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ABSTRACT 

In this paper we show that we can have the same conclusion for the limit of the solution ,u   if we suppose the case of 
hypoellipticity. 
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1. Introduction 

Let us consider the parabolic PDE: 
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We study in this paper the behavior of ,u   when  

,  tend to zero, and 
, 0

lim 0


  
. We suppose that  

the matrix of the second order coefficients of ,L 

u

 is 
degenerate, in fact we formulate here a hypoellipticity 
condition of Hörmander type (see e.g. David Nualart [1]). 
Diédhiou and Manga in [2] studied the limit of ,  
with a nondegenerate condition of the matrix. In Freidlin 
& Sowers[3], three cases are considered, with the 
assumption that the matrix is non, but we formulate here 
a hypoellipticity condition of. Since the parameter   
(homogeneization parameter) decreases quickly than  
(large deviations principle parameter) to zero we must 
homogenize first and apply the large deviations principle. 



We use essentially probabilistic tools to solve our 
problem. 

Let  a probability filtered space. We    0
, , t t
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 consider the  valued process IR 1d   , ,x

tX   solu- 
tion of the SDE: 

, , , ,
, , ,

, ,
0

d d
x x

x t
t t

x

X X
dtX W B t

X x


 






    
     

    
 

 
 








d



  (2) 

where  and d , d: IR IR , : IR IR ,d d B   
 ; 0tW t   is a d-dimensional standard Brownian mo- 

tion. 
We assume that   and ,B   are smooth mappings 

from , and periodic with period one in each direc- 
tion. 

dIR

The mapping ,B   is assumed to be of the form : 

, ,
0 1 2B B B B 


   

 

where  and 0 1,B B ,
2B   are in  for every  d dIR , IR 

0, 0   and 

 d d
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2, 0 IR ,IR
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p
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where  d dIR , IRpC  be the collection of periodic con- 
tinuous mappings from  into . dIR dIR

The infinitesimal generator ,L   is gigen by 
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and where  dIR , IRg   is a bounded function and 
we set 

 
IR

.sup
dx

g x g


    

Let set  

  d
0 IR : 0 ,G x g x    

since g  is continuous we have 
o

0 0= .G G  

We assume that  is periodic in each direction, with 
respect to the first argument, and it verifies: 

f

  dIR , ,1 0x f x    
 There exists  d IR, IR  bounded such that IRC  

   , ,f x y C x y y   
with 
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, 0, IR , 1
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and we assume that 

      d

IR
max , ,0 0, IR .
y

C x y C x C x x


      

Let us consider the progressive measurable process 
 solution of the BSDE:  , , , , , ,,t x t xY Z   
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By Pardoux and Peng [4], we have for all 

    d, 0, IRt x    ,  

 , ,
0, .t xu t x Y    

The matrix a    (where  is the symbol of 
transposition) is degenerate. Let us consider the 

 

Definition 1.1 The Lie bracket between the vector 
fields jA  and kA  is defined by 

, ,j k j k k jA A A A A A       

where .i
j k j k

i

A A A A
x

 
 



  

We assume that the matrix   of the column vectors 

j  verifies the strong Hörmander condition, defined by 
the 

Definition 1.2 Let  , H n x  be the set of Lie brackets  

of   
1j j d

x
 

 of order lower than  at the point  n

dIR .x  
We say that the matrix   satisfies the strong Hör- 

mander condition (called SHC) if for all , there 
exists  such that 

dIRx
INxn   ,xH n x  generates  d .IR

We organize this paper as follows. Section 2 contains 
the results of large deviations principle. In Section 3 we 
study the behavior of the solution of the PDE (1). 

2. Large Deviations Principle 

Since, 
0

lim 0


  
 (when we set    ) we have a 

problem of homogenization because the matrix 

   a x x   is not elliptic. 

Since   tends to zero faster than , the homogeni- 
zation dominates, and the large deviations principle will 
be applied to the problem with constant coefficients. 



For the homogeneization in the hypoellipticy case, we 
use the results of Diédhiou and Pardoux [5] and Pardoux 

[4,6,7]. 

Setting: 2
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where  , : 0tW t  

d

 is a standard Brownian motion. 

The -valued process T , ,x
tX   , is a Feller process, 

then has a unique invariant measure  , and we have 

0 ,   when  see [5]. 0
We assume that 

   
d

0 0 d 0B z z 
T

,               (3) 

and the homogenized coefficients see [3] are 
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Let us define, for each  and  0T  dIR ,x
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T x T xg g
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The details of the calculation of this limit are the same 
as in Freidlin and Sowers [3]. 

In order to establish a large deviations principle, we 
will consider the 

Theorem 2.1 ([8]) Fix  and  Assume 
that 

0T  dIR .x

1) For each  d
,IR , T xg   is well-defined in 

 ,  . 
2) The origin is in the interior of the set  

  d
,IR : T xg    . 

3) The set   ,IR :d
T xA g      has a no-  

nempty interior 
o

,A   ,T xg   is well-defined for all  
o

, ,A   and 
 

o ,
, ,

lim sup .T x
A A

g
 


 

    

Then the random variables   satisfy a  , , : 0x
TX   
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large deviations principle with rate function 1
,T xI  defin- 

ed by 1 0 0

1 1
0 .

2 4π
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0
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The limit  ,T xg   satisfies the conditions 1) and 2). 
For the condition 3) we may assume more that the matrix 
A  is strictly positive-definite. In fact it is not a strong 

assumption, for 

Let us consider 
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1 1
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sup , , IR ,
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Example 2.2 If we choose  and 0d 3, 0B 
by the assumption on A , we get 
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, , IR
2

A B B       d .  

Thus the form of  and the assumption on 1 A  
imply that 3) is true.  

this matrix satisfies the Hörmander condition, and We have the 
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Theorem 2.3 (Freidlin and Sowers [3]) Fix 0  
and assume that the assumption (3) is true. For every 

 and 00

0T 

dIRx ,T T   the family    of 
valued random variables satisfies a large devia- 

tions principle (LDP) with rate function  

, , :x
TX   0

dIR - 

 1 1
, , IRT x

z x
I z T z

T

   
 

 d .  

The invariant measure 0  has the density  Furthermore, this LDP is uniform for all 00 T T   
and  dIR .x  d, , 2 I1 , ,p x y z x x y z

T
 . 

Proof: See Freidlin and Sowers [3].  
Then we have Let us consider some definitions: 
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Since the function  is convex we can show that 1
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So we have the 
Theorem 2.4 For all , we assume that the 

assumption (3) holds. The family  
0T 

 , , ;0 ; 0x
tX t T     , 

We know that for all     d, 0, IRt x    , the solu- 
tion  , ,u t x  of the PDE is of the form: of   d0, ; IRT

 T

 -valued random variables satisfies a 
Large Deviations Principle (LDP) with rate function 

1
0S   for all   d0, ; IR .T    0, ,, , , ,x t  u t x Y   

Proof: See Freidlin and Sowers [3].  and by the Feynman-Kac formula, we have 
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 3. Asymptotic Behavior of ,u    

We want to apply the technics used by [6], so we 
consider now the BSDE: Our aim is to study the behavior of the  , ,u t x  
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when  tends to zero. 
Remark 3.1 

 If 1g  , then d , IR , 0x   
, , ,0 1,dIPx t

sY s   d as  

 In the other cases, if  

       d, 0, , IR 1C x y y x y    ,   

where   is Lipschitz continuous, then 
, , ,

0limsup 1x tY    

uniformly in any compact set of   d0, IR .   
We give the 

Definition 3.2 A functional     d: 0, , IR 0,C t t    

is a stopping time if for all   d, 0, , IRC t     and all  

 0, , rs t r     for all  0,r s  and   s    imply  

   .     
Let us set t  the set of stopping times and t   the 

set of elements   of  such that there exists   
such that for all 

t

       d0, , IR : inf : , sC s t t       s   

with the convention  inf .t    is hence a well de- 
fined element of  and   is the open set associated. t

      d: 0, 0, , IR 0,C       

is an element of  (resp.   ) if and only if, for all 
 0, ,tt     tt   (resp. t ) where  
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then we deduce that   , , 0u t x 

We have the 
Theorem 3.3 For     d, 0, IRt x    ,  we have 
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uniformly in any compact set  of  . 
3) 

 ,

0
lim , 1,u t x





 

in all compact set   of . 
o


Proof: For first item, the proof is the same as in [2]. 
For the second point we can see that there exists 

 such that 0C 

   ,0 , e , ,
C

u t x t x 
    .  

The third item is an immediate consequence of 1). 
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