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ABSTRACT 

A new family of numerical integration formula is presented, which uses the function evaluation at the midpoint of the 
interval and odd derivatives at the endpoints. Because the weights for the odd derivatives sum to zero, the derivative 
calculations cancel out for the interior points in the composite form, so that these derivatives must only be calculated at 
the endpoints of the overall interval of integration. When using N subintervals, the basic rule which uses the midpoint 
function evaluation and the first derivative at the endpoints achieves fourth order accuracy for the cost of N/2 function 
evaluations and 2 derivative evaluations, whereas the three point open Newton-Cotes method uses 3N/4 function 
evaluations to achieve the same order of accuracy. These derivative-based midpoint quadrature methods are shown to 
be more computationally efficient than both the open and closed Newton-Cotes quadrature rules of the same order. This 
family of derivative-based midpoint quadrature rules are derived using the concept of precision, along with the error 
term. A theorem concerning the order of accuracy of quadrature rule using the concept of precision is provided to jus-
tify its use to determine the leading order error term. 
 
Keywords: Numerical Integration; Numerical Quadrature; Midpoint Rule; Open Newton-Cotes Integration;  

Derivative-Based Quadrature 

1. Introduction 

Open Newton-Cotes quadrature formula rely on a weighted 
averaged of function evaluations of the form 
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where there are n + 1 distinct uniformly distributed inte- 
gration points at 0 1, , , nx x  x  within the interval [a, b], 
where ix a i  h , and n − 1 weights wi. A common 
approach to finding the weights wi is based on the preci- 
sion of a quadrature formula, which is the largest positive 
integer P such that the quadrature formula exactly inte- 
grated the monomials xk for 0,1, ,k P   but not 1Px  . 
Using the method of undetermined coefficients, this ap- 
proach generates a system of P + 1 linear equations for 
the weights wi. Since the monomials 2 3, , ,1, , Px x x x  
are linearly independent, the linear system obtained via 
this approach has a unique solution. 

The midpoint rule is 
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for  ,a b  . This quadrature rule uses N/2 function 
evaluations and is second order accurate. 

The two-point open Newton-Cotes rule is 
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for  0 3,x x  . In the composite form, the formula for 
n = 1 open Newton-Cotes quadrature rule is 
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for  ,a b  . This quadrature rule uses 2N/3 function 
evaluations and is also second order accurate. 

The three-point open Newton-Cotes or Milne’s rule is 
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x x  . In the composite form, the formula for 
the midpoint rule is for  0 4,x x  . In the composite form, the formula for 
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n = 2 open Newton-Cotes quadrature rule is 
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for . This quadrature rule uses 3N/4 function 
evaluations. This rule is fourth order accurate. 

 ,a b 

These stencils can be generated quickly via mathe- 
matical software programs. From these results, in their 
basic forms, one can observe that the order of accuracy 
when the number of evaluation points n is odd is n + 2; 
whereas, the order of accuracy when the number of 
evaluation points is even is only n + 1. For their related 
composite quadrature formula for integrals over general 
intervals, the order of accuracy is reduced by one. 

The precision of a numerical integration scheme is di- 
rectly related to the number of parameters that can be 
manipulated within the numerical quadrature formula. 
For some cases, the precision is one higher than this 
number as the case for the midpoint rule and Simpson’s 
rule, due to advantageous cancellations within these 
formula. For closed Newton-Cotes quadrature, the num- 
ber of parameters is one more than the number of inter- 
vals, since the endpoints are included; whereas for open 
Newton-Cotes quadrature, the number of parameters is 
one less than the number of intervals, since only the inte- 
rior points are included. For Gauss-Legendre integration, 
both the locations and the weights need to be specified, 
for the generic interval [−1, 1], so there are twice as 
many parameters as evaluation locations for this type of 
quadrature. In each of these methods, by increasing the 
number of parameters, the precision and the order of ac- 
curacy of these methods increases. 

Work by Dehghan et al., and related publications have 
focused on increasing the order of accuracy of standard 
numerical integration formula by two orders of accuracy 
by including the location of boundaries of the interval as 
two additional parameters, and rescaling the original in- 
tegral to fit the optimal boundary locations. Using the 
concept of precision, they set up a system of nonlinear 
equations, which are solved approximately using a com- 
puter algebra system. Their system is nonlinear since the 
location of the endpoints along with the weights are pa- 
rameters within the system. They have applied this tech- 
nique to Gauss-Legendre quadrature [1], Gauss-Lobatto 
quadrature [2], Gauss-Chebyshev integration [3], closed 
Newton-Cotes integration [4], Gauss-Radau integration 
[5], Chebyshev-Newton-Cotes quadrature [6], semi-open 
Newton-Cotes [7] and open Newton-Cotes [8]. 

Burg [9] took a different approach by including first 
and higher order derivatives at the evaluation locations 

within the closed Newton-Cotes quadrature framework, 
in order to increase the number of parameters and hence 
the precision and order of accuracy of the resulting for- 
mula. He was able to establish theoretical error bounds 
for several of the derivative-based closed Newton-Cotes 
quadrature formula and showed that the resulting quad- 
rature rules were more computationally efficient than 
similar order closed Newton-Cotes quadrature formula. 

In this paper, the use of derivatives at the endpoints is 
investigated within the context of the midpoint rule, 
which is the one-point open Newton-Cotes quadrature 
rule or equivalently the one-point Gauss-Legendre quad- 
rature rule. Because of the odd nature of the midpoint 
rule, the use of odd derivatives produces highly advanta- 
geous results, creating quadrature rules that are much 
more efficient than existing open or closed Newton- 
Cotes quadrature rules. These new schemes are presented 
in the next section. In Section 3, a comparison of the 
computational costs of these methods is presented, where 
the minimum number of subintervals to achieve an error 
of 10−12 is calculated along with the number of function 
and derivative evaluations. Finally, in Section 4, nu- 
merical results are presented that demonstrate that the 
predicted order of accuracy is actually observed. A theo- 
rem concerning the leading order error term in a quadra- 
ture rule is proved in the appendix, along with an associ- 
ated conjecture concerning the overall error in a quadra- 
ture rule. 

2. Derivative-Based Midpoint Rule 

A new class of quadrature formula based on derivatives 
can be obtained from the midpoint method by looking for 
quadrature form 
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where N is the number of derivatives to include in the 
quadrature formula and h is the uniform spacing between 
each location xi. By using the concept of precision, a 
system of 2N + 1 linear equations can be derived for the 
coefficients ak and bk. 

For instance, for N = 1 which only uses the first de- 
rivative, the quadrature formula as the form 
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which creates the following system involving three pa-
rameters a0, a1 and b1 
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Solving for the undetermined coefficients a0, a1 and b1 
and using the relationships that x1 = x0 + h and x2 = x0 + 
2h, the numerical integration scheme for the first deriva- 
tive-based midpoint rule 
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As was the case with the midpoint rule, the precision 
for this quadrature rule is one higher than expected, since 
it exactly integrates   3f x x . 

The error term for this quadrature rule and the other 
quadrature rules presented in this paper have been ob- 
tained by using a theorem and conjecture based on the 
concept of precision. Proved in the appendix, this theo- 
rem states that the error between the exact integral and 
the quadrature rule is related to the difference between 
the integral of the monomials and the numerical quadra- 
ture of the monomials. For the first derivative midpoint 
based quadrature rule shown above, since the precision is 
three, this rule exactly integrates the monomials 1, x, x2 
and x3, but not x4. The leading order error term for this 
rule is based on the difference between the integral of x4 
and the quadrature rule approximation of x4. The conjec- 
ture simplifies the infinite Taylor series into a single term, 
similar to the Taylor remainder term for the truncated 
Taylor series. Using this observation, the first derivative- 
based midpoint rule with error term is 
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for  0 2,x x  . Thus, this quadrature rule is fifth order 
accurate. Because the coefficients a1 and b1 sum to zero, 
these derivatives cancel out through the interior when 
used in the composite form, so the composite form of the 
quadrature rule is 
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for . This fourth-order quadrature rule uses 
N/2 function evaluations and two derivative evaluations. 

 ,a b 

For the N = 2 case which uses the first and second de-
rivatives, the quadrature formula has the form 
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Using the concept of precision, this formula generates 
five equations with the five unknowns a0, a1, a2, b1 and 
b2, by exactly integrating the monomials  through x4. 
Solving this system, the optimal quadrature rule is 
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for some  ,a b  . Unfortunately, the signs of coeffi- 
cients for the second derivatives are the same, so the 
same beneficial canceling does not occur here. 

The N = 3 case, dealing only with the first and third 
derivatives, does have the nice cancellation. This quad- 
rature rule can be stated as 
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Because of this cancellation, the composite formula 
involving the first and third derivatives can be written as 
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for  ,a b  . This sixth-order quadrature rule uses N/2 
function evaluations, two first derivative evaluations and 
two third derivative evaluations. 

This pattern continues for all cases dealing with odd 
derivatives result in quadrature rules where the deriva- 
tives cancel out at the interior points and must only be 
evaluated at the endpoints of the overall interval. By us- 
ing the first, third and fifth derivatives, an eighth-order 
quadrature rule can be defined, which uses N/2 function 
evaluations and two first, third and fifth derivatives. This 
quadrature rule has the form 


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for . This pattern continues for higher deriva- 
tives, assuming that only the odd derivatives are used in 
the quadrature formula. 

 ,a b  

As a last comment, the pattern for generating higher 
order accuracy derivative-based quadrature rules of the 
open Newton-Cotes type involves the use of a central 
difference approximation to the derivative in the error 
term, using a one order lower derivative. As a result, the 
weights for the lower order derivatives do not change as 
the quadrature formula is expanded. Because of this rela- 
tionship, the weights for the next derivative terms in- 
volve the coefficients for the leading order error term in 
the lower order quadrature rule, as can be clearly seen in 
the preceding cases. 

3. Computational Efficiency in Composite 
Form 

To compare the computational efficiency of the various 
open and closed Newton-Cotes formula along with the 
derivative-based midpoint quadrature formula, the num- 
ber of calculations required by each quadrature formula 
to guarantee a level of accuracy of 10−12 is calculated for 
the following integrals: 

 2
2 3

2

0 0

e d       e sin 4 dx xx x x          (19) 

In Table 1, the number of function and derivative 
evaluations for the various quadrature formula presented 
herein is listed for the first integral. The best second or- 
der accurate method is the midpoint method. Assuming 
that the derivative evaluations are roughly the same 
amount of computational complexity as the function 
evaluations, the best fourth order accurate method is the 
first derivative-based midpoint method, using 829 func- 
tion and derivative evaluations. The best sixth order ac- 
curate method is the derivative-based midpoint method 
using the first and third derivatives, which requires only 
93 function and derivative evaluations. The eighth order 
accurate derivative based method requires only 37 func- 
tion and derivative evaluations to guarantee an accuracy 
of less than 10−12. 

In Table 2, the numerical function and derivative 
evaluations for the various quadrature formula presented 

herein is listed for the second integral. As was the case 
with the first integral, the derivative-based midpoints 
obtain the desired level of accuracy using fewer function 
and derivative evaluations than either the closed or open 
Newton-Cotes methods. The computational cost for each 
of these methods is shown in Table 3, confirms that 
these methods will always be the most efficient, due to 
the size of the constant coefficient. As seen in these re-
sults, the derivative-based methods are computationally 
superior to either the closed or open Newton-Cotes me- 
thods of the same order of accuracy. 

 

Table 1. Computational Cost for .  x x
2

2

0

e d

Rule Func. Eval. Deriv. Total 

Trapezoid 1,154,702 0 1,154,702 

Simpson’s 1211 0 1211 

Boole’s 181 0 181 

Midpoint 816,497 0 816,497 

Two-Point 1,333,334 0 1,333,334 

Three-Point 1755 0 1755 

First-Deriv 827 2 829 

1st/3rd Deriv 89 4 93 

1st/3rd/5th 31 6 37 

 

Table 2. Computational Cost for .  4 x x x
3

2

0

e sin d

Rule Func. Eval. Deriv. Total 

Trapezoid 6,000,001 0 6,000,001 

Simpson’s 4773 0 4773 

Boole’s 503 0 503 

Midpoint 4,242,641 0 4,242,641 

Two-Point 6,928,204 0 6,928,204 

Three-Point 6924 0 6924 

First Deriv. 3264 2 3266 

1st/3rd Deriv. 250 4 254 

1st/3rd/5th 81 6 87 

 
Table 3. Computational Cost for Closed and Open Newton- 
Cotes and Derivative-Based Quadrature Formula. 

Rule Order Func. Eval. Deriv. 

Trapezoid 2 N + 1 0 

Simpson’s 4 N + 1 0 

Boole’s 6 N + 1 0 

Midpoint 2 N/2 0 

Two-Point 2 2N/3 0 

Three-Point 4 3N/4 0 

First-Deriv 4 N/2 2 

1st/3rd Deriv 6 N/2 4 

1st/3rd/5th 8 N/2 6 
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4. Numerical Results 

To demonstrate the accuracy of the new numerical inte- 
gration formula based on the inclusion of the derivative,  

the values of 
2

2

0

e dx x  and  
3

2

0

e sin 4 dx x x  are esti- 

mated using the midpoint rule and the first three deriva- 
tive-based midpoint quadrature rules, dealing with the 
first derivative, the first and third derivatives and the first, 
third and fifth derivatives. 

The calculation of the order of accuracy is obtained 
using the following approach. Let  represent the 
numerical results using step size . The following for- 
mula is used to calculate the observed order of accuracy 

, involving numerical results ,  and  
 or 
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The programming language REXX [10,11] was used 
to generate these numerical results, using 50 significant 
digits for the calculations. 

In Tables 4-7, the results for the numerical approxima- 

tion to 
2

2

0

e dx x  are shown; and in Tables 8-11, the re-  

sults for the numerical approximation to 

 
3

2

0

e sin 4 dx x x  are shown. For both integrals, the ob-  

served order of accuracy of the derivative-based mid- 
point quadrature formula is converging to the appropriate 
theoretical order of accuracy. The first derivative-based 
midpoint rule is clearly fourth order accurate; the first 
and third derivative rule is demonstrating sixth order 
accuracy; and the quadrature rule using first, third and 
fifth derivatives shows eighth order accurate results. For 
these methods, the derivatives are only evaluated at the 
overall endpoints of the interval of integration, rather 
than at the interior points. Thus, these methods are only 
slightly more computationally expensive than the mid- 
point rule, even though their accuracies are significantly 
higher. 

 

Table 4. Midpoint Rule .  x x
2

2

0

e d

N Midpoint Rule Order 

8 0.882788948539727 NA 

16 0.882268699199420 NA 

32 0.882128870336645 1.8955 

64 0.882093301420376 1.9750 

128 0.882084370974332 1.9938 

Table 5. First Derivative Rule .  x x
2

2

0

e d

N First Derivative Rule Order 

8 0.882025796919363 NA 

16 0.882077911294329 NA 

32 0.882081173360372 3.9978 

64 0.882081377176308 4.0004 

128 0.882081389913315 4.0002 

 

Table 6. 1st/3rd Deriv. Rule .  x x
2

2

0

e d

N 1st/3rd Deriv Rule Order 

8 0.882081443391682 NA 

16 0.882081389198849 NA 

32 0.882081390729405 5.1460 

64 0.882081390761872 5.5589 

128 0.882081390762412 5.9093 

 

Table 7. 1st/3rd/5th Deriv. Rule .  x x
2

2

0

e d

N 1st/3rd/5th Deriv Rule Order 

8 0.882081590078811 NA 

16 0.882081391490832 NA 

32 0.882081390765217 8.0964 

64 0.882081390762432 8.0254 

128 0.882081390762422 8.1227 

 

Table 8. Midpoint Rule .  4 x x x
3

2

0

e sin d

N  Midpoint Rule Order 

8 0.289196832893572 NA 

16 0.223348414333666 NA 

32 0.205579954577182 1.8898 

64 0.201176929049535 2.0128 

128 0.200799561383190 3.5445 

 

Table 9. First Deriv. Rule .  4 x x x
3

2

0

e sin d

N 1st Deriv-Based Rule Order 

8 0.195705275438686 NA 

16 0.199975524969946 NA 

32 0.199736732236252 4.1605 

64 0.199716123464302 3.5344 

128 0.199714754742010 3.9124 
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These quadrature rules were obtained by using the 
concept of precision. If a quadrature rule has precision P, 
then it exactly integrates the monomials 1, x, through xP 
but not 1Px  . Using this concept, a system of P + 1 lin- 
ear equations in the coefficients of the quadrature for- 
mula can be generated. Furthermore, as is shown in the 
appendix, the concept of precision can be used to gener- 
ate the leading order error term for the quadrature for- 
mula. 

Table 10. 1st/3rd Deriv. Rule .   4 x x x
3

2

0

e sin d

N 1st/3rd Deriv Rule Order 

8 0.189610806029132 NA 

16 0.199594620631847 NA 

32 0.199712925715123 6.3991 

64 0.199714635556731 6.1125 

128 0.199714661747787 6.0286 
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Appendix 

In this appendix, a theorem concerning the leading order 
error term in a quadrature rule is proved. Based on its 
association with the Taylor Remainder Theorem, a con- 
jecture concerning the overall error term in a quadrature 
rule is made. A definition for a general quadrature rule of 
precision P is given below, followed by the theorem, its 
proof and the conjecture. 

Definition: A numerical quadrature rule 
 approximates the integral   , , ,QR f x a b n

 d
b

a

f x x  

using n uniformly spaced subintervals xi = a + ih where 
 h b a n   to precision P if it exactly integrates the 

monomials 1, x, x2 through xP but not 1Px  . 
Theorem: Let  f x  be infinitely differentiable on 

[a, b] and its Taylor series centered at x = a converges 
for all  ,x a b . Let   , , ,QR f x a b n  be a quadra- 
ture rule of precision P. Then, the error between  

 d
b

a

f x x  and approximation obtained by the quadra-  

ture rule is 

    

 
   

1

d , , ,

d , , ,
!

b

a

kb
k k

k P a

f x x QR f x a b n

f a
x x QR x a b n
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

 




 

 



 



  (21) 

Proof: This proof relies heavily on the Taylor series of 
 f x  centered at x a , which is 

       

           
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k k P
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

  





 



 
x a

k



0

P

, 0

P

 (22) 

Since the quadrature rule  exactly 
integrates the monomials from x0 through xP, we know 
that 

  , , ,QR f x a b n

 d , , ,
b

k k

a

x x QR x a b n        (23) 

for all . By simple algebraic manipula- 
tions of lower order terms, it is obvious that 

0,1, 2, ,k  

   d , ,
b

k k

a

x a x QR x a a b n        (24) 

as well, for . Multiplying each equation 
by 

0,1, 2, ,k  
  kf a  and dividing by , the quadrature rule 

exactly integrates each of the first P + 1 terms in the 
Taylor series of 

!k

 f x , or 

           
d ,

! !

k kb
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a

x a x a
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  
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 
 



(25) 

for 0,1, ,k P  . Thus, 

    

     

     

        
        

        
     

0

0

0

0

1

d , , ,

d
!

, , ,
!

d , , ,
!

d , , ,
!

d , ,
!

d
!

b

a

kb
k

ka

k
k

k

k b
k

k a

k bP
k k

k a

k b
k k

k P a

k
k

a

f x x QR f x a b n

x a
f a x

k

x a
QR f a a b n

k

f a
x a x QR x a a b n

k

f a
x a x QR x a a b n

k

f a
,x a x QR x a a b n

k

f a
x a x

k

















 






 
 
 
 

 
    

 

 
    

 

 
    

 

 







 

 

 

  
1

, , ,
b

k

k P

QR x a a b n


 

 
   

 

(26) 

Note: the infinite summation can be interchanged with 
the definite integral, since the Taylor series converges for 
all values of  ,x a b . 

Thus, the error term in the numerical quadrature rule 
approximation to the exact integral is an infinite Taylor 
series where the coefficients are determined from the 
monomials 1Px   and higher. Because of this relation-
ship to the Taylor series, the following conjecture is rea-
sonable, since it follows the pattern observed in the infi-
nite Taylor series and the Taylor polynomial with its 
remainder term. The error term obtained from this con-
jecture agrees with the error terms for all quadrature 
formula that the author has studied. 

Conjecture: Let  f x
QR

 have  continuous de-
rivatives on [a, b]. Let  be a quadra-
ture rule of precision P. Then, the error between 

a

1P 
  , , ,a b nf x

 d
b

f x x  and approximation obtained by the quadra-
ture rule is 
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1 1
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    (27) 

for some  ,a b  . 
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