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ABSTRACT 

In this paper we consider a nondivergent elliptic equation of second order whose leading coefficients are from some 
weight space. The sufficient condition of removability of a compact with respect to this equation in the weight space of 
Hölder functions was found. 
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1. Introduction 

Let D be a bounded domain situated in -dimensional 
Euclidean space n  of the points 
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 be its boundary. Consider in  the follow- 
ing elliptic equation 
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in supposition that  ija x  is a real symmetric matrix, 
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Here  g x  is non-negative function from  
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and  are constants. Besides we’ll assume that the 

minor coefficients of the operator  are measurable in 
. Let 

0 0b 

L
D  0,1   be some number. 

The compact E D  is called removable with 
respect to the Equation (1) in the space  if from  C D



 x  C D0, x D  ; 0;
D E

Lu E u u 
      (6) 

it follows that   0u x   in . D

2. Auxiliary Results 

The paper is organized as follows. In Section 2, we 
present some definitions and auxiliary results. In Section 
3 we give the main results of the sufficient condition of 
removability of compact. 

The aim of the given paper is finding sufficient con- 
dition of removability of a compact with respect to the 
Equation (1) in the space . This problem have 
been investigated by many researchers. For the Laplace 
equation the corresponding result was found by L. Car- 
leson [1]. Concerning the second order elliptic equations 
of divergent structure, we show in this direction the pa- 
pers [2,3]. For a class of non-divergent elliptic equations 
of the second order with discontinuous coefficients the 
removability condition for a compact in the space 

C
 D

 DC  was found in [4]. Mention also papers [5-9] in 
which the conditions of removability for a compact in the 
space of continuous functions have been obtained.The 
removable sets of solutions of the second order elliptic 
and parabolic equations in nondivergent form were 
considered in [10-12]. In [13], T. Kilpelainen and X. 
Zhong have studied the divergent quasilinear equation 
without minor members, proved the removability of a 
compact. Removable sets for pointwise solutions of 
elliptic partial differential equations were found by J.  
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Diederich [14]. Removable singularities of solutions of 
linear partial differential equations were considered in R. 
Harvey, J. Polking paper [15]. Removable sets at the 
boundary for subharmonic functions have been inve- 
stigated by B. Dahlberg [16]. Also we mentioned the 
papers of A.V.Pokrovskii [17,18]. 

In previous work, authors considered Direchlet pro- 
blems for linear equations in some space of functions. In 
this work we consider Newman problem for quasilinear 
equations and sufficient conditions of removability of a 
compact in the weight space of Holder functions is ob- 
tained. The application value of the research in many 
physic problems. 

Denote by  RB z  and  RS z  the ball  :x x z R   

and the sphere  :x x z R   of radius  with the  R

center at the point n  respectively. We’ll need the 
following generalization of mean value theorem belong- 
ing to E.M. Landis and M.L. Gerver [8] in weight case. 

z E

Lemma. Let the domain  be situated between the 
spheres  and , moreover the intersection 

D
 0RS 2 0RS

 :D x R x  2R  be a smooth surface. Further, let  
in D  the uniformly positive definite matrix  

  ; , 1, ,ija x i j n   

and the function      2 1u x C D C D   be given. Then 
there exists the piece-wise smooth surface  dividing 
in  the spheres  and  such that 
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 is a derivative by a conor-  

mal determined by the equality 
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where  cos , ; 1, ,jn x j n   are direction cosines of a 

unit external normal vector to  . 
Proof. Let  be a bounded domain  nG R

  2f x C

 x

G . Then for any there exists a finite number 

of balls  which cover , 1, 2, ,rB N


   fQ  and such  

that if we denote by S , the surface of  -th ball, then 
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Decompose fO  into two parts: f fO O O  f , where  

fO  is a set of points fO  for which , 2 0f  fO  is  
a set of points for which . 2 0f 

The set fO  has -dimensional Lebesque measure 

equal zero, as on the known implicit function theorem, 
the 

n

fO  lies on a denumerable number of surfaces of 
dimension 1n  . If we use the absolute continuity of 
integral 

   d
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D
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for which 

D
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Now by a Banach process ([4], p.126) from the ball 
system  5

x
tB  we choose such a denumerable number  

of not-intersecting balls  5 , 1, 2, ,
x
tB N

     that the  

ball of five times greater radius  x
tB 


 cover the whole 

fO  set. We again denote these balls by  

 5 , 1, 2, ,
x
tB N

     

and their surface by vS  . Then by virtue of (4) 
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Assign arbitrary 0  . By virtue of that x
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for sufficiently small  we have t
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Again by means of Banach process and by virtue of (6) 
we get 
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d ,
n
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where nS  is the surface of balls in the second covering. 
Combining the spherical surfaces v  and S  vS   we get 
that the open balls system cover the closed set fO . Then 
a finite subcovering may be choosing from it. Let they be 
the balls 1 2, , , xB B B  and their surfaces is 1 2, , , NS S S . 

We get from inequalities (3) and (5) 

   1 0
1

d .
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f C D
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Put now  1 0C D C      . 

Following [2], assume 
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We denote the intersection by . We can assume 
that the function  is defined in some 

G
 u x   vicinity  
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4
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On a closed set  we have . Consider on G 0f 
G  the equation system 

d
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Let  a such from surface that it touches to field 
direction at any his point, then 
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d 0
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 is identically equal to zero at . S

We shall use it in constructing the needed surface of 
 . Tubular surfaces whose generators will be the trajec- 
tories of the system (10) constitute the basis of  . 

They will add nothing to the integral we are interested 
in. These surfaces will have the form of thin tubes that 
cover G . Then we shall put partitions to some of these 
tubes. Lets construct tubes. Denote by  the intersec-  E

tion of G  with sphere 
3

1
4
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Let  be a set of points . Where field direction of  N E
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. 

Put E E F  . Cover  on the sphere by a finite 
number of open domains with piece-wise smooth bound- 
aries. We shall call them cells. We shall control their 
diameters in estimation of integrals that we need. The 
surface remarked by the trajectories lying in the ball 

E

7

4
x R  and passing through the bounds of cells we  

shall call tube. 
So, we obtained a finite number of tubes. The tube is 

called open if not interesting this tube one can join by a 
broken line the point of its corresponding cell with a  

spherical layer 
5

4 4
R x  

7
R . Choose the diame-  

ters of cells so small that the trajectory beams passing 

through each cell, could differ no more than 
2n


. 

By choose of cells diameters the tubes will be con- 
tained in 

5 5
.

4 4
R x   R  

Let also the cell diameter be chosen so small that the 
surface that is orthogonal to one trajectory of the tube 
intersect the other trajectories of the tube at an angle  

more than 
π

4
. 
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Cut off the open tube by the hypersurface in the place 
where it has been imbedded into the layer 

5 5

4 2 4
R x


   R  

at first so that the edges of this tube be embedded into 
this layer. 

Denote these cut off tubes by 1 2 . If each 
open tube is divided with a partition, then a set-theo- 
retical sum of closed tubes, tubes 1 2  their par- 
titions spheres 

, , , ST T T

, , , ST T T
1 2, , , NS S S  and the set F  on the  
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4
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2x R . Note that d
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each tube equals to zero, since 
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n




 identically equals to 

zero. 
Now we have to choose partitions so that the integral 

d
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  was of the desired value. Denote by  the  iU

domain bounded by i  with corresponding cell and hy- 
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Consider a tube i  and corresponding domain iU . 
Choose any trajectory on this tube. Denote it by i . The 
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.
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R
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On i  introduce a parameter in -length of the are 
counted from cell. By  denote the cross-section by 

i  hypersurface passing thought the point, corres- 
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Now by   we denote a set-theoretic sum of all open 
tubes all thought tubes  all  all spheres   iT  0i l iS
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Then, we get by Equations (3), (9), (11) and (17) 
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The lemma is proved. 
Denote by  1

2,W D  the Banach space of the func- 
tions  u x  defined in  with the finite norm D
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and let  be a completion of  by the 
norm of the space 
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o

W D  0C D

 1
2,W D . 

By  sm AH  we’ll denote the Hausdorff measure of 
the set A  of order . Further everywhere the nota- 
tion 

0s 
 C   means, that the positive constant  de- 

pends only on the content of brackets. 
C
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3. Main Results 

Theorem 1. Let  be a bounded domain in n , D 
E D  be a compact. If with respect to the coefficients 
of the operator  the conditions (2)-(5) are fulfilled, 
then for removability of the compact  with respect to 
the Equation (1) in the space  it sufficies that 

L
E

C D


 2 0.Hm E n                 (7) 

Proof. At first we show that without loss of generality 
we can suppose the condition 1D C 

1D C

 is fulfilled. Sup- 
pose, that the condition (7) provides the removability of 
the compact  for the domains, whose boundary is the 
surface of the class , but 

E
1C    and by fulfilling 

(7) the compact  is not removable. Then the problem 
(6) has non-trivial solution 

E
 u x , moreover  E

 
and . We always can suppose the lowest coe- 
fficients of the operator  are infinitely differentiable 
in . Moreover, without loss of generality, we’ll sup- 
pose that the coefficients of the operator  are ex- 
tended to a ball 

u f x
 f x 

D

0
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B D  with saving the conditions (2)- 

(5). Let          mi ,0f x max ,0 , f x  nf
 u x

x f x , 
and  be generalized by Wiener (see [8]) solutions 
of the boundary value problems 
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 x  be solutions of the problems 
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rality we can suppose that the cover 
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finite multiplicity . By lemma for every  there 
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points situated between 
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k
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rS x k  
D  the arbitrary connected component D , 

and by  we denote the elliptic operator of divergent 
structure 
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.
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2
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subject to (12) and (8) we conclude 
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applying the inequality 

 

   

    22 2

, , d

d

1
d d

2

D

D

D D

b x u u x

g x x u x

g u x x u x










 





 



 

 





  

 

Hence, for any 0   applying Cauchy inequality we 
have 

 

 

 

 

   

2

2
0

2
0 3

2 220 0

0 4

0

0 4 3

2 d

6 d 6

2 1 d

d

6 d 6 d
2

2 1 d d

2 1
6

.

i i j

D

i
D D

ij j xi
D

x ij x x
D D

D D

j
D D

n n

u x

d u u x u x

u a u x

d u x a u C

d d
u x u x

n u x d u x C

Md
Mmes D mes D

d M D C M D C

 

 



  

 


  


 

   



 



 

 

 



 



 

 

 



 

 

  

  

   


 

  



 



 

 

  

 

If we’ll take into account that 

 4 ,
i jx x C x   

then from here we have that 
22

5d ,
D

u x C


   

where  

  

   

5 0

3
0 4

6 2 1 nC d M Mmes D

C
d M C M D 



  

  
. 

Without loss of generality we assume that 1  . 
Hence we have 

22
6d .

D

u x C    

Thus    1
2,u x W D . From the boundary condition  

and  1 0nmes D E    we get    1
2,u x W D . Now, 

let 2   be a number which will be chosen later,  

  : ,D x x D u x
  0   . Without loss of generality,  

we suppose that the set D
  isn’t empty. Supposing in 

(13) 1, ,z u    we get 

 

 

1

1

5 0 1

d d

d d

, , , .

D D

D D

u
u x u u s

u
M s M

C a M C

  


 

   


 


 

 
 

 
 







 

    


 





 

 



s  

But, on the other hand 

Copyright © 2013 SciRes.                                                                                  AM 



T. S. GADJIEV, O. S. ALIYEV 296 

   

 

 

, 1

1

, 1 , 1

1 1

, 1 , 1

, ,

, ,

, ,

n

ij
i j i j

n n

ij ij xi
i j i ji j i

n n

ij ij
i j i ji j i

u
u a b x u u

x x

u
a u a

x x x x

b x u u

u u
a u a u x

j

j

u

x x x

b x u u







 



  

  





 

 

 

  
      

      
             

 

    
         

 



 

 



 

x






 

 

 

 

 

 

1 1

1

1 1

2 1

1

1

, ,

1

, ,

3

j i i

ij
i j

ij
i j

ij
i j

ij x x x ij
j

ij
i j

u
u u a u

x x

u
u a b x u u

x x

u
u u u a

x x

u
a u u u u a

x

u
u a b x u u

x x

u M u

 



 

 





 

  

 

   

  



 



 

 





  
      

  
       

  
      

 
      

  
       







 

 

       

   

   

2

1

2

, =1

1

, =1

1

, ,

d 1 d

1 d

2 1 , , .

j

i j

i

j

ij i x

x ij x

i x

D D

n

ij i j
i jD

n

ij j x
i jD

a ux u u

u a u b x u u

d x u u x u x c x x

u x a u u x

u a u u b x u u











  

  

    

  



 
 















 

   

  

 

   

 





 

Hence, we conclude 

 

 

 

 

22 2

1
0

1
0

0

1 d

d , ,

d , ,

d , , .
2

D

i

D

i

D

D

u u x

d u u x b x u u

d u u x b x u u

d
u x b x u u









  

























 

 

 

  













0

          (16) 

Let , 1  be an arbitrary 
connected component of 

  : ,D x x D u x   
D

D

 . Subject to the arbitra- 
riness of   from (16) we get 
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Thus, for any 0   
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But, on the other hand 
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and besides, for any 0   
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where r x . Denote by  the quantity  k D sup
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Without loss of generality we’ll suppose, that   1k D  . 
Then 
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Now, choosing ,
n


 we finnaly obtain 
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Subject to Equation (18) in Equation (17) ,we con- 
clude 
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Now choose   such that 
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Then from Equations (18)-(20) it will follow that 
 in , and thus   0u x  1D   0u x   in . Suppose that  D
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Then Equation (20) is equivalent to the condition 
22

0 .
1

d
n


 

        
            (21) 

At first, suppose that 
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Let’s choose and fix such a big 2 

n
n

 that by 
fulfilling (22) the inequality (21) was true. Thus, the 
theorem is proved, if with respect to  the condition 
(22) is fulfilled. Show that it is true for any . For 
that, at first, note that if , then condition (22) 
will take the form 
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Now, let the condition (22) be not fulfilled. Denote by 
 the least natural number for which k
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Consider -dimensional semi-cylinder n k 
  0 0 0, , , ,D D           , 

where the number 0 0   will be chosen later. Since  

  1D  , then   01D    k . Let’s choose and fix 

0  so small that along with the condition (23) the 
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was fulfilled too. 
Let 
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Consider on the domain D  the equation 
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It is easy to see that the function    y u x   is a 
solution of the Equation (25) in D E . Besides,  

     2 2
02 0

kn k n
H Hm E m E        , 

the function  y  vanishes on 

   0 0 0 0

times

, ,

k

D E   
 
       
 
 

  and 0







 

at 0 , 1, ,n ix i k     , where 



 is a derivative by  

the conormal generated by the operator . Noting that 
       0 0, d d        and subject to the condi- 

tion (24), from the proved above we conclude that 
  0y  , i.e. D . The theorem is proved. 
Remark. As is seen from the proof, the assertion of 

the theorem remains valid if instead of the condition (3) 
it is required that the coefficients  
have to satisfy in domain  the uniform Lipschitz 
condition with weight. 

  , 1, ,ija x i j n 
D

Thus in this paper the sufficient condition for remova- 
bility of the compact respect Newman problem for quasi- 
linear equation in classes in the weight space of Holder 
functions is obtained. 
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