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ABSTRACT 

The purpose of this paper is to give a combinatorial characterization and also construct representations of the funda- 
mental group of the submanifolds of elastic Klein Bottle by using some geometrical transformations. The homotopy 
groups of the limit elastic Klein Bottle are presented. The fundamental groups of some types of geodesics in elastic 
Klein Bottle are discussed. New types of homotopy maps are deduced. Theorems governing this connection are 
achieved. 
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1. Introduction and Definitions 

In vector spaces and linear maps; topological spaces and 
continuous maps; groups and homomorphisms together 
with the distinguished family of maps is referred to as a 
category. An operator which assigns to every object in 
one category a corresponding object in another category 
and to every map in the first a map in the second in such 
a way that compositions are preserved and the identity 
map is taken to the identity map is called a functor. Thus, 
we may summarize our activities thus far by saying that 
we have constructed a functor (the fundamental group 
functor) from the category of pointed spaces and maps to 
the category of groups and homomorphisms. Such func- 
tors are the vehicles by which one translates topological 
problems into algebraic problem El-Ahmady [1-3]. 

Most folding problems are attractive from a pure 
mathematical standpoint, for the beauty of the problems 
themselves. The folding problems have close connections 
to important industrial applications Linkage folding has 
applications in robotics and hydraulic tube bending. Pa- 
per folding has application in sheet-metal bending, 
packaging, and air-bag folding. Following the great So- 
viet geometer, also, used folding to solve difficult prob- 
lems related to shell structures in civil engineering and 
aero space design, namely buckling instability El-Ah- 
mady [4]. Isometric folding between two Riemannian 
manifold may be characterized as maps that send piece- 
wise geodesic segments to a piecewise geodesic seg- 
ments of the same length El-Ahmady [5]. For a topo- 
logical folding the maps do not preserves lengths El- 
Ahmady [6] and [7]. i.e. A map : M N  , where M  
and N are C -Riemannian manifolds of dimension m  

and n respectively is said to be an isometric folding of M 
into N, iff for any piecewise geodesic path : J M  , 
the induced path : J N   is a piecewise geodesic 
and of the same length as  . If  does not preserve 
length, then 


  is a topological folding El-Ahmady [8, 

9]. 
A subset A of a topological space X is called a retract 

of X if there exists a continuous map  such 
that 

:r X A
 r a a A,a  

:r X

 where A is closed and X is open 
El-Ahmady [10] and [11]. Also, let X be a space and A a 
subspace. A map  such that A   ,r a a a A    
is called a retraction of X onto A and A is the called a 
retract of X El-Ahmady [12-19] Reid [20]. This can be re 
stated as follows. If  is the inclusion map, 
then  is a map such that A . If, in addi- 
tion, X

:i A X
:r X 

ri id
A ri id

 , we call  a deformation retract and A a 
deformation retract of X Arkowitz [21]. Another simple 
but extremely useful idea is that of a retract. If  

r

, ,A X M  then A  is a retract of X  if Ari id . If 
:f A B : and g X Y , then f is a retract of g  if 

Ari id  and Bjs id  [13,14]. 
i.e. If :f A B  and :g X Y  then f is a retract 

of g  if there is a commutative diagram. 
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that is, A ,ri id Bsj id , sjf fri , gi jf , and fr = 
sg Shick [22] and Storn [23]. The elastic manifold eM  
is a manifold M attached with ,  is the coefficient 
of elasticity, i.e. 

e
  

e
, ,e e 0,1 ee . If M M 0 , then 

0  ,0M M M , the usual manifold, and  ,1M  is 
the complete manifold also for an elastic manifold 
 , M e

,
, the distance  between any two points  , yd x
 ,x y M e  is not constant. The aim of this paper is to 

describe the connection between the fundamental group 
and the homotopy group geometrically, specifically con- 
cerned with the study of the new type of retraction, de- 
formation retract, folding and the fundamental group of 
elastic Klein bottle as presented by El-Ahmady [1,2]. 

2. Main Results 

To obtain the main results, we will introduce the follow- 
ing definition. 

The Klein bottle  can be realized as a parametric 
surface in . At each point of the circle of radius a in 
the 

K
4R

xy  plane there is now available a three-dimensional 
hyperplane in  perpendicular to the circle. A smaller 
circle of radius  can be rotated about a diameter at 
half the rate of revolution about the circle of radius , 
giving a Klein bottle Shick [2,3]. The parameterization is 
given analytically as follows 

4R
b  a

a

   sin cos , sin sin ,

cos cos 2, cos sin 2.

x a b v u y a b v u

z b v u w b v u

   

 
  (1) 

Points in Points in the  plane which are identified 
as indicated in Figure 1 are mapped into the same points 
in  by these equations. 

uv

4R
From view point of elastic manifold if 1 2  are vari- 

ables and instance 1 2 . Hence the parameteri- 
zation of elastic Klein bottle is given analytically and (1) 
becomes 

,r r
,r a r b 

   1 2 1 2

2 2

sin cos , sin sin ,

cos cos 2, cos sin 2.

x r r v u y r r v u

z r v u w r v u

   

 
  (2) 

The metric of elastic Klein bottle is given by 

 

2 2 2 2
1 2

22 2 2
1 2 2

1 2 2 1

1
sin cos

4

sin cos

dS dr dr dv

r r v r v du

vdr dr r vdr dv

  

  
 

 


 .    (3) 

Theorem 1. The fundamental group of types of the 
deformation retracts of open elastic Klein bottle K  is 
isomorphic to Z. 

Proof. Now we will prove that 1
1 ,S K  and 1

2 ,S K  
are the deformation retract of open elastic Klein bottle 
K . Using Lagrangian equations to obtain a geodesics 
and retractions of elastic Klein bottle K . From Equation  

 

Figure 1. Model of the Klein bottle. 
 
(3) we get 

   22 2 2 2 2
1 2 1 2 2

1 2 2 1

1 1
sin cos

2 4

sin cos .

T r r v r r v r v u

vr r r vr v

  2         
 

    
 

Then, the Lagrangian equations for elastic Klein bottle 
K  are 

 

1 2 2

2
1 2

d 1 1
sin cos

d 2 2

sin 0

r r v r vv
s

r r v u

     
 

  
              (4) 

 

2 1

2 2
1 2 2

d 1
sin

d 2

1
sin sin cos

4

1
cos 0

2

r r v
s

r v r v r v u

r vv

   
 
     
 

  

2          (5) 

 
 

2 1

2 2
1 2 2 2

1 2 2

d 1
cos

d 2

1
cos sin cos sin cos

4

1
cos sin 0

2

v r vr
s

r r v r v v r v v u

r r v r vv

   
 

2    


    

 (6) 

 2 2 2
1 2 2

d 1
sin cos 0

d 4
r r v r v u

s
    
 

          (7) 

solving Equation (4) implies 

  2
1 2 2 1 2

d 1 1
sin cos sin

d 2 2
r r v r vv r r v u

s
       
 

 , 

consider the case 1 2 2

d 1 1
sin cos 0

d 2 2
r r v r vv

s
      
 

, and 

and   2
1 2 sin 0r r v u  . Then we are going to discuss 

the following cases 

(i) If  1

d
0

d
r

s
  , then , where c and a are  1r ct a 

constant. If 0c  , then 1 , which means that the 
deformation of the manifold is regular (the piecewise 
geodesic deformed into piecewise geodesic). Now, if 

r a

0c  , then 1r ct a  , and the piecewise geodesic de- 
formed into non-piecewise geodesic and the deformation 
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of the elastic manifold is not regular and (5) becomes 

  2 sin cosx ct a r v u   , 

  2 sin siny ct a r v   u , 

2 cos cos 2z r v u , 

2 cos sin 2w r v u . 

which is the elastic hyper Klein bottle 1K K . It is not 
a geodesic. 

(ii) If  2

d
sin 0

d
r v

s
  , then , also from  2r dt b 

Equation (5) we have 

  1 sin cosx r dt b v   u , 

  1 sin siny r dt b v u   , 

 cos cos 2z dt b v u  , 

 cos sin 2w dt b v u  . 

which is the elastic hyper Klein bottle 2K K  which is 
not a geodesic. 

Now,  can be true only for  
 and (5) becomes 

sin 0v 
, 1,K π 2,v K  

1 cosx r u , , 1 siny r u 2 cos 2z r u , 2 sin 2w r u . 

Which is the elastic hyper sphere 3 2
2,S K  which is  

a geodesic. 

(iii) If  2

d
cos 0

d
r vv

s
  , then  constant  2 cosr vv 

 , if 0  , there are two geodesics in elastic Klein 
bottle K  given by 1 cosx r u , ,  

. 
1 siny r u

0z w
Which is the elastic great circle. 1

1S K . Also,  
 1 2 cosx r r u  ,  1 2 siny r r u  , . 0z w 

Which is the elastic great circle 1
2 .S K  

(iv) If  , then constant  2
1 2 sin 0r r v u  u   , if 

0  . Hence the coordinate of elastic Klein bottle are 

1 2 2sin , 0, cos , 0x r r v y z r v w      

which is the elastic hyper Klein bottle 3K K , it is a 
geodesic. Also, if , then we obtain the 
following geodesic 

 1 2 sin 0r r v  
4K K  given by 

2

2

0, 0, cos cos 2,  

cos sin 2.

x y z r v u

w r v u

  


 

It follows immediately that. 1
1 ,S K 1

2S K  is a 
geodesic. The deformation retract of the elastic Klein 
bottle K  may be defined as follows 

     : i iK I K      . 

Also, the retraction of the elastic Klein bottle is de- 
fined as follows:    1: iR K K   or 2K  or 3S  

or 1
1S  or 1

2S  or 3K  or 4K . 
The deformation retract of (2) into a retraction  

1
1 ,S K  is given by 

     
   

 

1 2 1 2

2 2

1 1

, sin cos , sin sin ,

cos cos 2, cos sin 2 1

cos , sin ,0,0

i

m t r r v u r r v u

r v u r v u t

t r u r u





  

 



 

where 

     
  

1 2 1 2

2 2

,0 sin cos , sin sin ,

cos cos 2, cos sin 2 i

m r r v u r r v u

r v u r v u





  


 

and    1 1,1 cos , sin ,0,0m r u r u  . 

Thus,     1
1 1 1iK S    . Therefore 

  1 iK Z   . 
Also, the deformation retract of (2) into a retraction 

1
2S K  is defined as 

     
   

    

1 2 1 2

2 2

1 2 1 2

, sin cos , sin sin ,

cos cos 2, cos sin 2 1

cos , sin ,0,0

i

m t r r v u r r v u

r v u r v u t

t r r u r r u





  

 

  

 

where 

     
  

1 2 1 2

2 2

,0 sin cos , sin sin ,

cos cos 2, cos sin 2 i

m r r v u r r v u

r v u r v u





  


, 

and       1 2 1 2,1 cos , sin ,0,0m r r u r r u    . 

Thus,     1
1 1i 2K S    . 

Therefore   1 iK Z   . 

Corollary 1. The fundamental group of types of the 
deformation retracts of open elastic Klein bottle K  and 
any manifold homeomorphic to elastic Klein bottle K  
is isomorphic to Z. 

Theorem 2. The fundamental group of any folding of 
elastic great circle 1

1S K  and elastic great circle  
1
2S K  is either isomorphic to Z or identity group. 
Proof. Now, we are going to discuss the folding   

of 1
1S K  and 1

2S K . 
Let 1 1

1 1: S K S K     where 

   1 2 3 4 1 2 3 4, , , , , ,x x x x x x x x   

also let 1 1
2 2: S K S K     where 

   1 2 3 4 1 2 3 4, , , , , ,x x x x x x x x   

An isometric folding  of 1
1S K  into itself may be 

defined by 

   1 1 1 1cos , sin ,0,0 cos , sin ,0,0r u r u r u r u  . 

Also, an isometric folding  of 1
2S K  into itself 
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may be defined by 

   
 


  

1 2 1 2

1 2 1 2

cos , sin ,0,0

cos , sin ,0,0

r r u r r u

r r u r r u

  

  
 

This type of folding and any folding homeomorphic to 
this folding induce singularity of 1

1S K , and 1
2S K   

thus  1
1 1 S K   z  also  1

1 2 S K   z . Now, if  

the folding is defined as 

   1 2 3 4 1 2 3 4, , , , , ,x x x x x x x x  , and  

   1 2 3 4 1 2 3 4, , , , , ,x x x x x x x x  , 

this type of folding and also any folding homeomorphic 
to this folding not induce singularity of 1

1S K , 
1
2S K  and any manifold homeomorphic to 1

1S K ,  
1
2S K . Then  1

1 1 S K   z  and  1
1 2 S K   z . 

Corollary 2. The fundamental group of types of geo- 
desic in elastic Klein bottle can be considered as the 
fundamental group of types of a deformation retract in 
elastic Klein bottle. 

Theorem 3. The fundamental group of types of the de- 
formation retracts of the elastic Klein bottle is either a 
fundamental group of types of the geodesics or not and 
its folding may be the fundamental group of types of the 
deformation retracts or not. 

Theorem 4. The fundamental group of the limit of 
foldings of the elastic hyper sphere 3S K  is the iden- 
tity group. 

Proof. Now consider the elastic hyper sphere of di- 
mension three 3 ,S K  which is a geodesic in elastic 
Klein bottle and let 3 3

1 : S K S K     is a folding 
map ,now we can define a series of folding maps by 

   3 3
2 1 1: S K S K     , 

     3 3
3 2 1 2 1: S K S K       , 

 , 

   
    

3
1 2 3 2 1

3
1 2 3 2 1

:n n n n

n n n

S K

S K

  

  

      

     

 

 
 

     3
1 2 3 2 1limn n n n n S K             

is a sphere  2S K  of dimension two. Therefore  

 2
1 S  K  is the identity group. 

Theorem 5. Under the folding 

  1 2
1 2 3 4 3 4, , , , , ,m

x x
x x x x x x

m m

 
  

 
 , the fundamental  

group of the limit of foldings of the elastic hyper sphere 
3S K  in elastic Klein bottle is isomorphic to Z. 

Proof. Now consider the elastic hyper sphere of di- 
mension three 3 ,S K  which is a geodesic in elastic 
Klein bottle and if we let 

3:m S K   3S K  be given by 

  1 2
1 2 3 4 3 4, , , , , ,m

x x
x x x x x x

m m

 
   

 
 

Then, the isometric chain folding of the elastic hyper- 
sphere 3S K  into itself may be defined by 

 
 

1 1 1 2 2

1 1 2 2

: cos , sin , cos 2, sin 2

cos , sin , cos 2, sin 2

r u r u r u r u

r u r u r u r u




, 

 2 1 1 2 2

1 1 2 2

: cos , sin , cos 2, sin 2

1 1
cos , sin , cos 2, sin 2 ,

2 2

r u r u r u r u

r u r u r u r u



   
 

, 

 , 

1 1 2 2

1 1 2 2

1 1
: cos , sin , cos 2, sin 2

1 1

1 1
cos , sin , cos 2, cos 2

m r u r u r u r u
m m

r u r u r u r u
m m

     
   
 

. 

Then we get 
 2 2lim 0,0, cos 2, sin 2 .m m r u r u    which is the 

elastic great circle 1
3 .S K  

Therefore  1
1 3S K Z    

Theorem 6. Under the folding 

  31 2 4
1 2 3 4, , , , , ,m

xx x x
x x x x

m m m m

 
  

 
 , the fundamental  

group of the limit of foldings of the elastic hyper sphere 
3 nS K  in elastic Klein bottle is the identity group. 
Proof. Consider the elastic hyper sphere of dimension 

three 3 ,S K  which is a geodesic in elastic Klein bot- 
tle and if we let 3 3:m S K S K     be given by 

  31 2 4
1 2 3 4, , , , , ,m

xx x x
x x x x

m m m m

 
   

 
 

Then, the isometric chain folding of the elastic hyper 
sphere into itself may be defined by 

 
 

1 1 1 2 2

1 1 2 2

: cos , sin , cos 2, sin 2

cos , sin , cos 2 , sin 2

r u r u r u r u

r u r u r u r u




,  

 2 1 1 2 2

1 1 2 2

: cos , sin , cos 2 , sin 2

cos sin cos 2 sin 2
, , ,

2 2 2 2

r u r u r u r u

r u r u r u r u



,
    
  

 

  

1 1 2 2

1 1 2 2

cos sin cos 2 sin 2
: , , ,

1 1 1 1

cos sin cos 2 cos 2
, , ,

m

r u r u r u r u

m m m m

r u r u r u r u

m m m m

         
    
  
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Then we get  lim 0,0,0,0m m   , which a zero-  
dimensional hypersphere 0S  in elastic Klein bottle. 
Thus, it is a point and the fundamental group of a point is 
the identity group. 

Corollary 3. The fundamental group of the end limits 
of foldings of the n-dimensional manifold nF  homeo- 
morphic n-dimensional elastic Klein bottle nK  into it- 
self is the identity group. 

Proof. let 1 : n nF F 
n

 be a type of foldings of n- 
dimensional manifold F . Then, we have the following 
chains 

11 1
1 2 lim 1

1 2 1, , i in n n n
n

nF F F F F   
    

22 2
1 2 lim1 1 1 1

1 2 1, , ,i in n n n
nF F F F F     
   2n

0

 

 , 

1 2 lim1 1 1 1
1 2 1, , .

nn n
i i

nF F F F   
   F  

Thus from the above chain the end of the limits of 
folding coincides with the zero-dimensional manifold. 
Thus, it is a point and the fundamental group of a point is 
the identity group. 

Theorem 7. The fundamental group of the minimal re- 
traction of the n-dimensional manifold nF  homeo- 
morphic n-dimensional elastic Klein bottle nK  is the 
identity group. 

Proof. let  be the retractions 
map. Then, we have the following chains 

   1: n n n
i jr F F  

     
     

1
1

11
2

1 1

lim 1
2 2 1 1, , ,i i

rn n n n
j

rr n n n n n
n n

F F

F F

 

   F 
 

  

   
 

     
     

2
1

2
2

2

1 1 1 1
1 1

1 1 1 1
2 2 1 1

lim 2

, ,

,i i

rn n n n
j

r n n n n
n n

r n

F F

F F

F

 

 



   

   
 



  

  



  

,  

     
     

1

2

1 1 1 1
1 1

lim1 1 1 1
2 2 1 1, , .

n

nn
i i

r
j

rr
n n

F F

0F F

 

  
 

  

    F
 

Thus from the above chain the minimal retractions of 
the n-dimensional manifold nF  coincides with the zero- 
dimensional space which is the limit of retractions. Thus, 
it is a point and the fundamental group of a point is the 
identity group. 

Theorem 8. The fundamental group of the end of the 
limits of folding of the n-dimensional manifold nF  ho- 
meomorphic n-dimensional elastic Klein bottle nK  co- 
incides with the fundamental group of the minimal re- 
tractions of the n-dimensional manifold nF .□ 

3. Conclusion 

In this paper we achieved the approval of the important 
of the fundamental groups in the submanifolds of elastic 
Klein bottle by using some geometrical transformations. 
The relations between foldings, retractions, deformation 
retracts, limits of foldings and limits of retraction of the 
fundamental groups in the submanifolds of elastic Klein 
bottle are discussed. The connection between limits of 
the folding and the fundamental groups are obtained. 
New types of minimial retractions on the fundamental 
groups are deduced. 
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