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ABSTRACT

Homaoclinic bifurcation with one orbit flip, two inclination flips and resonance in the tangent directions of homoclinic
orbit is considered. By studying the associated successor functions constructed from a local active coordinate system,
we prove the existence of double 1-periodic orbit, 1-homoclinic orbit, and also some coexistence conditions of

1-periodic orbit and 1-homoclinic orbit.
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1. Introduction and Hypotheses

Flips homoclinic bifurcations are comprehensively in-
vestigated during the last decade (see [1-10]), which
produce complicated bifurcations, such as the saddle-
node bifurcations, the period-doubling bifurcations and
the homoclinic-doubling bifurcations.

Recently, the flip of heterodimensional cycle or ac-
companied by transcritical bifurcation is discussed much
(see [11-13]). The double and triple periodic orbit bifur-
cation are proved to exist, and also some coexistence
conditions for homoclinic orbits and periodic orbits. But
their research is not focused on multiple flips since it is a
interesting problem and full of challenges due to the high
codimension and complexity. In this paper, we develop a
study of resonant homoclinic bifurcation with one orbit
flip and two inclination flips, where the resonance takes
place in the tangent direction of the homoclinic orbit.
This is a codimension-4 problem, by using the local
moving frame method established in [11,14,15], we get
the existence of a double 1-periodic orbit, some 1-pe-
riodic orbits and 1-homaclinic orbits, and the coexistence
conditions of 1-periodic orbits and 1-homoclinic orbits.

We consider the following two systems,

2=1(2)+9(z.u), (1.1
2=1(2), (1.2)
where r>3,zeR* ueR' 124,0<|u/<1 f(0)=0,
9(0,1)=9(2,0)=0.
“Project supported by National Natural Science Foundation of China

(Grant: 11126097) and by Scientific Research Foundation for the Re-
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Notice that system (1.2) is an unperturbed system of
(1.1) and assume it has an orbit

I={z=r(t):teR,r(+x)=0}

homaoclinic to the hyperbolic equilibrium z =0, which
has two negative and two positive eigenvalues, A,,4,,

—Pu—pyand 4, >4 >0>—p >—p,.

Hypotheses

Set W*® (resp. W*®) and W" (resp. W) the stable
(resp. strong stable) manifold and unstable (resp. strong
unstable) manifold of the equilibrium z=0, respec-
tively. We suppose that

(H1) 4 (1)=p,(u) for |y <1, where 4(0)=4
and p,(0)=p,.
(H2) Define e* :tlir_rlr'(t)/|r‘(t)|,e; = lim ¢ (t)/]¢ (t)],

t—>+0

then e" eTW" and e eTW™ are unit eigenvectors
corresponding to 4 and —p, respectively, where
T,W" is the tangent space of the corresponding manifold
W' at the saddle z=0, and the similar meaning for
TW*=,

(H3) Denote by e; and e the unit eigenvectors
correspondingto A, and —p, respectively, there are
lim {T,  W*,T,

t—>+0

tl—lﬂl {Tri

GWe e} =R,

WOT, Wo e | =R

®) (

Remark 1.1 Hypotheses (H1) is a resonant condition,
while (H2) - (H3) mean the homoclinic orbit has one
orbit flip and two inclinations flips.
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The paper is organized as follows. In Section 2, we
first transform system (1.1) into two normal forms, then
construct a regular map in some neighborhood of the
homoclinic orbit and a singular map in some neigh-
borhood of the equilibrium respectively to establish the
Poincaré map. In Section 3, we develop the bifurcation
study through searching for solutions of the bifurcation
equation. Finally a short conclusion about the flips bifur-
cation is given in Section 4.

2. Local Active Coordinate Frame and
Poincaré Map

We first give two normal forms of system (1.1) and then
construct the Poincaré map. Firstly system (1.1) can be
transformed into the following form in some neighbor-
hood U of the origin O due to the theory of inva-
riance manifolds, (refer to [14,15])

X:[ﬂl(y)+a(y)xv+o(|xvmx
+O(u)[0(x2v)+0(y)],
y=[—p1(,u)+b(y)xv+o(|xv|)]y
+0(1)[0(3)+0 ()] 01
u:[/iz(y)+c(y)xv+o(|xv|)]u
+XH, (X, y,v),
V:[—pz(y)+d(y)xv+o(|xv|)}v
+y?H, (X, y,u),
where H,(0,y,0)=0, 4(0)=4, 4,(0)=4,,
2 (0)=p, and p,(0)=p,. a(u),b(x),c(u) and

d(x) are parameters depending on 4 .

One may see that from (2.1), TNW,, and TNW,,
are straightened locally to be the x,v axes in
neighborhood of O, so it is possible to take some time
T >0 large enough, such that r(-T)={5,0,0,0} and
r(7)={0,0,0,6}, where &5 issmalland

{06 y,u,v) 2] XL y) |ul. v < 26} <U

Now consider the linear variational system

2=Df (r(t))z, (2.2)
and its adjoint system
2=-(Df(r(1)) z (2.3)

Matrix theory shows that system (2.2) has a funda-
mental solution matrix and furthermore it can be chosen
as follows (refer to [11,14-15])

Lemma 2.1 There exists a fundamental solution ma-

trix Z(t)=(z(t).z,(t).z(t).z(t)) of system (2.2)

Copyright © 2013 SciRes.

satisfying
Wll WZl 0 WAl
0 0 0 w,
Z(-T)= w, 0 1 w,/|
13 43
w, 0 0 w,
0 0 w, O
w, 0 w, 1
Z(T)= ,
1 0 w, O
0 1 w, O
where

a(t)e(T W ) N(TW* ) '
7,(t)=—r(t)/Jr" (T)

z, (t) e Tr(t)W !

u S
€T WH T, W°,

and z,(t) €T, W*, and wy,W, Wy w,, #0,w, <O0.

Obviously (Z’l(t))* is a fundamental solution ma-
trix of system (2.3), denote by

O (1) = (1), 6, (1), (1), (1) = (27 (1))

We here introduce a new coordinate N =(n,,0,n,,n,)’
and set

s(t)=r(t)+Z(t)N
=r(t)+z(t)n +2z5(t)n; +z,(t)n,.

Naturally we can choose two cross sections of T", see
Figure 1,

So={z=5(T):[x.|y].Jul.]v| < 26} <U,
S, ={z=s(-T):|x.|y].|u.]v| < 26} < U.

(2.4)

Substitute (2.4) into (1.1), there is
=g (t)g,(r(t),0)u+hot,i=134.

Integrating both sides from -T to T, we further
have

n(T)=n(-T)+Mu+hot,i=134, (25)
where

M= [ 6 (09, (r(0).0)ct= [ & ()9, (r(0).0)at.

Equation (2.5) defines indeed a map F:S, — S, in
some tube region near T,

N (=T)=(m(=T),0my (=T ).y (-T)) > N(T)

:(nl(T),O,n3(T),n4(T))*

see Figure 1(a). If set
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Figure 1. Transition maps. (a) Fy: §1—S8; (b) Fy: Sy—S;.

Uz5 = 0z; (ij’ YajiUzjsVaj ) € S0 tja
=sz+1(xzj+1! y2j+1'u21+1'v21+1)€ 3

and

N,; (nzj,l’o’ nZJVS’nZJW“)’

N2j+1(n2j+1,1vov IERT n21'+1,4)’ ]=012,-
we can obtain the following expressions,

Nyj1 = Up; _W33W3T11X2j'

Nyjs = War Xy, 20

-1
n2j,4 = y2j _W12u2j +(W12W33 _Wsz)Walsz'l

Mja1 = =WV, j+ =W, Wi, W Y, jr
Nyi3 =Usjn _W13W1:11V21+1 @7)
+ (W13W44W1:11 = Wy3 ) WY, jois I
Mjiaa = W;zlyzml
and
Xpji1 X O,Vy; % 6. (2.8)

Using the flow of system (2.1) in the neighborhood
U , we can set up a map

Fo 2 So = Si30g (X0, Yo Ui Vo ) > G (%, YUy Vy )
defined as (see [14,15])

7»1(#) 271( )

AWy +0] x2v,s 2™ Ins |,

% =x(T)=s

)+ ()
Y, =y(T+7) =5y, +0| xVo¥os 2 Ins |,
2.9
2o(u) Aa(u)+22 (1) ( )
Uy =u(T) =5y, +0| xvus 2

Ins |,

P2(#) sz(u)
v, = V(T +7) =2y, +0| xvZs »*) Ins |,

where s=e " s the Silnikov time and 7 is the
time going from q, to q,, see Figure 1(b).

Copyright © 2013 SciRes.

From the above the Poincaré map
F=FoF:g,eS,—=0q, €S,
is obtained
p2(#)
= wiiss ) —w,,wiiwlsy, + M u+hot.,
pz(u)
Ny = U, — W, Wi 550

- -1
+ (W13W44W14 —W,, ) W,,SY, + M, +hot.,
-1
Ny, = W,,SYy, + M, +hot..

Then the corresponding associated successor function
G(s,u,Y)=(G,G;,G,)=F(q)—0, is
Pa(n) Aa(#) A ()
G, = wiiss ) —u,s2) 4w wilss A

—W,, W, WSy, + M u+hot.,

palu) Alx)
G, = U, — W w255 —wlss ) 210
+(WigWogWeg' —W,g ) WSy, + M+ hot, (2.10)
Aa(#)
G, = Wy,SY, — Yo + lesm(u)ul
A(#)

+(W32 — Wi Wss ) ngléspl(ﬂ) +M,u+hot.

Since s=e """ is defined by the flying time from
the point in S, to S, obviously s>0 means 7 is
limited; s=0 means 7=+, which indicate the exi-
stence of a periodic orbit or a homoclinic orbit of system
(1.1). So in the following section, we focus us on the
solutions s of (2.10).

3. Bifurcation Results

The last two equations in (2.10) give
A
Uy = (W5 + Wy, ) 5™ — M+ O sy, ),
A X
Yo = (Wg, — WayWi, ) W 557 +M4y+0(sy0)+o(s”l}

Then from G, =0 we get the bifurcation equation
i A

F(su)= (1+ W14W33W;11) s7 + & Wy, My 5™
— W, W,y 8 M s + 6wy, M,

Ath
-1 1
= Wy, Wy, (W W12W33)W s (3-1)
Pty
+ (Wi W,y — Wiy Wy ) W0 "M s 7
1344 haWy3 ) Wy v
+h.ot.=0.

Notice that we have put higher orders terms into h.o.t.
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and omitted the parameter x in the eigenvalues for
concision.
Define two functions as

P (s, 1) =Wy,W,,6 " M,us— 5w, Mu+hot.,
A £
Q(s u)= (1+W14W33W3_11)S”1 + 67 Wy, Mous”
AtA
Wy, Wy (Way — Wi, Wy JWos 4 +hoot
447742 32 127733 31 i

Indeed here F (s, x)=Q(s,u)—P(s,x). By analysis

of the curves f =P(s,x) and f =Q(s,x), one may
immediately get the following statements.

Theorem 3.1 Suppose that Rank(M,,M,)=2, then
in the region R, UR,,, system (1.1) has a unique 1-pe-
riodic orbit near T ; in the region R,,, system (1.1) has
not any 1-periodic orbit.

Proof Because

P(0, 1) =-w,6 M, +hot,Q(0, 1) =0,

P'(s, 1) = Wy W,,;6 "M, u+hot.,
Ay
Q’(s,y):i(lerMw&,,w;f)spl +hot.,
P
the curve f =Q(s,«) has no inflexion point, so th e
line f=P(s,«) and the curve f =Q(s,x) must in-
tersect at a unique point in the region R; UR,, , where

Ry = {/1|W14M1,u <0, W Wy, M 11 < 0}
and
Ry = {,u| Wy Myt < 0, Wy Wy, M, 11> 0} ;

see Figure 2(a). Namely there exists a point s> 0 such
that

F(s,u)=Q(s,u)—P(s,u)=0,

therefore system (1.1) has a unique 1-periodic orbit. On
the contrary, there is not such a intersection point in the
region

Ry = {ﬂ| Wy Myt > 0, Wy, Wy, M, g1 < 0} ;

see Figure 2(b).

Theorem 3.2 Suppose that Rank(M,,M,)=2, then
in the region R,,, system (1.1) has a unique double 1-
periodic orbit near T" located in the bifurcation surface
SN*.

Moreover when  lies on the side of SN' pointing
to the (resp. opposite) direction —(sgn Wy, ) M., system
(1.1) has two (resp. not any) 1-periodic orbits near T .

Proof We know that the existence of a double 1-pe-
riodic orbit corresponds to a double solution s* of (3.1).
According to the proof of Theorem 3.1, it is enough to
search the tangent point of the curves f =P(s,x) and

Copyright © 2013 SciRes.

f=0(@s.u)
f=P(su)
@] s
(a)
S=0(su)
(0] Ky
\Nz P(su)
(b)
f=0(@s.p)
S=P(su)
0] Ig‘* \

(©)

Figure 2. Location between the curves. (a) # € R;{UR),; (b)
# € Ry; () € Ry

f =Q(s,u), thatis to solve
P(s,4)=Q(8: 1), P'(s,1) = Q' (s, 1)

and P"(s,u)=Q"(s,u), concretely,

Wy, Wiy 6 My 18 — 5~ Wy M,

A &

= (L Wy Wegwi )57 — 575, w57 +hot.,
A A
Wy Wi 6 My = (1+ W14W33W3_11) s”

1

Z2 (3.2)
-22575,w,s” +hot,
P
A,
0= 4 (ﬂ'l _,01)<1+ W14W33W;11) s”
h

4 (A= py)5 5, W, +hot..
Then the tangent point
AL

A=pL
s" = 2 1W44|\f|14ﬂ +hot.
(1+ Wig WagWay ) A OW,,

as w,,w,,M,u>0.Combining the first equation of (3.2)
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with the tangent point, we obtain the double periodic
orbit bifurcation surface

: - P W,
S CErA TS
Aﬂ.W42

,0 W AP A
: . (M, p1)4-n +hot.
(1+ Wiy WaaWay )%5 Wo

in the region u € R,, . At the same time, when zeR,,,
the line W =P(s, ) lies under the curve W =Q(s, x),
see Figure 2(c), so if —w,, M, u increases, the line must
intersects the curve at two sufficiently small positive
points, therefore system (1.1) undergos two 1-periodic
orbits. Then the proof is complete.

Theorem 3.3 Suppose that Rank (M, M,)=2, then
system (1.1) has only one 1-homoclinic orbit near T' in
the region R, ; has only one 1-periodic orbit near T’
in the region R, ; has exactly one 1-homoclinic orbit
and one 1-periodic orbit near T inthe region R, ; has
not any 1-periodic orbit or 1-homoclinic orbit in the
region Ry, .

Proof When

HeRy = {ﬂ| Wiy M g1 =0, Wy, Wy My 12> 0} ,

Ay 2

F(s u)= s{(1+ Wi Wy W ) S+ W, M, us”

-1

A
11 -1 -1
Wy Wyy & My =~ Wi Wi (Wi — Wi W ) Way 87 + h.O.t.]

=0
has always two solutions s, =0 and

AL

A-p
w,, M
S, = H 4_? +hot.
(1+ Wiy Wa3Way )W425

or has only a zero solution s, =0 for

HeRy = {,u| Wy Myt =0, Wy, Wy, M g1 < 0} .
While for
HERy = {,u| Wy, My g0 < 0, Wyp W, M, 1t = 0} '

apparently the line W = P(s, ) is horizontal. So
F(s,.)=0 gives merely a solution

AL
A

M J o

So=|"7—— <
(1+ W, Wa Wy )5
The last conclusion is obvious for

HERy = {ﬂ|W14M1/U >0, W, Wy, M, 11 = O} :

Copyright © 2013 SciRes.

In the following, we study the case w,, =0. Then
(31)is
A %
F(s ) =(l+ W14W33W3j11)s”l +07 W, M us”
Pty
+6 W, M 41— W, W, oW, 6 "M us * +hot.=0.

Similar to the proof of Theorem 3.1 and 3.3, we have
Theorem 3.4 Suppose that Rank(M,,M,)=2, then
in the region D, UD,,, system (1.1) has a unique
1-periodic orbit near T ; in the region D,,, system (1.1)
has not any 1-periodic orbit.
Proof Redefine
4
P(s,u)==0"W,M,us” -5 'w,M,u+hot.,
A
Q(S. ,U) = (1+ W14W33W3_11)Sp1
Pt

-1¢-1 PL
— W, W, W,,0 M, 1S +h.ot..

By studying the relationship between the curves
f =P(s,u) and f =Q(s,u), itiseasy to get the main
ideas, see Figure 3. Here

Dy, = {,U| Wy M e < 0, Wy, Myt > 0}1
Dy = {/U| Wy M g1 >0, Wy, My < 0}

S=0Q(@su)

o s

\f: P(sp)
@

S=0(s.u)
S=P(s.u)

(b)
f=0G.u)

o s

r\\\fP@w)

©

Figure 3. Location between the curves. (a) 4 € D5 (b)u €
Dyy; (¢) u € Dy,.
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and
Dy, = {,u|W14M1,u >0, W, Myu > 0} :

Remark 3.1 For the case w,, =0, system (1.1) has
no longer double 1-periodic orbits and the double 1-pe-
riodic orbit bifurcation surfaces.

Theorem 3.5 Suppose that Rank(M,,M,)=2, then
system (1.1) has only one 1-homoclinic orbit near T in
the region D, ; has only one 1-periodic orbit near I' in
the region D,,; has not any 1-periodic orbit or 1-ho-
moclinic orbit in the region D,,.

Proof Notice that

Ay A

F(s,u)= s[(1+ Wi Wi W ) $1 + 8 M, us”

1

J
—W, W, Wiy M 1S + h.o.t.] =0

has only a zero solution s, =0 for
ueDb, :{,u|W14M1/1 :O} .
And the line f =P(s, ) is horizontal for
ueby,= {,u|Wl4Ml,u <0,wW M u= O} UD,,
= {,u|Wl4M1,u >0,w, M = O}.

Thereby the conclusion is clear. We omit the details
here.

4. Conclusion

The theoretical development of flip bifurcations indeed
advanced much in recent years. More and more com-
plicated cases with several flips or accompanied by trans-
critical bifurcation nowadays are discussed. This paper
focuses on a kind of three flips homoclinic case with
resonance and introduces an effective method to extend
the study. By the analysis of the bifurcation equation, the
existence of a double 1-periodic orbit, some 1-periodic
orbits and 1-homoclinic orbits, and the coexistence con-
ditions of 1-periodic orbits and 1-homoclinic orbits are
given. From the study, one notice that different leading
terms of the bifurcation equation may cause different
bifurcation phenomena, so we can go further in the future
work.
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