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ABSTRACT 

This study presents an experiment of improving the performance of spectral stochastic finite element method using 
high-order elements. This experiment is implemented through a two-dimensional spectral stochastic finite element for- 
mulation of an elliptic partial differential equation having stochastic coefficients. Deriving this spectral stochastic finite 
element formulation couples a two-dimensional deterministic finite element formulation of an elliptic partial differential 
equation with generalized polynomial chaos expansions of stochastic coefficients. Further inspection of the perform- 
ance of resulting spectral stochastic finite element formulation with adopting linear and quadratic (9-node or 8-node) 
quadrilateral elements finds that more accurate standard deviations of unknowns are surprisingly predicted using quad- 
ratic quadrilateral elements, especially under high autocorrelation function values of stochastic coefficients. In addition, 
creating spectral stochastic finite element results using quadratic quadrilateral elements is not unacceptably time-con- 
suming. Therefore, this study concludes that adopting high-order elements can be a lower-cost method to improve the 
performance of spectral stochastic finite element method. 
 
Keywords: Spectral Stochastic Finite Element Method; Generalized Polynomial Chaos Expansion; High-Order  

Elements 

1. Introduction 

A stochastic partial differential equation is a partial dif- 
ferential equation having stochastic coefficients or forc- 
ing terms. Problems expressed as stochastic partial dif- 
ferential equations include such as population dynamics 
and elastostatics with the uncertainty in the spatial vari- 
ability of mechanical properties. The spectral stochastic 
finite element method [1] may be the most popular nu- 
merical tools for solving stochastic partial differential 
equation. Briefly, deriving a spectral stochastic finite ele- 
ment formulation couples a deterministic finite element 
formulation and representations of those stochastic coef- 
ficients and forcing terms. These representations of sto-
chastic forcing terms and coefficients are derived by such 
as generalized polynomial chaos [2] and Karhunen-Lo- 
ève expansions [3]. 

Numerous spectral stochastic finite element formula- 
tions are available for some branches of science and en- 
gineering. References [4,5] are two recent examples. 
Nevertheless, the performance of spectral stochastic fi- 

nite element method is not always satisfactory. For ex- 
ample, the spectral stochastic finite element method pre- 
dicts less accurate mean values or standard deviations of 
random fields than the spectral stochastic meshless local 
Petrov-Galerkin method does [6]. Similar experiences 
bring about the motive for improving the performance of 
spectral stochastic finite element method. 

Since a spectral stochastic finite element formulation 
contains a deterministic finite element solution and ran- 
dom field representations, improving the performance of 
spectral stochastic finite element method may be through 
adopting more accurate deterministic finite element for- 
mulation or random field representations. Available stu- 
dies (e.g. [1]), which were devoted to evaluate the per- 
formance of spectral stochastic finite element method, 
seem to focus on the latter method. Experiences of ap- 
plying a spectral stochastic finite element formulation 
using high-order elements seem to be unavailable. After 
a web search, only Ngah and Young (2007) [7] had 
adopted quadratic quadrilateral elements to predict the  
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performance of composite structures. Thus, this study 
focuses on applying the spectral stochastic finite element 
method using high-order elements and evaluating the 
accuracy of corresponding spectral stochastic finite ele- 
ment results. A two-dimensional elliptical partial differ- 
ential equation having stochastic coefficients is chosen as 
the model problem. A spectral stochastic finite element 
formulation of such a stochastic partial differential equa- 
tion is derived by coupling a two-dimensional determi- 
nistic finite element formulation of an elliptical partial 
differential equation with generalized polynomial chaos 
expansions of stochastic coefficients. Two benchmark 
problems having deterministic analytical solutions are 
then introduced to test the performance of resulting spec- 
tral stochastic finite element formulation with adopting 
linear and high-order finite elements. 

The remainder of this study is organized in three sec- 
tions. Section 2 presents the two-dimensional spectral 
stochastic finite element formulation of an elliptical par- 
tial differential equation having stochastic coefficients. 
Section 3 evaluates the performance of resulting spectral 
stochastic finite element formulation. Based on this per- 
formance evaluation, Section 4 draws some conclusion. 

2. Spectral Stochastic Finite Element 
Formulation 

Suppose x and y are the spatial coordinates,  is an event  

in the probability space,  is a problem domain, and  is 
its boundary. The model problem of this study is de- 
scribed by 

11 12 21 22

00 0

u u u
a a a a

u

x x y y x

a u f

  
y

     
             
  

      (1) 

where u is the unknown (such as temperature and stream 
function),   00, 1 to 2 ,ija i j a   and f are coefficients. In 
addition, the unknown u, coefficients 00 , and f are 
dependent upon x, y, and . Meanwhile, boundary condi- 
tions are 

,ija a

0 on Uu U                           (2a) 

11 12

21 22 on

n x

y n

u u
q n a a

x y

u u
n a a Q

x y

  
    

  
T     



       (2b) 

in which 0  and n  are two known functions, UU Q   is 
the essential boundary, T is the natural boundary, qn is 
the secondary variable, nx and ny are the components of a 
unit vector n normal to T, and  .U T   

To derive a spectral stochastic finite element formula- 
tion of (1), a two-dimensional deterministic finite ele- 
ment formulation of an elliptical partial differential equa- 
tion is needed. Suppose w is the test function. The weak 
form of (1) is 

 

11 12 21 22 00 d de

u u u u
a a a a a u w x y

x x y y x y

         
                 

 f                        (3) 

 
where the superscript e denotes an element. Simplifying (3) by the divergence theorem yields 
 

 11 12 21 22 00 d d d 0e e n

w u u w u u
a a a a w a u f x y wq s

x x y y x y 

         
                  

              (4) 

 
where e is the boundary of e, and ds is the arc length of an infinitesimal line along the boundary e. Next, approxi- 
mate u over each e by 

1

N
e e
j j

j

u u 


                                                                    (5) 

in which N is the total number of nodes in each e, and  is the shape function. Substituting (5) into (4) and setting 
 yield  1 toiw i N 
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             (6) 

 

Equation (6) can be summarized in the form as 
 

1

N
e e e e
ij j i i

j

K u F Q


                                                                 (7) 
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where 
 

11 12 21 22 00 d de

j j j je i i
ij i jK a a a a a

x x y y x y

     

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 x y             (8a) 

 

de
e e

i iF f


   and de
e e
i i nQ q


                                             (8b) 

 
Moreover, (7) can be written more succinctly in matrix 

algebra as 
e e e e K u F Q                  (9) 

in which  1 2, , ,e
Nu u uu   contain all the nodal u  

value in each e. Repeatedly deriving (9) for all e and 
assembling all the resulting expressions based on a 
global numbering system yield 

      1 1T T T T TN N N N N   K u F Q 1



       (10) 

in which NT is the total number of nodes in the problem 
domain . Since  and f are de- 
pendent upon x, y, and , (10) is not ready for use. The 
generalized polynomial chaos expansion is chosen to 
estimate the distribution of  and f. 
Similar manipulating the published study [6], generalized 
polynomial chaos expansions of  
and f are defined by 
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         (11) 

where 
1 2 NPC
i i i , 　 , , ,     I  represent the multi- 

variate orthogonal polynomial of  , 
1 2 NPC
i i i, , and    

denote multi-dimensional uncorrelated random variables 
having zero mean and unit variance (for facilitating the 
computation of mean values and standard deviations of 

00  and f), NPC is equal to ,ija a  ! ! ! 1n P n P  , P is the 
highest order of Ψ, and n is the total number of uncorre-
lated random variables. 

For facilitating the computation of (11), Ψ0,  
ˆ , 1 to 2ija i j   00,0ˆ ,a,0 ,  and 0f̂  are; respectively, set to 

1, mean values of aij, a00 and f; respectively. Furthermore, 
computing coefficients , 00,ij I I and ˆ ˆ,a a ,  ˆ 1 toI PCf I N  
needs the orthogonal relationship, 

 2, , 0 toI J I IJ PI J N     C  

in which    is the ensemble average. For example, 
00,ˆ 0 to I PCa I N  are computed by 

00
00, 2

ˆ I
I

I

a
a





                (12) 

in which    is computed as follows: If f and g are two 
functions,    is computed by 

1) Continuous case: 

   
       1 1

,
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 

  
 (13a) 

2) Discrete case: 

   
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      (13b) 

where    W W
1 ni i   are the weighting functions. In 

(1), the succeeding study focuses on the continuous ran- 
dom fields; therefore, Table 1 [6] lists examples of or- 
thogonal polynomials, statistical distributions and weight- 
ing functions to generate  

1
0 to ,

ni ii i     , and 
   W

1 ni iW   ; respectively. 
Substituting (11) into (8a) yields 
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
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
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 

     (14) 

 
Table 1. Examples of polynomials and corresponding weight- 
ing functions and statistical distributions for generating the 
generalized polynomial chaos [6]. 

Distribution Polynomial  W   Interval 

Gaussian Hermite  nH x   2exp    , 

gamma Laguerre  nL x   exp    0,  

beta Jacobi  , ,nG p q x    11
p q q     ,a b  

uniform Legendre  nP x  1  ,a b  

Note that [a, b] denotes a specific interval. 
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Similarly, substituting (11) into (8b) yields 

 
0

ˆd
PC

e

N
e e

i i
I

F 




   I If              (15) 

Meanwhile, the generalized polynomial chaos expan- 
sion of u is 

 
0

ˆ
PCN

J J
J

u u


                      (16) 

Modifying (10) with (14) and (16) results in 

 
0 0 0

ˆˆ ˆˆ
PC PC PCN N N

L J L J L L L
L J L  

      K u F Q     (17) 

Requiring the residual resulting from a finite repre- 
sentation of u (i.e. truncating 1 ) to 
be orthogonal to the approximation space spanned by 

,J J PCû J N   

J yields 

 
0 0 0

ˆˆ ˆˆ
PC PC PCN N N

L J L J k L L L k
L J L  

        K u F Q  (18) 

Solving (18) can obtain  0 toJ PCû J N . Accumu- 
lating the resulting Jû  values can construct the general- 
ized polynomial chaos expansion of u. 

3. Results and Discussions 

Two benchmark problems are introduced to evaluate the 
performance of (18) with adopting linear and high-order 
elements. The first benchmark problem involves a heat 
conduction problem over a square region. The second 
problem involves the transverse deflection of a square 
membrane. 

3.1. Heat Conduction over a Square Region 

As outlined by Figure 1, suppose a heat conduction pro- 
blem over a unit square region in where  is the gradient 
vector. The origin of x and y coordinates locates at the 
lower left corner. The boundaries  and 0x  0y   are 
insulated. The other boundaries 1x   and 1y   are 
maintained at zero temperature. In addition, the square 
region is subjected to a uniform heat generation. 

To predict the temperature T, the governing equation is 

2 2

02 2

T T
k

x y

  
     

q              (19) 

where k is the thermal conductivity and 0  is the rate of 
uniform heat generation. In addition, the boundary con- 
ditions are 

q

     0 0
1

T x T y
T x y

y x

   
    

 
0     (20) 

Similarly manipulating (7), the deterministic finite 
element formulation of (19) is 

 

Figure 1. A heat conduction problem over a square region 
(not to scale). 
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N
e e e
ij j i

j

K T F


                   (21) 

where 
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d d

d

e

e

j je i i
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e e
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
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      
 





y
     (22) 

Moreover, if the coefficient k is deterministic, the 
analytical solution of (19) is [8] 

     
 

20
3

1

1 cos cosh
1 4

2 cosh

n

n n

n n n

y xq
T y

k

 
 





 
   

  
  (23) 

where  2 1 π 2na n  . However, the succeeding study 
considers that the thermal conductivity k is stochastic. 
Assume the distribution of k is described by 

 1 ,kk    x y                 (24) 

where k  is the mean value of k and this k  value is 
independent upon x and y. Meanwhile,  ,x y  is a 
zero-mean, scalar, homogeneous random field with its 
autocorrelation function  equal to 

1 22

1 2

expk

x x y y
S

d d

       
     

   
    (25) 

where d1 and d2 denote the correlation lengths, Sk is the 
standard deviation of thermal conductivity 
 1, ,k x y 2    and  ,x y  represent two points of 

the square region. 
To compare the predicted temperature T with adopting 

linear or high-order elements, essential data is provided 
below 

1) Define the problem domain  as  and 0 x 1
0 1y  . 
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2) Generate two cases of the finite element discretiza- 
tions. As outlined by Figure 2, the left sub-figure de- 
notes the first case which is composed of 25 nodes and 
16 linear quadrilateral elements. The right sub-figure 
denotes the second case which is composed of 81 nodes 
and 16 quadratic (9-node) quadrilateral elements. 

3) Consulting with Table 1 and the previous study [6], 
experiment to represent k by the Lauguerre polynomial 
chaos. If the accuracy of corresponding spectral stochas- 
tic finite element results is unsatisfactory, apply another 
type of the generalized polynomial chaos. 

4) Generate Monte Carlo simulation results to serve as 
the accuracy standard in evaluating the accuracy of spec- 
tral stochastic finite element results. A Monte Carlo 
simulation is implemented by first sampling the thermal 
conductivity k according to (24). Each sample of the 
thermal conductivity k is then substituted into (23) to 
predict a sample of the temperature T. If a sufficient 
amount of samples of k are created, the corresponding 
mean value T and standard deviation ST of temperature 
T will approach their exact values. These Monte Carlo 
simulation-based T and ST are computed by (e.g. [1]) 

sample

sample

1sample

2

1sample

1

1

N

T j
j

N

T j
j

T
N

S T
N











T   




         (26) 

where sample  is the total number of samples for imple- 
menting the Monte Carlo simulation, and the subscript j 
denotes T predicted using the j-th sample of thermal 
conductivity k. Meanwhile, similarly manipulating (16), 
the generalized polynomial chaos expansion of tempera-  

N

ture T is  and the corresponding spectral sto-  
0

ˆPCN

i ii
T




chastic finite element-based predicted T and ST are 
computed by (e.g. [1]) 

  2 2
0

1

ˆ ˆand
PCN

T T j
j

T S T


   j



         (27) 

5) Unless otherwise stated, the following parameters 
are adopted:  6

sample 1 210 , 16, 1,qN N d d  
 2, 3P 10PCN n  , 1, 0.12Sk k k    in which 

 

  

Figure 2. Finite element discretizations for analyzing the 
first benchmark problem (not to scale). 

Nq is the total number of quadrature points in a finite 
element. 

Furthermore, in an attempt of quantifying the errors 
between Monte Carlo simulation and spectral stochastic 
finite element results, two error estimators  and S are 
defined below 

   , , ,

, ,

% , %
T M T S T M T S

S
T M T M

S S

S

 

 

    ,
   (28) 

in which the subscripts M and S denote the Monte Carlo 
simulation and spectral stochastic finite element method; 
respectively. 

In (28), choosing  is better checked by 
observing Monte Carlo simulation results with respect to 
different sample  value. Figures 3(a) and (b) selectively 
checks variation of Monte Carlo simulation-based 

6
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N
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Figure 3. Variation of Monte Carlo simulation results with 
respect to different  values: (a) mean value; (b) 

standard deviation (First benchmark problem). 
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Although the resulting   00T x y   q  and 
  00TS x y q   values range limitedly, Figures 3(a) 

and 3(b) suggest that choosing  to imple- 
ment a Monte Carlo simulation is reasonable. When more 
than  samples are created, the 

6
sample 10N 

55 10   00T x y q   
and   00TS x y q   values become stable. 

Figures 4(a) and (b) selectively compare variation of 
  00y q   and   00S y q   values with respect 

to Figure 2. In addition, Table 2 compares the time 
spent to generate spectral stochastic finite element results 
with adopting linear and quadratic (9-node) quadrilateral 
elements. Note that all essential parameters, which are 
not listed in Figures 4(a) and (b) and Table 2, are set 
according to (28). Similar practices are followed in the 
following. 

Since we can easily expect that adopting quadratic 
(9-node) elements can obtain more accurate deterministic 
finite element results, Figure 4(a) is not surprising. Adop- 
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Figure 4. Comparison of accuracy of spectral stochastic 
finite element results with respect to linear and quadratic 
quadrilateral elements: (a) mean value; (b) standard devia- 
tion (First benchmark problem,  = mean value, S = 
standard deviation). 

Table 2. Comparison of the time spent to generate spectral 
stochastic finite element results adopting linear and quad- 
ratic (9 nodes) quadrilaterals. 

Linear Elements Quadratic Elements 

1.2 seconds 1.5 seconds 

*On a MacBook Pro with an Intel Core i5 Processor. 

 
ting quadratic quadrilateral elements consequently pre- 
dict more accurate mean values T, since the corre-
sponding   00y q   is smaller. Nevertheless, Fig-
ure 4(b) is surprising. Adopting quadratic (9-node) ele-
ments can also obtain more accurate predicted standard 
deviation ST values, since the corresponding  

  00S y q   values are smaller. Meanwhile, Table 2 
indicates that the time spent to generate spectral stochas-
tic finite element results is not unacceptably time-con- 
suming. 

However, we may argue that Figures 4(a) and (b) 
only outline the effects of spacings of any two connect- 
ing nodes on the accuracy of spectral stochastic finite 
elements. As the nodal distribution becomes denser, ob- 
taining more accurate spectral stochastic finite element 
results may be expected. To figure out this argument, the 
problem domain  is re-discretized by using 64  8 8  
linear quadrilateral elements and 81 equally-spaced 
nodes. Based on the resulting finite element discretiza- 
tion and Figure 2(b), Table 3 inspects variation of 

  00y q   and   00S y q   values with respect 
to these two cases of finite element discretization. 

Inspecting Table 3 finds that adopting quadratic (9- 
node) elements still produces smaller   00y q   
and   00S y q   values. That is, the improvement of 
accuracy of spectral stochastic finite element results in 
Figure 4(b) is not due to the denser nodal distribution in 
the right sub-figure of Figure 2. In fact, comparing Ta- 
ble 3 and Figures 4(a) and (b) finds that adopting a 
denser nodal distribution but still using linear elements 
only slightly improve the accuracy of spectral stochastic 
finite element results. 

Furthermore, increase the k kS   value from 0.12 to 
0.32. Figures 5(a) and (b) present the corresponding 

  00S y q   and   00S y q   values with respect 
to Figure 2. Next, change the d2 value from 1.0 to 2.0 
(but revert the k kS   value to 0.12). Figures 6(a) and 
(b) present the corresponding   00S y q   and  

  00S y q   values with respect to Figure 2. 
The incentive of plotting Figures 5(a) and (b) comes 

from the published study [6] that high autocorrelation 
function values of stochastic coefficients (i.e.  values) 
has apparent effects on the accuracy of spectral stochastic 
finite element results. Further inspection of Figures 5(a) 
and (b) finds that adopting linear quadrilateral elements 
to apply the spectral stochastic finite element method    
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Table 3. Comparison of the time spent to generate spectral stochastic finite element results adopting linear and quadratic (9 
nodes) quadrilaterals. 

81 nodes and 64 linear quadrilaterals 81 nodes and 16 quadratic quadrilaterals 
x y 

 0y    0S y    0y    0S y   

0.0 0.00 0.427 0.653 0.067 0.112 

0.0 0.25 0.522 0.656 1.190 0.213 

0.0 0.50 1.080 1.131 0.777 0.769 

0.0 0.75 4.315 4.477 4.000 4.010 

*Unit: Δμ(y = 0) and Δs(y = 0) in %. 
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Figure 5. Comparison of accuracy of spectral stochastic finite element results with respect to .k kS 0 32 , linear and 

quadratic quadrilateral elements: (a) mean value; (b) standard deviation (First benchmark problem,  = mean value, S = 
standard deviation). 
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Figure 6. Comparison of accuracy of spectral stochastic finite element results with respect to d2 = 2.0, linear and quadratic 
quadrilateral elements: (a) mean value; (b) standard deviation (First benchmark problem,  = mean value, S = standard 
deviation). 
 
may have the danger of obtaining uncontrollable  

  00S y q   values under high  values. Figure 5(b) 
denotes an example. If linear quadrilateral elements are 

adopted, some   00S y q   values approach 100%. 
Whereas, the   00S y q   values stay below 10% 
when quadratic (9-node) quadrilateral elements are used. 
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Meanwhile, Figures 6(a) and (b) indicate that the effects 
of different d2 values on the   00y q   and 

  00S y q   values are not noticeable. Comparing 
Figures 4(a) and (b) and 6(a) and (b) finds that increas-
ing d2 values doesn’t change the   00y q   and 

  00S y q   values apparently. 

3.2. Transverse Deflection of a Square 
Membrane 

Suppose a membrane occupies a region and 
 and its edges are fixed. Initially, the mem- 

brane is stretched so that the tension a in the membrane 
is uniform and that tension a is so large that it is not ap- 
preciably altered when the membrane is deflected by a 
distributed normal force 

2 2x  
2 y   2

0f . 
To predict the transverse deflection u of the membrane, 

the governing equation is 

2 2

02 2

u u
a

x y

  
     

f             (29) 

Due to symmetry, only one quadrant of the membrane 
is analyzed. The boundary conditions are 

   

 

0
1

0
0

u x
u x y

y

u y

x

 
  



 
 



        (30) 

Figure 7 further illustrates the layout of problem do- 
main  and boundary conditions. If the tension a is de-
terministic, the analytical solution of u is  

       
 

20
31

1 cos cosh
 1 4

2 cosh

n

n n

n
n n

y xf
y

a

 
 





 
 


 


. 

Meanwhile, the deterministic finite element formula- 
tion of (30) is similar to (7) except that components e

ijK  
and e

iF  are; respectively 
 

 

Figure 7. Transverse deflection of a square membrane (not 
to scale). 

d de

j ji ia x y 0de
e
i f

x x y y

  


   
     

  and  . 

Nevertheless, the succeeding study assumes the ten- 
sion a varies according to the following uniform distribu- 
tion: 

2
3 4a aa S                  (31) 

where a and Sa are; respectively, the mean value and 
standard deviation of tension a, 3 41 , 1     are two 
random numbers. 

To compare the predicted deflection u with accounting 
for a stochastic tension a, essential data is provided be- 
low 

1) Still define  as 0 x 1   and 0 1y  . 
2) Generate two cases of the finite element discretiza- 

tions. As outlined by Figure 8, the left sub-figure de- 
notes the first case which is composed of 81 nodes and 
64 linear quadrilateral elements. The right sub-figure 
denotes the second case which is composed of. 65 nodes 
and 16 quadratic (8-node) quadrilateral elements. 

3) Consulting with Table 1, represent a by the Legen- 
dre polynomial chaos. 

4) Generate Monte Carlo simulation results by first 
sampling the tension a according to (31). Each sample of 
the tension a is then substituted into the aforementioned 
analytical solution of (29) to predict a sample of the de-
flection u. Similarly manipulating (26), the mean value 
u and standard deviation Su of deflection u are equal to  

sample

1
sample

1 N

jj
u

N   and sample
2

1
sample

1 N

j uj
u

N



   ; 

respectively. Meanwhile, the spectral stochastic finite 
element-based predicted u and Su are equal to  and  0û

  2 2

1
ˆPCN

j jj
u


 ; respectively in which ˆ ju  ( 0j   to  

PC ) is obtained from the generalized polynomial chaos 
expansion of u. 
N

5) Unless otherwise stated, the following parameters are 
adopted: , 6

sample 10 , 16,qN N    10 2, 3PCN n P   
1.0, 0.1a a aS   . 

Similarly manipulating Section 3.1, variation of the 
Monte Carlo simulation results versus different sample  
values and the accuracy of spectral stochastic finite ele- 

N

 

  

Figure 8. Finite element discretizations for analyzing the 
second benchmark problem (not to scale). 
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ment results are evaluated as follows: Figures 9(a) and 
(b) evaluate variation of Monte Carlo simulation-based 
predicted  and  0u x y    0uS x y   with re-
spect to different sa  values. Figures 10(a) and (b) 
present variation of  

mpleN

  , , ,0,0 1 u M u S u My x          

and  

  , , ,0,0 1S u M uy x S S S     S u M  

the  0,0 1S y x    value in Figure 11(b) doesn’t 
approach 100 %. This experience implies that different 
probability distributions of stochastic coefficients can 
produce different patterns of spectral stochastic finite ele- 
ment-based predicted mean values and standard devia- 
tions. Hence, the current study suggests doing some pilot 
tests to observe the performance of spectral stochastic 
finite element method versus a specific probability dis- 
tribution of stochastic coefficients before practically ap- 
plying this probability distribution. 

values with respect to Figure 8. Figures 11(a) and (b) 
compare variation of  and  

 values with respect to Figure 8 and 
 0,0 1y x   

 0,0 1S y x   
0.4a aS   . 

4. Closure 

As introduced in Section 1, the most popular numerical 
tool for solving stochastic partial differential equations 
may be the spectral stochastic finite element method. 
Numerous resources are available for generating spectral 
stochastic finite element results. As compared to the 
Monte Carlo simulation, applying the spectral stochastic 
finite element method doesn’t require sampling the ex- 
isting random fields sufficiently; thus, creating spectral 
stochastic finite element results is usually time-saving. 

Figures 9(a) and (b) report that choosing  
is still reasonable. As the sample  value is larger than 106, 
the Monte Carlo simulation-based predicted 

6
sample 10N 

N
u x y   

 and  remain approximately fixed. 
Meanwhile, we still find from Figures 10(a) and (b) that 
adopting quadratic (8-node) elements is conducive to im- 
proving the accuracy of spectral stochastic finite elment- 
based predicted , since the corre- 
sponding S  value is smaller. Note 
that the total number of nodes in the left sub-figure of 
Figure 8 is more than the total number of nodes in the 
right sub-figure of the same figure. Since similar results 
are found in Table 3 and Figures 4(a) and (b), adopting 
more nodes but still using the same element type conse- 
quently improve the accuracy of corresponding spectral 
stochastic finite element results slightly. 

0  0uS x y 

uS y
 0,0y 



 0,0 x 
1x 

1
 Probably since deterministic analytical solutions are 

usually unavailable for producing Monte Carlo simula- 
tion results, the accuracy of spectral stochastic is not of- 
ten discussed and linear elements were usually adopted 
in applying this stochastic numerical method. However, 
the succeeding study demonstrates that adopting high- 
order (e.g. quadratic) elements can improve the perfor- 
mance of spectral stochastic finite element method. The 
previous section has shown that adopting linear elements 
has the danger of obtaining uncontrollable errors between 
Monte Carlo simulation and spectral stochastic finite 
element results. Whereas, adopting quadratic (9-node or 
8-node) elements to apply the spectral stochastic finite 
element method stably produces more accurate predicted 

On the other hand, comparing Figures 10(a) and (b) 
with Figures 11(a) and (b) finds that  

 0,0 1y x     and  0,0 1S y x     

values further increases versus the increase of a aS   
values and the left sub-figure of Figure 8. However, 
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Figure 9. Variation of Monte Carlo simulation results with respect to different Nsample values: (a) mean value; (b) standard 
deviation (Second benchmark problem). 
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Figure 10. Comparison of accuracy of spectral stochastic finite element results with respect to linear and quadratic 
quadrilateral elements: (a) mean value; (b) standard deviation (Second benchmark problem,  = mean value, S = standard 
deviation). 
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Figure 11. Comparison of accuracy of spectral stochastic finite element results with respect to .k kS 0 4 , linear and 

quadratic quadrilateral elements: (a) mean value; (b) standard deviation (Second benchmark problem,  = mean value, S = 
standard deviation). 
 
mean values and standard deviations under high autocor- 
relation function values of existing stochastic coefficients 
ranges. In addition, the time spent to apply the spectral 
stochastic finite element method with using quadratic 
quadrilateral elements is not unacceptably time-consuming. 

In conclusion, replacing linear elements with high- 
order elements to apply the spectral stochastic finite ele- 
ment method can be as a low-cost method to improve the 
performance of this stochastic numerical method. 
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