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ABSTRACT 

The aim of this work is the study of the magnetohydrodynamic (MHD) unsteady free convective flow of water near 4˚C 
past an infinitely vertical plate moving with constant velocity. The influence of constant uniform suction was also con-
sidered. The partial differential equations (PDEs) and their initial and boundary conditions, describing the problem un-
der consideration, are dimensionalized and the numerical solution is obtained by using the finite volume discretization 
methodology which is suitable for Fluid Mechanics applications. The numerical results for the velocity and temperature 
fields are shown in figures for different dimensionless parameters entering in the problem under consideration, such as 
the magnetic parameter, M and the Grashof number, Gr. This study predicts the effects of a constant magnetic field and 
uniform suction on the free convective flow of water near 4˚C, when the water is electrically conductive. Analysis of 
the results showed that the velocity and temperature profiles are noticeably influenced by these parameters. 
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1. Introduction 

Free convection flow past an infinite vertical plate is an 
important application from a technological point of view. 
It becomes a more attractive problem when the fluid is 
water near 4˚C, electrically conductive, and the flow is 
subjected to a transverse and constant magnetic field. 

It is known that for a fluid like air or water at ordinary 
temperature and atmospheric pressure the variation   
of the density with the variation  of the temperature 
is given by 

T 

,T                  (1) 

where  at 20˚C. However, for 
temperature variations of magnitude ±4˚C away from 
4˚C, the variations in density are very closely given by 

  142.07 10 C   

 2
,T                 (2) 

with   equal to . From the above it is 
apparent that for small temperature variations, free con- 
vection in water near 4˚C would be different from that at 
20˚C [1]. 

  268.0 10 C
 

Many researchers have studied the steady free con- 
vective flow of water near 4˚C past a vertical plate. 
Govindarajulu [2] has studied the steady free convection 

flow of water near 4˚C on vertical and horizontal plates 
when the temperature of the plate is varying as a power 
of the distance along the plate from the leading edge. 
Soundalgekar [3] has investigated the free convection 
effects on oscillatory flow of water near 4˚C past an 
infinite vertical and porous plate with constant suction. 
The transient free convection of water near 4˚C over a 
doubly infinite vertical porous plate was studied by Pop 
and Raptis [4]. 

The combined convection flow of water near 4˚C 
through a porous medium bounded by a vertical plate 
was studied by Raptis and Pop [5]. Raptis and Perdikis 
also studied the free convection flow of water near 4˚C 
past an infinite porous plate with constant suction and 
free stream-velocity [6]. Singh and Raptis, further in- 
vestigated the free-convection flow of water near 4˚C 
past an infinite vertical porous plate with constant heat- 
flux [7]. The steady mixed convective water flow over a 
vertical plate in a porous medium near 4˚C when the wall 
temperature and surface heat flux vary, were studied by 
Ling et al. [8,9]. Oztop et al. [10], studied the natural 
convection in a triangular enclosure filled with porous 
media saturated with water near 4˚C. Recently, the free 
convection stagnation-point boundary-layer flow in a 
porous medium with density maximum was studied by 
Merkin and Kumaran [11]. The mixed convection of  *Corresponding author. 
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water near 4˚C along a wedge with variable surface 
temperature in porous medium was studied by Khan and 
Gorla [12]. They also studied the nonsimilar solutions for 
mixed convection of water near 4˚C in a porous medium 
[13]. 

The MHD free-convection effects on the oscillatory 
flow of water near 4˚C past an infinite porous plate was 
studied by Georgantopoulos et al. [14]. The steady 
Magnetohydrodynamic (MHD) free convective flow of 
water near 4˚C past a semi-infinite porous plate was 
studied by Perdikis and Takhar [15]. Recently, Guedda et 
al. [16], used the Chebyshev pseudospectral differen- 
tiation matrix (ChPDM) approach for studying the MHD 
mixed convection of a vertical plate embedded in a 
porous medium filled with water near 4˚C. 

In this work we consider the unsteady free convective 
flow of water near 4˚C in the laminar boundary layer 
over a vertically moving permeable plate, under the in- 
fluence of a constant transverse magnetic field. The pre- 
sented results were obtained after dimensionalization of 
the PDEs using a numerical approach. This approach is 
based on the finite volume (FV) discretization scheme 
which is suitable for Fluid Mechanics applications. The 
discretization was performed with the help of a spe- 
cialized symbolic package created by the authors in  
Mathematica. 

2. Mathematical Analysis 

We consider the unsteady free convective and MHD flow 
of water near 4˚C past an infinite vertical moving plate 
with uniform suction. The x -axis is taken along the 
plate in the vertical upward direction and the y -axis 
normal to the plate, Figure 1. The equations governing 
the problem are: 

Continuity equation  

0,
y





                (3) 

Equation of motion  
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  (4) 

Energy equation 
2

2
,

p
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t y c y



     
    

         (5) 

where  is the velocity component at the u x -direction, 
  is the normal velocity at the plate, : the time; t g : 
the acceleration due to gravity;  : the coefficient of 
thermal expansion;  : the kinematic viscosity;  : the 
electrical conductivity; 0 : the magnetic induction; B  : 
the fluid density; : the fluid temperature; TT   : the 

 

Figure 1. Physical model and coordinate system of the 
problem. 
 
fluid temperature at infinity; pc : the specific heat at 
constant pressure and : the thermal conductivity. k

The initial and the boundary conditions are 

   0 : ,0 0, ,0 ,t u y T y T       

y

    (6) 
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   (7) 

where u0 is the velocity of the plate, 0  is the constant 
normal suction and wT   is the temperature of the plate. 
From (3) it is obtained that 0 0    , for every y . 

We introduce the dimensionless quantities 
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Using the dimensionless quantities in (8), Equations (4) 
and (5) become respectively: 

2
2

2
4 4 4

u u u
Gr Mu

t y y
  

    
  

,    (9) 
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4 .            (10) 
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 
  



The initial and boundary conditions in dimensionless 
form are as follows: 

   0 : ,0 0, ,0 0.t u y y        (11) 
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  (12) 

Finally, the problem under consideration is described 
by the system of Equations (9) and (10), subjected to the 
initial and boundary conditions (11) and (12). 

3. Numerical Solution 

Contrary to the technique used in previous works of the 
authors for numerically solving the problem at hand [17], 
in the present paper we follow a more symbolic approach. 
For this purpose we have used the Computer Algebra 
System (CAS) Mathematica [18]. 

The analysis begins by obtaining the discretized form 
of the system of Equations (9)-(10) by using a symbolic 
package developed by the authors for that purpose. To 
discretize the coupled set of PDEs the finite volume 
method on a collocated grid is used (all variables are 
discretized at the center of the control volume, Figure 2) 
[19]. The result of this discretization is given below: 
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where pu  and p  are the unknown quantities at the 
center of the control volume as shown in Figure 2, 0

pu  
and 0

p  are the unknown quantities at the center of the 
control volume at the previous time, and where all the 
parameters, ,  and Gr Pr M  are introduced in (8). 

Having obtained the discretized systems (13)-(14), we 
construct the system of algebraic equations that con- 
stitute the grid for each time step. By grid and time in-  

 

Figure 2. Finite Volume discretization scheme, collocated 
approach. 
 
dependence studies with different grid sizes, it is 
established that the results are time and space indepen- 
dent for y  equal to 0.05 and  equal to . t 0.005

Then, for each time step, the system is solved alge- 
braically by Mathematica’s function Solve in respect to 
the grid values of the functions , after first sub- 
stituting the values of the previous time steps to the 
system. The procedure is optimized for speed by keeping 
all the grid values for all the time steps in memory. 

,u 

4. Results and Discussion 

The system of equations under consideration is a highly 
coupled system of two nonlinear equations, whose solu- 
tion can be tedious. However, with the advancement of 
numerical techniques such as the finite volume (FV) 
methodology, which is suitable for Fluid Mechanics 
applications, problems like this can be solved. A tho- 
rough analysis of the problem under consideration in- 
cludes the study of the velocity and temperature fields 
under the influence of the dimensionless parameters 
entering in the problem, such as the magnetic parameter, 
M  and the Grashof number, . The Prandtl number 
was the same for all cases and equal to 11.4. 

Gr

Initially, the suction velocity was considered equal to 
zero,  0   and the influence of the dimensionless 
parameters entering in the problem was studied. Next, 
the effect of a constant suction velocity,  , on the velo- 
city and temperature profiles under the influence of a 
constant transverse magnetic field was investigated. 

4.1. Case I, Suction Velocity, , Is Zero υ

The velocity and temperature distributions for different 
dimensionless times  0.05, 0.1, 0.15, 0.2, 0.25t   are 
shown in Figure 3. In this case, the velocity and tem- 
perature fields increase away from the flat plate, as time 
increases. 

The effect of the magnetic parameter, M, on the 

Copyright © 2013 SciRes.                                                                                  AM 



M. XENOS  ET  AL. 

Copyright © 2013 SciRes.                                                                                  AM 

55

 
 

t:0.25

 

Figure 3. Dimensionless velocity and temperature distributions for different dimensionless time (t = 0.05, 0.1, 0.15, 0.2, 0.25). 
 
velocity field for different times , (  and 0.25 ) 
are shown in Figures 4 and 5. For  the magnetic 
parameter, M, decreases the velocity, Figure 4. Similarly, 
for t = 0.25 the velocity decreased throughout the boun- 
dary layer when the magnetic parameter was increased, 
Figure 5. This is because the presence of a magnetic 
field introduces a force (Lorentz force) that acts on the 
fluid (water) creating a drag-like effect that slows down 
the flow in the boundary layer. 

t 0.1t 
0.1t

 

Figures 6 and 7 show the effect of Grashof number, 
, on the velocity profiles for  and . The 

velocity increased noticeably near the plate as the 
Grashof number increased, due to the increase of the 
buoyancy forces compared to the viscous forces acting 
on the fluid (water) near 4˚C. 

Gr 0.1t  0.25

Figure 4. The effect of the magnetic parameter, M, on the 
dimensionless velocity distribution for t = 0.1. 
 

4.2. Case II, Suction Velocity, , Is Constant υ and 9. It is evident from the figures that as the absolute 
value of suction velocity increases, the profiles of the 
velocity and temperature decrease. These findings are in 
accordance with previously published results [20]. It is 
also worth noting that the suction velocity has a more 
profound effect on the temperature field, Figure 9. 

The effect of a constant suction velocity on the velocity 
and temperature fields under the influence of a constant 
transverse magnetic field was also studied. The effects of 
suction velocity upon the velocity and temperature fields 
for dimensionless time t = 0.25 are shown in Figures 8  
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Figure 5. The effect of the magnetic parameter, M, on the 
dimensionless velocity distribution for t = 0.25. 
 

 

Figure 6. The effect of Grashof number, Gr, on the dimen- 
sionless velocity profiles for t = 0.1. 
 

 

Figure 7. The effect of Grashof number, Gr, on the dimen- 
sionless velocity profiles for t = 0.25. 
 
5. Conclusions 

The unsteady free convective flow of water near 4˚C, 
past a vertical plate, moving with constant velocity, and 
subjected to a transverse magnetic field and constant 
suction velocity was numerically studied. 

In the present paper an analytic/symbolic approach 
was chosen for solving the system of Equations (9) and 
(10), subjected to the initial and boundary conditions (11)  

 

Figure 8. The effect of constant dimensionless suction on the 
dimensionless velocity profiles for Pr = 11.4, Gr = 1, M = 2, 
and t = 0.25. 
 

 

Figure 9. The effect of constant dimensionless suction on the 
dimensionless temperature profiles for Pr = 11.4, Gr = 1, M 
= 2, and t = 0.25. 
 
and (12). A symbolic package developed in Mathematica 
is used for obtaining the discretization of the problem 
and for constructing the algebraic system to be solved for 
each grid point. Then, for each time step the system was 
solved analytically using the numerical data of the 
previous time step, hence avoiding errors in accuracy due 
to the use of a numerical solver such as a Newton-like 
method. As a consequence, the obtained solution is more 
accurate for greater values of t. 

Moreover, further development of the symbolic pack- 
age for the fast and accurate discretization of dynamical 
systems using the Finite Volume approach (with the 
option of different grid choices available to the user) will 
be an invaluable tool for any researcher using the Finite 
Volumes discretization scheme, especially for systems in 
multi-dimensions where the calculations by hand are not 
only time consuming but also error prone. 

The results of this study showed that the velocity and 
temperature fields increase away from the flat plate, as 
time increases. For 0.25t  , the velocity decreased 
throughout the boundary layer when the magnetic para- 
meter was increased while it increased noticeably near 
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the plate when the Grashof number was increased. 
Finally, as the value of the suction velocity increased, the 
profiles of velocity and temperature decreased. 
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