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ABSTRACT

In this paper we show that we can have the same conclusion for the limit of the solution u“’ if we suppose the case of

hypoellipticity.
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1. Introduction

Let us consider the parabolic PDE:

ou“? B s 1o(x s
(t.X)= L, u (LX) + f[5,u (t,x)) o

€
u“’(0,x)=g(x),xeIR?
We study in this paper the behavior of u“’ when

€,0 tend to zero, and lim

5¢o§:0- We suppose that

the matrix of the second order coefficients of L ; is
degenerate, in fact we formulate here a hypoellipticity

condition of Hormander type (see e.g. David Nualart [1]).

Diédhiou and Manga in [2] studied the limit of u’
with a nondegenerate condition of the matrix. In Freidlin
& Sowers[3], three cases are considered, with the
assumption that the matrix is non, but we formulate here
a hypoellipticity condition of. Since the parameter o
(homogeneization parameter) decreases quickly than ¢
(large deviations principle parameter) to zero we must
homogenize first and apply the large deviations principle.

We use essentially probabilistic tools to solve our
problem.

Let (Q,]-' ,(.7-; )tzo) a probability filtered space. We

consider the IR‘(d >1) valued process (th‘("") solu-
tion of the SDE:

. Xx,f,d N Xx,é,d
X =feo L W+ B St o

X0 =x

where o:IR® - IR, B’ : IR - IRY, and
{W;t>0} is a d-dimensional standard Brownian mo-
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tion.

We assume that o and B“° are smooth mappings
from IR, and periodic with period one in each direc-
tion.

The mapping B’ is assumed to be of the form :

B> = % B, +B, + B’
where B,,B, and By’ arein C” (IRd, IRd) for every
€>0,0>0 and

lim . [B:?

€540 | |Cp(IRd,IRd) o

where C, (IRd,IRd) be the collection of periodic con-
tinuous mappings from IR® into IR‘.
The infinitesimal generator L_; is gigen by

e d X 82 d s X o
0 2% "(5j6xi6xj .2:1: ' (5J5Xi

1
and where g e C(IRd,IR+) is a bounded function and
we set

supg(X)zg_<oo.

xeIRY
Let set
G, ={XeIRd : g(x)>0},
since ¢ is continuous we have G, = G_0

We assume that f is periodic in each direction, with
respect to the first argument, and it verifies:
o WxelR‘ f(x,1)=0
e Thereexists CeC (IRd x IR, IR) bounded such that
fxy)=C(xy)-y
with
C(x,y)>0,vxeIR’,ye[0,1)

C(x,y)<0,vxeIR%,y>1
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and we assume that

maxC(X,y)=

yelR

C(x)=C(x,0)>0,vxeIR".

Let us consider the progressive measurable process
(Y“"’t’x,Zf’b"’x) solution of the BSDE:

st st Lo o[ Xpot o
Yoo =g (X ”X)+ij SN far
S

[ SN
——|Z;7MdW,,0< s <t
a0z

¢ 2
IE{ | dr} <o
0
By Pardoux and Peng [4], we have for all
(t,x) €[0,+00 xIR?,
ue,ﬁ (t, X) — Yos,ﬁ,t,x .

The matrix a=oo" (where (*) is the symbol of
transposition) is degenerate. Let us consider the

Definition 1.1 The Lie bracket between the vector
fields A, and A is defined by

[AAT=AA -A'A,

€,0,t,X
Zr

where AYA = A9, A, 6i
i
We assume that the matrix o of the column vectors
o; verifies the strong Hormander condition, defined by
the
Definition 1.2 Let H(n,x) be the set of Lie brackets

of (aj(x))m_<d of order lower than n at the point

x e IR’

We say that the matrix o satisfies the strong Hor-
mander condition (called SHC) if for all x IR, there
exists N, eIN suchthat H(n,,x) generates IR‘.

We organize this paper as follows. Section 2 contains
the results of large deviations principle. In Section 3 we
study the behavior of the solution of the PDE (1).

2. Large Deviations Principle

Since, lim_,—=0 (when we set &=0,) we have a

problem of homogenization because the matrix
a(x)=o0"(x) isnot elliptic.

Since o, tends to zero faster than e, the homogeni-
zation dominates, and the large deviations principle will
be applied to the problem with constant coefficients.

For the homogeneization in the hypoellipticy case, we
use the results of Diédhiou and Pardoux [5] and Pardoux
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[4,6,7].
Setting: X*°% = 5i X X;"’é , we have
- )
. S . . _
dXtX,e,é; _ e Bf,é'E (th,e,(f( )dt + U(th,e,(i )the,(i
&
. X
X X,€,0, ==
‘ s,

€

where {Wtf"sf > 0} is a standard Brownian motion.

The T!-valued process )th,m;( , is a Feller process,
then has a unique invariant measure 4 , and we have
M = p,, when ¢ —>0 see[5].

We assume that

jB ) 14, (dz) =0, (©)

and the homogenized coefficients see [3] are

B = jd(l + VB, )B, (x) 1 (dx);

A= {1+

Let us define, foreach T >0 and xeIRY,

g (0 )_elogn{exp[l(e x*“)ﬂ

€>0,0 IR
We have
9r,(0)=limgr ,(0)

:(9,X>+T[%(Aﬁ,0>+<§1,6>),ﬁele.

The details of the calculation of this limit are the same
as in Freidlin and Sowers [3].

In order to establish a large deviations principle, we
will consider the

Theorem 2.1 ([8]) Fix T>0 and xeIR®. Assume
that

1) For each @eIR‘,g;,(0) is well-defined in
[0, 20].

2) The origin is in the interior of the set

{9 eIR®: Orx (9) < oo} .

3) The set A={6’eIRd :|gT‘X(9

)60' (I +VB, )* (X) £t (dx).

)|<oo} has a no-

nempty interior Z\, VOr 4 (6’) is well-defined for all
feA,, and
lim sup"VGgT,X (9)" =,

O—>0A,0cA,

Then the random variables {XTX’“&( re> O} satisfy a
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large deviations principle with rate function IT'~X defin-
ed by

ITI,X( )_ sup {(

feIr?

zeIR'. A

2)-9:,(0)},

The limit g, (6) satisfies the conditions 1) and 2).
For the condition 3) we may assume more that the matrix
A s strictly positive-definite. In fact it is not a strong
assumption, for

Example 2.2 If we choose d=3,B,=0 and
1 0

0 sin(2mx) |,
0 cos(ZnX)

o(xy,z)=

this matrix satisfies the Hormander condition, and

1 0 0
1-cos(4
oo’ (X,Y,2)=|0 M %sin(4nx)
1 4
0 lsin(47tx) —+COS( nx)
2 2

The invariant measure 4, has the density
p(x,y,2)= 2X11, (X, Y,2).

Then we have

SOT ((P)

0, if not

Since the function J' is convex we can show that

y—X
dS TJ' .
)
So we have the

Theorem 2.4 For all T >0, we assume that the
assumption (3) holds. The family

inf j T

{q)ecl([O,T];le ),go(O) X,0(T)

{XF:0<t<Tie> 0},

of C([O,T];IR‘*) -valued random variables satisfies a
Large Deviations Principle (LDP) with rate function
Syr (@) for all (Z)GC([O,T];IRd).

Proof: See Freidlin and Sowers [3]. A

3. Asymptotic Behavior of u®%

We want to apply the technics used by [6], so we
consider now the BSDE:

Copyright © 2013 SciRes.

1 0 0
A-lo 1 _L
2 4z

o -+ 1

4n 2

Let us consider

J'(0)=sup {(6,0)-T"(0')},0 e R?,

o'cR?

by the assumption on A, we get

T'(0)=5 (A" (0-B).0-B).0c "

Thus the form of J' and the assumption on A

imply that 3) is true. A

We have the

Theorem 2.3 (Freidlin and Sowers [3]) Fix T, >0
and assume that the assumption (3) is true. For every
xeIR' and 0<T<T, the family {X;}*°:e>0} of
IR‘-valued random variables satisfies a large devia-
tions principle (LDP) with rate function

Il (2)=TJ" (%)z IR,

Furthermore, this LDP is uniform for all 0<T <T,
and xeIR‘.

Proof: See Freidlin and Sowers [3]. A

Let us consider some definitions:

J'j dS if is absolutely continuous and (0( ) X

st,t,e,o‘(: (XXeﬁ) j (xma YXEﬁ(Jdr
s

r

1 t
——[z*daw ,0<s<t
\/E'!A r r°

t

IE{ | }
0

We know that for all (t,x)e[0,+oo[xIR", the solu-

tion u“* (t,x) of the PDE is of the form:
uE S (t, X) — Yox,f,(?e,t’

2
X,€,0,
Zxe0,

and by the Feynman-Kac formula, we have

X,€,0, X,€,0, XX(é X,€,0,
Yol = {g(x )exp{ jc( 5 Y,"(JdrH.

" (tx)

Our aim is to study the behavior of the u®
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when ¢ tends to zero.
Remark 3.1
e If g<I,then VxelR’ Ve>0,

0<YX "% <1,dIPxds as

e In the other cases, if

C(xy)<a(y)<0,(x,y)e IR x]l,+uo[
where « is Lipschitz continuous, then
limsupY,*">% <1

uniformly in any compact set of ]0, +oo[ xIRY.
We give the

Definition 3.2 A functional r:C([O,t],IRd)—>[O,t]
is a stopping time if for all ¢,$ e C([0,t],IR*) and all

S e[O,t],¢r

7(9)=7(o).

Let us set X,
set of elements 7z of X,
such that for all

pe C([O,

with the convention inf@d=t. ¢

7:[0,+0[xC ([0,-i-<><3[,IRd ) — [0,+00]

is an element of X (resp. ®) if and only if, for all

t>0,7, =7(t,-) e X, (resp. O,) where

T(t’go) =% (¢[0,t] )

Let us consider the function V*(t,x) defined in

]0,+o0[ xIR* by,
V*(t,x)

= inf sup
€0 P

{R ((0)’(?0 =X 0 e(':"0’<DEC(|:O’t])}

where

R). (¢)=Cz-S,,(p),.C

J (%) 22 ().

e
Let M and £ be apartition of IR* xIR?,
M={(t.x) e IR" xIR“:V" (t,X) = 0};
£={(t.x) e IR* xIR*;V" (t,x) < 0}
We have

" (1)
ZIE{g(x;m)exp{ je (

% (t,x) > 0.

X,€,0¢
X Yxrﬁ]d }:|’

then we deduce that u®
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=@, forall re[0,s] and 7(p)<s imply

the set of stopping times and O,
such that there exists O

oo[,IRd):T((p):inf{SSt:(t—S,(ps)EO}
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We have the
Theorem 3.3 For (t,

1)

limelogu“*
o

x) €]0,+o0[ xIR?, we have

(t,x)=V" (t,x)
=inf,, {Cz’ inf S, (¢), ¢ = %0 €Gyop e C([0,1])}.

2)

1Eig)luf’§* (t.x)=0,

uniformly in any compact set C of &£.
3)

limu“” (t,x)=1
o (’ ) ’
o
in all compactset K' of M.
Proof: For first item, the proof is the same as in [2].
For the second point we can see that there exists

the C >0 such that

C
0<u“*(t,x)<e <, ¥(t,x)e k.

The third item is an immediate consequence of 1).

is hence a well de-
fined element of X, and O is the open set associated.
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