lemma 3.4: Let O<a<l, and let h:J >R be

continuous. A function y is a solution of the fractional
integral equation

Yo—a(y(t)+ F(la)j;(t_s)al h(s)ds,

if te[0,t,],

y(t)= y°_g(y(t))+r(la)gf:l(ti—S)“lh(s)ds
1 i
e h (S0
+Zkl:|i(y(ti))’ifte[tk’tk+1]|(k:1,21--.,m),

(3.1)

if and only if y(t) is a solution of the fractional nonlo-
cal BVP

“Dy(t)=h(t) te ', (3.2)
Ay(t)L:[k = Ik(y(tk‘)),kzl,Z,---,m, (3.3)
y(0)+g(y(t))=Yo. (3.4)

Proof Assume y(t) satisfies (3.2)-(3.4).
If te[0,t,] then ‘D“y(t)=h(t).
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Lemma 3.3 implies If te[t,t.,], then again from telt, t;] we have
1 Y (3.2).
y(t):yo—g(y(t))erJ.O(t— ) lh(s)ds. Conversely, assume that y satisfies the impulsive frac-
tional integral equation (3.1). If te[0,t,], then
If te[t,t,], by Lemma 3.3, it follows that y(0)+g(y(t))=Y, and using the fact that °D“ is the
s 1 ot et leftinverse of 1, weget “D”y(t)=h(t).
y(t)_y(ti)+r(a)-[t1(t s) h(s)as If teft,t,,].k=12-,m and using the fact that

‘D*C =0, where C is a constant, we conclude that

=yt y(t{)+ r(la)frz(t_s)a_l h(s)ds Dy (t)=h(t).

=4y(t)

B 1 . Also, we can easily show that
=1 (Y(6)+ Yo g (¥) = [ (6 -5) 7 h(s)ds
() _ N k-
L . Ay|t:tk_Ik(y(tk)),k_l,2,~--,m
j (t=s)""h(s)ds.
(a) Theorem: Assume that:
If telt,t], then from Lemma 3.3 we get (H,) There exists a constant M >0 such that
( ) .[ (t=s)""h(s)ds |f(tu,v)|<M foreach teJ andeach uveR;
(H,) There exists a constant I, >0 such that
1 t a-1 k
=4y t=tz+y(2) —F(a .[tz(t—s) h(s)ds |Ik(u)|glk,foreach ueR and k=12,---,m
=1, (y(tz‘ )) +1, (y( - )) +¥,-9(y(t)) (Hs) There exists a constant | >0 such that
1 [°(t sy h(s)ds lg(u)|<I, for each uePC(J,R), then the problem
F(la) 0 (1.1)-(1.3) has at least one solutionon J .

Ytog)* Proof Consider the operator
[ (t=s)""h(s)ds.
2

r(a) F:PC(J,R)— PC(J,R) defined by
bo-0 (Y0 + 5 (t—s)“f(s,y(s)th(s,r)y(r)dr)ds, ifte[ou],

F(y(0)=1{% (v %kf 1 (sy(s). [ n(s ) y(rydres
+F( ( s>,J;h<s.r>y<r>dr)ds+gu(y<t;)),ifte[tk,tkﬂ],(k=1.z,~~,m>,

Clearly, the fixed points of the operator F are solution several steps.
of the problem (1.1)-(1.3). Step 1: F is continuous.

We shall use Schaefer’s fixed point theorem to prove Let {yn (t)} be a sequence such that y, -y in
that F has a fixed point. The proof will be given in PC(J,R). Then for each

tedo=[04]|F (v, (1) -F(y()
Sﬁf;(t—s)“l f(s, yn(s),.[;h(s,r)yn(r)dr)—f(s,y(s),jjh(s,r)y(r)dr)‘d&
Since f s continuous function, we have
|F(yn(t))—F(y(t))|—>O, as n—w.
Foreach teJ, =[t.t.,],

F O (0)-F OO gy 2T -
f (s, Yo (s). ], h(s.r)y, (r)dr)— f (s,y(s),j;h(s,r)y(r)dr)‘ds+g I

x|f (s, Yo (s). ], h(s.r)y, (r)dr)— f (s, y(s). [ h(s.r) y(r)dr)‘ds

+

1 a-1
l"(a)'[‘k (ti —S) X

Copyright © 2013 SciRes. AM
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Since f and I,,i=12,-- m are continuous func-
tions, we have'J (ya (1) =F( |—>0 as n—w,
Therefore, is contlnuous

Step 2: F maps bounded sets into bounded sets in
PC(J.R).

Indeed, it is enough to show that for any 7" >0, there
exists a positive constant ¢ such that for each
yeB. ={yePC(J.R):|ly|, <n"}, we have
|[F(y)|<¢. By (Hy), (H) and (Hs), for each te[0,t,],
we have

IF(y(0))] <[vol +|a (y(0))|+

+F(a)j:k(t_s)“ '
itf‘ +

<Pl w2 (a+l)
Let
k+1 MT® K
K:max{|y0|+l+ |0| a)+1) +leli}
k=12,---,m,
then ||F(y(t))||£€.

(Tz B S)a—l B (71 _ s)a—l

X

1 &
Rk
- f(s,y(s),j;h(s,r)y(
+ZI

s),.[osh(s, r)y(r)dr)ds—j:(r1 —s) 7 f (s, y(s
f (s, y(s),.[;h(s,r)y(r)dr)‘ds

[F(y(©)] <ol +|a (v(t

Mg
‘f(s,y(s),j;h(s,r)y(r)dr)‘ds
Mt a-1
mjo(t—s) ds < |yo|+1+
MT“
I(a+1)

For te[t.t.,].(k=12,-,

<|y|+1+ t*

M
I'(a+1)

£|y0|+l+

m), we have

a-1

f (s, y(s),jjh(s, r)y(r)dr)‘ds

e Eh 0

(cmre

MNa+l) 3

Step 3: F maps bounded sets into equicontinuous

|yo|+l+

sets of PC(J,R).

Let ¢,7,ed,5,<7,, Bn* be a bounded set of

PC(J,R) asinStep2,andlet ye B .. For

7,7, €[0,t,], we have

),j:h(s,r)y(r)dr)ds‘

1 s
+1_|(\/(|Z)Ll (7,-s f(s,y(s),J'0 h(sN: dr)‘ds
WL’Z (7o) ~(5=9) mjrf (r,—s)" |ds SW‘Z —1,)" +1y —1f|ds.

For 7,7, €[t ., ],(k=12--,m), we have

Fy()-FO@)<+ X uk(y(t;))\

gl 9 (S’y S ’fo“<S'f)y(r)df)ds—ff<a—s)“’l f(s.y(s). [In(s.r)y(r)ar)os
S0<tk<zrz—r1 " (y(t;)) +ﬁj‘? (72 =) =(m=s)" | f(S’Y(S)’ﬁh(s,r)Y(r)dr)‘ds
+ﬁj: (z’z —3)“’1 « f(s,y S ,I;h(s,r)y(r)dr) ds ]

B e ot e R e TN R &

U<lk<r2 “ (y () )‘ a+1 ‘z(fz_fl)a+72”— ds.

Copyright © 2013 SciRes.
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As 7, -7, , the right-hand side of the above inequal-
ity tends to zero. As a consequence of Steps 1 to 3 toge-
ther with the Arzel’a-Ascoli theorem, we can conclude
that F:PC(J,R)—PC(J,R) is completely continu-
ous.

As a consequence of Lemma 2.4 (Schaefer’s fixed
point theorem), we deduce that F has a fixed point
which is a solution of the problem (1.1)-(1.3).
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