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ABSTRACT 

In this paper, analysis of post-treatment of wire coating is presented. Coating material satisfies power law fluid model. 
Exact solutions for the velocity field, volume flow rate and average velocity are obtained. Moreover, the heat transfer 
results are presented for different cases of linearly varying on the boundaries. The variations of velocity, volume flow 
rate, radius of coated wire, shear rate and the force on the total wire are presented graphically and discussed. 
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1. Introduction 

The wire coating process is basically an extrusion opera-
tion in which either the molten polymer, in the form of 
tubing, is extruded continuously over axially moving 
wire, or the wire is pulled through the extruded molten 
polymer. Polymer extrudate is an important industrial 
process used for coating a wire for primary insulation of 
conducting wires with molten polymers for mechanical 
strength and environmental protection purposes. Wire 
coating have many application in the field of chemical 
and industrial engineering. Many authors have studied 
the wire coating phenomena. 

The basic concept of modeling the wire coating for 
viscous fluid is given in the books by Denn and middle-
man [1,2]. McKelvey [3] and Paton et al. [4] have ana-
lyzed the flow of Newtonian and power law fluid model 
in wire coating process, and obtained expressions for the 
flow rate, shear rate and the velocity distribution along 
the radial direction. Gagley and storey [5] provided nu-
merical simulations for a Newtonian fluid in the form of 
dimensionless parameters characterizing the wire speed, 
die dimensions, radial position, shear rate, and melt vis-
cosity. Akhter and Hashmi [6,7] have developed the 
mathematical model for wire coating using power law 
model and investigated the effect of the change in vis-
cosity. A.M Siddiqui, T.Haroon and H. Khan [8] studied 

the wire coating extrusion in a pressure-type die in flow 
of third grade fluid. Fenner and Williams [9] carried out 
an analysis of the flow in the tapering section of a pres-
sure type die. They obtained the numerical solutions for 
the pressure and velocity profiles in the die. M. Sajjid et 
al. [10] studied the wire coating with Oldroyd 8-constant 
fluid and gave the solution for velocity field in the series 
form. 

The coated wire after leaving the die is effected by the 
quality of the material used in coating process, the wire 
drawing velocity and the temperature. There are very few 
disclosures presenting theoretical analysis of flow in the 
posttreatment process subsequent to the die. 

The analysis of the drag flow of the coated polymer 
outside pressure die was carried out by Kasajima and 
Katsuhiko Ito [11]. They derived the expression for ve-
locity and temperature field. Moreover, they found the 
volume flow rate, average velocity and discussed some 
cases for constant velocity and constant temperature on 
the boundaries. We work under the same geometry as by 
Masayuki Kasajima and Katsuhiko with the assumption 
that the polymer obeys the power law fluid model and 
derived the velocity field, volume flow rate, thickness of 
coated wire, average velocity, the force on the total wire 
surface and linearly varying temperature distribution in 
the direction of flow. As the posttreatment problem is 
mainly concern with temperature for cooling the coated 
wire therefore due to its importance and realization of  *Corresponding author. 
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physical problem we discussed some cases of linearly 
varying temperature for analysis of temperature distribu-
tion as follows: 
 Temperature of the wire is constant while it is varying 

linearly on the surface of the coated wire. 
 Temperature of the wire varying linearly while it is 

constant on the surface of the coated wire. 
 Temperature of the wire and the surface of coated wire 

are varying linearly at the same temperature gradient. 
The non-linear differential equations governing the 

model are made dimensionless and solved for velocity 
and temperature distribution. Theoretical analysis on the 
drag flow mechanism of polymer extrudate, in the heat 
treatment process, is presented. 

2. Basic Governing Equations 

The basic equations governing the flow of an incom-
pressible fluid with thermal effects are: 

0u  ,                        (1) 

Du
divT f

Dt
   ,                (2) 

2
p

D
c k S

Dt
 

   L              (3) 

where u  is the velocity vector,   is the constant den-
sity, f is the body force, T  is the Cauchy stress tensor, 
D Dt  denote the material derivative,  is the fluid 
temperature, is the thermal conductivity, 


k pc  is the 

specific heat and L  is the gradient of velocity vector 
u . 

The Cauchy stress tensor T  is defined as 

T pI   S ,                 (4) 

In which  is the pressure, p I  is the identity tensor 
and S  is the extra stress tensor. For power law fluid 
model S  is defined as 

1S A ,                    (5) 

where 

  
1

2 T

0

:
; 0.5

2

n

u u 


        




     (6) 

where  is the scalar invariant,  :    is the coeffi-
cient of viscosity of the fluid,  in superscript denotes 
the transpose of the matrix 

T
u , 0  is the consistency 

index and  is the power law index. The index  is 
non-dimensional and the dimension of 0

n n
  depends on 

the value of . The parameter  subdivide fluids into 
pseudoplastic fluids , dilatant fluids  and 
Newtonian fluid For . Therefore the deviation of 

 from unity indicates the degree of deviation from 
Newtonian behavior [12]. 

n n
 1n 
1n 

 1n  

n

3. Formulation and Solution of the Problem 

In wire coating process, the quality of the polymer and 
wire drawing velocity are important within the die, after 
leaving the die temperature and the shape of the trans-
verse sectioning is also very important. Consider the flow 
of the polymer extrudate given in Figure 1, denoted by 
the solid line. To analyze the flow behavior of a polymer 
used in wire coating, it is convenient to divide the flow 
transversely into many short sections as shown by broken 
lines in Figure 1 with the assumption that each section 
has almost the same shape, we analyze only one section 
because each section can be assumed to be approximately 
of the shape shown in Figure 2 and readily analyzable. 

Consider the wire of radius 1  is dragged in the  
direction with velocity 1V  through an incompressible 
polymer satisfying power law fluid model (II) and the 
gas (III) surrounding the polymer (II) is flowing with a 
velocity in the  direction. 

R z

2

Consider the cylindrical coordinates  such 
that  is perpendicular to the direction of flow. 

V z
 , ,r z 

r
Assume that: 
1) The flow is incompressible due to the high viscosity 

of the polymer. 
2) Polymer II holds the power law fluid model for 

shear rate. 
3) In Figure 2 the wire I, the polymer II and gas III are 

in contact with each other and consider no slippage oc-
curs along the contacting surfaces of the wire, polymer, 
and the gas. 

Also assume that the flow is steady, laminar, unidirec-
tional and axisymmetric: 

 
Polymer

Metal wire

Die  

Figure 1. Schematic profile of polymer extrudate in wire 
coating. 

 
Free surface 

Metal wire I

Ploymer II 

Gas III 

z

r

r = R1

r = R2

v = v2

v = v1

r = 0  

Figure 2. Drag flow in wire coating. 
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We seek the velocity field of the form 

   0,0, ,u w r S S    r

1

.          (7) 

then the boundary conditions for the problem become 

1

2 2

at ,

at .

w V r R

w V r R

 
 

                (8) 

In the flow through the tube, the scalar invariant is: 

 
2

: 2
w

r

      
              (9) 

Substituting Equation (9) into Equation (6) one ob-
tains: 

1

0

n
w

r
 

    
.               (10) 

Using the velocity field (7) the continuity Equation (1) 
is satisfied identically, and the non zero components of 
Equation (5) with the help of Equation (10) become: 

0

d

d

n

rz

w
S

r
    

 
                (11) 

Substituting the velocity field and Equation (11) in the 
momentum Equation (2) neglecting the body force take 
the form: 

0
p

r





                     (12) 

0
p







                     (13) 

0

d d

d d

n
p

r
z r r


 

   

w
            (14) 

If the z-axis is chosen correspond to the direction of 
increasing pressure, polymer (II) moves in the minus  

direction of the z-axis and the shear rate 0 d

d

w

r
  ,  

becomes plus for all value of  Therefore, the absolute 
value of Equation (5) can be discarded. 

.r

Equation (14) represents the flow due to pressure gra-
dient. After leaving the die, there is only drag flow. 
Hence, we consider 

0

d d
0

d d

n
w

r
r r


        

            (15) 

and the energy Equation (3) becomes: 
1

2
0

d
.

d

n

p

D
c k

Dt r
 

      
 

w
         (16) 

For linearly varying temperature, consider 

   ,r z Az g r   ,               (17) 

where A  is the temperature gradient. 
Substituting Equation (17) into Equation (16), we have 

12

02

d 1 d d
.

d dd

n

p

w
c wA k g

r r rr
 

        
  

     (18) 

Now first the velocity field is determined from Equa-
tion (15) and then the temperature distribution can be 
easily calculated using Equation (18). 

The average velocity is 

 
2

1

2 2
1 2

2
d

R

ave
R

w rw
R R


  r r          (19) 

At some control surface downstream, the volume flow 
rate of coating is 

 2 2
1π cQ V R R  1

r

             (20) 

where  is the radius of the coated wire. c

The volume flow rate of the polymer is 
R

 
2

1

2π d
R

R

Q rw r                 (21) 

The thickness of the coated wire can be obtained from 
Equations (16) and (17) as 

 
2

1

1

2
2
1

1

2
d

R

c
R

R R rw r r
V

.
 

  
  

          (22) 

The force on the wire is computed by determining the 
shear stress at the wire surface. This is given by 

1

1

0

d
.

d

n

rz r R

r R

w
S

r






   
 

         (23) 

The force on the total wire surface is 

1
12πw rz r RF R LS


             (24) 

Introduce the dimensionless parameters 

 1 1
1 1 0 1 1

1
1 2 2

1 10 1

, ,

, 1,

n n

n
p

n

r w g
r w G

R V V kR

c AR R V
S U

R VV








 
 



  

   

,

    (25) 

Equations (8), (15) and (18)-(25) after dropping the 
“ ” take the following form: 

d d
0

d d

n
w

r
r r

        
,                   (26) 

   1 1,andw w  U  ,               (27) 

12

2

d d d

d dd

n
G G w

r r
r rr


    
 

Srw ,         (28) 
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 
 

2 2
2 1

2
11 1

d
2

ave

ave

w R R
w

R V


  


rw r r ,       (29) 

 2
11 1

d
2π

Q
Q rw

R V



   r r


,              (30) 

 
1

2

1 1

1 2 d ,c
c

R
R rw r

R

 
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 



r            (31) 

1
1

0 1 1 1

d
,

d

nn
rz

rz nr
r r

S R w
S

rV
 

    
 

          (32) 

1
1

1 1

d
,

d2π

nn
w

w n

r

F R w
F

rLV





    
 


             (33) 

The solution to (26) corresponding to the boundary 
conditions (27) are: 

   
1

1

1
1 1,for

1

n

n

n

n

r
w r U n







 
     

  

1       (34) 

For , the velocity field can be obtain from Equa-
tion (26). 

1n 

    ln
1

ln

r
w r U


   1,            (35) 

where the superscript “ ” means the case of 1n  . 
For the average velocity is obtained from Equa-

tions (29) and (34): 
1n 

   

  

11
2

1

2

1
1 1 1 1

2

2
1 1

3 1 1

n

n
ave

n

n

w U

n

n

 








  
        

          






      (36) 

For  the average velocity is obtained from 
Equations (29) and (35): 

1n 

   
1

2
2

1 1
1 1 1 1

2avew U 1

2ln




          

 


 (37) 

For  the shear rate can be obtained from Equa-
tion (34): 

1n 

1

1
1

d 1 1

d
n

n

n

w n U
r

r n









         
 

         (38) 

For  the shear rate is obtained from Equation 
(35) as: 

1n 

1

1
1

d 1 1

d
n

n

n

w n U
r

r n








         
 

        (39) 

The thickness of the coated wire for  is obtained 
from Equations (31) and (34): 

1n 

   

  

11

1

21

2

1

2
1 1 ,

3 1 1

n

n

n

nn

n




21 2 1 1 1 1
2cR U 
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

   


            



   (40) 

Similarly, the thickness of the coated wire for 

             

1n   
is obtained from Equations (31) and (35): 

   2

1

1 2 1 1 1
2cR U       

21

2

1

1 1
1 .

2ln



  

          



      (41) 

In a similar manner, the force on the total wi
for power law index is not equal to 1 is 

re surface 
n  

1
1

w n

n

F
n





 1 1
n

n U
       



and the force on the total wire surface for the case when 
the power law index is equal to 

   

,             (42) 

n  1 is given by 

1

lnwF
n

U


    

 


.                   (43) 

In dimensionless fo  the volume flow rate form r  is 
or is not equal to 1are the sam
Equations (37) and (36) resp

gi

e

 n
e as the average velocity in 

ectively. 
In case of transformation of our problem to ori nal 

parameters the results of velocity field, volume flow rate, 
average velocity and rate of shear stress are transformed 
to the results of Kasajima and Katsuhiko Ito [11] for n  
is or is not equal to 1. 

Figure 3 illustrates the well known effect of n  on 
the velocity profile; i.e. for pseudoplastic the profile be-
comes progressively flatter; and for dilatant fluids th  
profile becomes progressively linear. 

Keeping the importance of temperature in our problem 
we are seeking the temperature distribution with different 
cases. 

Case 1. Temperature of the wire is constant while it is 
varying linearly on the surface of the coated wire: 

Here, consider the temperature of the wire is 0 , and 
it is Az  on the surface of the coated wire, so from 
Equation (17) we have 

   
   

01, 1 ,

,

z Az g

z Az g Az 

    

   
         (44) 
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Figure 3. The velocity profile for different index  taking 
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After transformation we obtain 
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. 

 the velocity field from Equation (23) is 
substitu uation (22) and solved corresponding to 
the bou conditions (45), we obtain the expression 
for tem e distribution in form of  as: 
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
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


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


 (46) 

For  the velocity field from Equation (24) is 
substitu uation (22) and solved corresponding to 
the b conditions (45), the explicit function for 

d for temperature field as: 

1n 
te in Eq

oundary 
is obtaineG  
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1 ln
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
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ln

S

 
 



Case 2. Temperature of the wire varying linearly while 
it is constant on the surface of the coated wire: 

In this case, consider the temperature at the surface of 
wire is , and 

         
  

       
  

   (47) 

1 Az  

Under the above consideration Equation (17) gives 

   1, 1 ,z Az g Az   

    1z Az g ,    
          (48) 

After transformation of the boundary conditions (48) 
for the non-dimensional temperature 
takes the following form 

distribution G  

   1 0,G G J              (49) 

where 

 
1

1 1
0 1 1

n n

Az
J

V kR  

 
 . 

For 1n   the velocity field from Equation (22) is 
substitute in Equation (22) and solved corresponding to 
the boundary conditions (49), we have 

   2 2
1

1 ln
1 1 1

2 ln
1

n

n

U r
G r r 






          
2 3 1 3 1

1

1
2 1 1

1

1 ln
1 1

3 1 ln
1

1 ln
1 1

1 ln
1

ln

ln

n n

n n
n

n

n
n n

n n
n

n

S

U n r
S r

n

U n r
r

n

r
J













 




 



 


                       

                       



 (50) 

For 1n   the velocity field from Equation (24) is 
substitute in Equation (22) and solved corresponding to 
the boundary conditions (49), we have 

   

 

2 2

2 2

1 ln
1 1 1

4 ln ln

1
ln

U r
G r

S U
r r J


 



        
  

   
     (51) 

ln

4 ln ln

S
r

r

 



 
 

Case 3. Temperature of the wire and the s
coated wire are varying linearly at the same t
gradient: 

Consider the temperatures at the surface of wire and 
on

urface of 
emperature 

 the surface of continuum are Az . 
From Equation (17), we have 

   
 ,

z Az g Az

z Az g

   

   
          (52) 

 
1, 1 ,

r Az

 to demand of our prob-
lem, we obtain 

After simplification according

   1 0, 0G G                  (53) 

For 1n   the velocity field from Equation (22) is 
substitute in Equation (22) and solved corresponding to on the surface of continuum. 
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the boundary conditions (53), we have 

   2 2
1

1 ln
1 1 1

2 ln
1

n

n

S U r
G r r 






            
2

1

3 1 3 1

1
2

1

1 1

1

3 1
1

ln
1 1

ln

1

1
1

ln
1 1

ln

n

n

n n

n n

n

n

n

n n

n n

U n
S

n

r
r

U n

n

r
r













 





 

          
  
         

          
  
         

  (54) 

For  the velocity field from Equation (24) is 
substitute in Equation (22) and solved corresponding to 
the boundary conditions (53), after simplification we 
have 

1n 

   

 2 21
ln

4 ln

S U
r r


   

 

4. Conclusion 

The posttreatment of wire coating analysis are carried out 
for power law model fluid. The velocity field, volume 

e velocity, force on the total wire, 

2 21 ln
1 1 1

4 ln ln

S U r
G r r 

 
         

      (55) 

flow rate, averag
thickness of coated wire and shear rate have been derived 
for n  is or is not equal to 1. In posttreatment problem 
the temperature is extremely important for cooling the 
wire. Therefore, regarding the importance of temperature 
we have discussed three cases for linearly varying tem-
perature. Expression for temperature distributions in 
non-dimensional form are obtained for 1n   and 1n  . 
The interpretations of the results are carried out under the 
influence of non-dimensional parameters. It is concluded 
that the velocity decreases as the power law index n  
increases. In addition, the non-Newtonian parameter   
decrease the fluid velocity. Also, it is concluded that the 
force on the coated wire increases as the velocity ratio 
increases and decreases while increases . It is observe  
that for  1n   the thickness of coated wire increases. 
Moreover, with a linearly varying wall temperature along 
the direction of flow the highest temperature rise in the 
centre of the channel depends on the dimensionless 
number S . One can see the behavior of the physical 
quantities such as velocity function, non-dimensional 
function of temperature profile and the differential form 
of these functions from Figures 3-15. 
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Figure 4. The velocity profile for different values of velocity 
ratio taking index U .n 0 1  and  2.  
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Figure 5. The shear rate for different values of velocity ratio 
taking index U .n 0 1  and  2.  
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Figure 6. Force wF


 is plotted against U for different values 

of  by taking n  2.  
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Figure 7. Radius of coated wire cR


 is plotted against 

for different values of n   by taking . 1 2.  U
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Figure 8. Radius of coated wire cR


is plotted against n for 

different values of   by taking . 1 2.U  
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Figure 9. Volume flow rate is plotted against U for differ-
ent values of power law index n  by taking 2.  
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Figure 10. The non-dimensional function G r different 
values of non-dimensional parameter 
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Figure 11. The non-dimensional function G  for d t  
. 0 15H . , . , n u H0 5 0 5   2.  
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Figure 12. The non-dimensional function for different 
values of  taking 

G
n , ,  J U S10 0.6 5  and  2.  
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Figure 13. The non-dimensional function for different G
.5values of H taking J = 4, U = 0.6, S = 25, n = 0  and  2.  
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Figure 14. The non-dimensional function for different G
values of n  taking . , ,  J U S0 5 0.6 10  and  2.  
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Figure 15. The non-dimensional function for different G
values of non-dimensional parameter S  king ,ta  2J  

. , . 0 3 0 4U n and  2.  
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