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ABSTRACT 

In this paper we show that we can have the same conclusion for the limit of the solution ,u   if we suppose the case of 
hypoellipticity. 
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1. Introduction 

Let us consider the parabolic PDE: 
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We study in this paper the behavior of ,u   when  

,  tend to zero, and 
, 0

lim 0


  
. We suppose that  

the matrix of the second order coefficients of ,L 

u

 is 
degenerate, in fact we formulate here a hypoellipticity 
condition of Hörmander type (see e.g. David Nualart [1]). 
Diédhiou and Manga in [2] studied the limit of ,  
with a nondegenerate condition of the matrix. In Freidlin 
& Sowers[3], three cases are considered, with the 
assumption that the matrix is non, but we formulate here 
a hypoellipticity condition of. Since the parameter   
(homogeneization parameter) decreases quickly than  
(large deviations principle parameter) to zero we must 
homogenize first and apply the large deviations principle. 
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We use essentially probabilistic tools to solve our 
problem. 
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where  and d , d: IR IR , : IR IR ,d d B   
 ; 0tW t   is a d-dimensional standard Brownian mo- 

tion. 
We assume that   and ,B   are smooth mappings 

from , and periodic with period one in each direc- 
tion. 

dIR

The mapping ,B   is assumed to be of the form : 
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where  d dIR , IRpC  be the collection of periodic con- 
tinuous mappings from  into . dIR dIR
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and where  dIR , IRg   is a bounded function and 
we set 
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respect to the first argument, and it verifies: 
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and we assume that 
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By Pardoux and Peng [4], we have for all 
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The matrix a    (where  is the symbol of 
transposition) is degenerate. Let us consider the 
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We assume that the matrix   of the column vectors 

j  verifies the strong Hörmander condition, defined by 
the 
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 of order lower than  at the point  n

dIR .x  
We say that the matrix   satisfies the strong Hör- 

mander condition (called SHC) if for all , there 
exists  such that 
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We organize this paper as follows. Section 2 contains 
the results of large deviations principle. In Section 3 we 
study the behavior of the solution of the PDE (1). 

2. Large Deviations Principle 
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problem of homogenization because the matrix 

   a x x   is not elliptic. 

Since   tends to zero faster than , the homogeni- 
zation dominates, and the large deviations principle will 
be applied to the problem with constant coefficients. 
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where  , : 0tW t  

d

 is a standard Brownian motion. 

The -valued process T , ,x
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The details of the calculation of this limit are the same 
as in Freidlin and Sowers [3]. 

In order to establish a large deviations principle, we 
will consider the 
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large deviations principle with rate function 1
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when  tends to zero. 
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1) 

   

     

,

0

0 0 0

lim log , ,

inf inf , , , 0, .
t t

u t x V t x

C S x G t



    









    







 

2) 

 ,

0
lim , 0,u t x





 

uniformly in any compact set  of  . 
3) 

 ,

0
lim , 1,u t x





 

in all compact set   of . 
o


Proof: For first item, the proof is the same as in [2]. 
For the second point we can see that there exists 

 such that 0C 

   ,0 , e , ,
C

u t x t x 
    .  

The third item is an immediate consequence of 1). 
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