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ABSTRACT 

In this article we analyze the motion of a test particle of a planar, circular, restricted three-body problem in resonance, 
using the Kustaanheimo-Stiefel formalism. We show that a good qualitative description of the motion can be reduced to 
three simple equations for semi-major axis, eccentricity and resonance angle. Studying these equations reveals the onset 
of chaos, and sheds a new light on its weak nature. The 7:4 resonance is used as an example. 
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1. Introduction 

The purpose of this article is to study the motion of an 
effectively massless “particle” (an asteroid) orbiting a 
massive “primary” (the sun), and being perturbed by yet 
another small (relative to the primary) “satellite” (Jupiter) 
whose motion is assumed to be perfectly circular and in 
the same plane as the massless-particle’s orbit. This is 
known as the planar, circular, restricted three-body prob- 
lem which has been studied extensively in the past by 
various numerical, semi-analytical and (exceptionally, 
and with many restrictions) analytical techniques. In this 
article, we build a fully general, analytical (even though 
iterative) solution which, furthermore, does not rely on 
the averaging principle (which would eliminate all chao- 
tic solutions—the very focus of our study). 

Our main objective is to trace the source of chaos, 
which arises when the two orbital periods are in (or close 
to) a resonance (i.e. their ratio is a simple fraction, such 
as 3:1). It is known [1] that, under these circumstances, 
chaos occurs quite readily when the perturbing orbit has 
a non-zero eccentricity or inclination (mathematically, 
one can show that terms proportional to either of these 
two parameters are responsible for its creation); it is a lot 
more difficult to incite chaos (and find its exact source) 
in a planar, circular situation. From this point of view, 
the seemingly simplest case of the restricted three-body 
problem is also the most challenging! Furthermore, only 
some resonances lead to chaos in this case; we have se- 
lected the 7:4 resonance (the massless particle complet- 
ing seven orbits, while the perturber finishes four) as 
their typical representative. It is hoped that this example 
will be a catalyst for a future, more systematic study of 
the phenomenon. 

The technique we employ is based on Kustaanheimo- 

Stiefel (K-S for short) formulation of the perturbed Ke- 
pler problem, which has several advantages over other 
techniques: it is fully analytic; it does not rely on any 
averaging; it can be made arbitrarily accurate (even 
though, in case of a chaotic motion, no solution can ac- 
curately follow the actual orbit indefinitely); it can also 
be made very simple (when we sacrifice high accuracy, 
yet maintain a good quantitative description of the mo- 
tion: this is the approach taken by this article). 

Vast literature exists on the subject of chaos in the 
context of the restricted three-body problem in resonance 
(a good, even though slightly dated, review of various 
techniques and results can be found in [2]). Most of it 
relies on numerical or, at best, semi-analytic exploration 
of the resulting motion (being of little relevance to our 
goal). The remaining articles usually concentrate on the 
elliptic version of the problem (the easy-to-explain chaos 
mentioned earlier), and are “tailored” to deal with only 
one specific resonance at a time. They also rely heavily 
on the averaging principle [3], thus eliminating the chaos- 
inducing terms we are seeking to identify! 

In the following three sections we 
 present formulas for building a solution to a perturbed 

Kepler problem when the direction of perturbing force 
(yet unspecified) is always in the plane of the mass- 
less particle’s orbit; 

 computing the perturbing force due to another orbit- 
ing body of relatively small mass that has a circular 
orbit and is in 7:4 resonance with the perturbed par- 
ticle, and expanding this force in terms of orbital ele- 
ments of the latter; 

 finding and solving a set of differential equations for 
the orbital elements, and demonstrating the onset of 
chaos in some solutions. 

Copyright © 2013 SciRes.                                                                                  AM 



J. VRBIK 41

2. Preliminaries 

We start by reviewing the analytical, K-S based solution 
to a planar perturbed Kepler problem, which (unlike its 
three-dimensional analog), requites only complex (not 
quaternion) algebra. The following is a summary of the 
necessary formulas, presented in its general form (i.e. 
able to deal with any small perturbing force  f ). 

To solve the corresponding set of two equations, 
namely 

3r
  

r
r f                 (1) 

(assuming that both  and  are two-dimensional 
vectors in their complex representation), we introduce a 
new dependent complex variable 

r f

  and a new real in- 
dependent variable s  (called modified time) by 
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where  
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and  is the semi-major axis of the corresponding solu- 
tion (the bar denotes complex conjugation). This is the 
celebrated K-S transformation (reduced to two dimen- 
sions). 
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 Note that when   and the orbital ele-  0

ments  ,a ,    and ps  are constant, this solution 
represents the usual ellipse of the unperturbed Kepler 
problem . In the perturbed case the orbital 
elements become (slow-varying) functions of modified 
time 
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s , and  is an   O   function of  (taking 
care of the orbit’s small deviation from a perfect ellipse). 
At this point, we are yet to find expressions for the time 
derivatives of the orbital elements, and for the exact form 
of  (thus constructing the actual solution). 
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where prime implies differentiation with respect to .s  
To solve the last equation, we start with the unper- 

turbed solution 
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(assuming constant orbital elements), evaluate the left 
hand side of (4) in the particle’s Kepler frame (i.e. a 
non-inertial frame in which the new x  axis points 
towards the aphelion; this is achieved by multiplying the  

equation by exp i
2
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must also make the following replacement: 
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where o  is a “typical” value of  (in our case set to 
the resonant value of 1—see the next section), and 

a a
  is 

a function of ,s  having the following s-derivative: 
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Once  (the left hand side of Equation (40)) has 
been computed, it needs to be converted to 
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( 0r  being the unperturbed ), based on which we can 
find 

r
 -accurate values of  and of the orbital ele- 

ments’ s-derivatives, by means of the following proce- 
dure. 

,

First,  needs to be expanded in powers of  (we 
are assuming a periodic perturbing force, which makes 
this expansion discrete), thus: 
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where  is an integer, and m ,

1

2m  . The last iden-  

tity serves to establish the following convention: from 
now on, in all expressions involving  an extra 
summation (over the original ) is implied. 

,m
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Then, we find  and the orbital elements’ s-deri- 

vatives, using 
,
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(these can be computed with surprising ease by a few 
lines of Mathematica code). 

To build an 2 -accurate, 3 -accurate, etc. solution, 
we simply repeat the whole procedure in an iterative 
manner (the exact criteria for convergence of this pro- 
cedure have not been worked out yet, but there is is 
enough computational evidence to feel more than safe 
with our 0.001  ). The ensuing fast convergence 
enables us to construct an analytic solution to any level 
of accuracy (and be able to readily verify its correctness). 
To complete the solution, we divide  ,a    and    
by  2 1 Ps —thus replacing the physically meaning- 
less independent variable s  by the so called eccentric 
anomaly  2 ps s   —and integrate the resulting 
differential equations. For full details, the reader should 
consult [4]. 

Quite often (as in this article), instead of high accuracy, 
we are interested in a solution which captures all quali- 
tative features of the particle’s motion, using the smallest 
number of terms (to gain a valuable conceptual under- 
standing of the problem). Luckily, in almost all cases 
(critical inclination of the main satellite problem being 
one of the few exception), this can be achieved with only 
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a handful of terms of the  -accurate solution. 

3. Perturbing Force for 7:4 Resonance 

We now apply the formalism of the previous section to a 
special case of the restricted three-body problem (solving 
for the motion of the “massless” particle). 

We assume that, by a choice of units, the primary’s 
(sun’s) gravitational mass   is equal to 1, the per- 
turbing body’s (Jupiter’s) gravitational mass is   and 
its (circular) orbit is 
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where 4 7   (to give a concrete example, we will 
concentrate on this specific resonance; one can investi- 
gate other resonances using the same approach—no 
special tailoring required). We investigate the motion of 
a particle (asteroid) of a negligible mass, whose semi- 
major axis  has values very close to 1 (we can thus 
take ), i.e. whose motion is in or near the corre- 
sponding resonance. In addition to this, we assume that 
both orbits are in the same plane (the so called planar, 
circular, restricted problem of three bodies; see [5]). 
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The perturbing force (on the massless particle) is 
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Utilizing (6), we can express  in the Kepler frame 
of the massless particle as 
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where   is the so called resonance variable. It is a 
multiple of the angle from the small body’s aphelion to 
its conjunction with the larger orbiting body. 

The perturbing force (excluding the   factor) must 
then be expanded, first in   (an inevitable step of this 
procedure), getting 
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(in the actual computation we use terms up to an in- 
cluding 4 ,  but they are too long to be quoted in full), 
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(where  is complex, of unit magnitude), truncated to 
a handful of predominant terms (sufficient to obtain 


 - 

accurate expressions for the rate of change of the orbital 
elements—see below). 

Finally, each  of this expansion is replaced by i
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where 7i k j   and 3.j   Applying the last two 
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where we are displaying only the coefficients (in terms of 
the  expansion) needed to compute time derivatives 
of the orbital elements (our only concern). We have also 
expanded the result in powers of , quoting the 
leading term only (equivalent to setting 



1a 
1a  ). The 

leading (trailing) ellipsis indicates terms proportional to 
iZ  with 1i     > 2 ;i  none of these contribute to 

the solution of the next section. 

4. Resulting Solution 

It is now fairly routine, by utilizing formulas of Section 2, 
to build the corresponding solution (at this point, we 
bring back additional terms of the  -expansion). For 
the purpose of this paper, we perform only one step of 
the iterative procedure, resulting in an  -accurate solu- 
tion (whose typical accuracy within the next  orbits 
is in the 

50
310  to 210  range—anyone interested in con- 

structing a more accurate analytic solution using this 
method should consult [6]). Furthermore, due to high 
sensitivity to initial conditions, any solution will sooner 
or later diverge from the exact answer, and become pra- 
ctically useless for a long-range forecast. Luckily this is 
not our aim here—we want to find a solution which 
would capture all qualitative features of the correspond- 
ing motion, with the least number of terms—so let us 
proceed doing just that. 
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As the crudest approximation, we can apply the ave- 
raging “principle” (a euphemism for yet another, often 
crude, approximation) and discard all terms proportional 
to any non-zero power of  Furthermore, for each or- 
bital-element derivative, we will keep only the leading 
term of the corresponding 

.

 -expansion. This yields: 

 

3

2

3 2

d
267.6 sin 7

d
d

25.09 sin 7
d
d 4

0.2603 1
d 7

a

a

 

  

 


 

  

    







     (12) 

Even though this set of equations has a surprising 
variety of solutions, these are always very regular (no 
trace of chaos, which we know some solutions should 
possess). Furthermore, the agreement with the “exact” 
(highly accurate numerical) solution is quite poor—the 
averaging principle is thus totally inadequate in this case. 
This is due to to the resonance being of the third order 
(the same kind of approximation would be sufficiently 
accurate for first-order resonances, such as 2:1, 3:2, etc.). 

To correct the situation, we proceed to add the leading 
(in terms of the   expansion)  -dependent term to 
each right-hand side of (16), getting 

 

 

 

 
   

3

2

3 2

d
267.6 sin 7 0.5614 sin 3 7

d
d

25.09 sin 7 0.6503 sin 2 7
d

 0.3256 sin 3 2 7

d 4
0.2603 1

d 7
0.2787 cos 2 7 0.1396 cos 3 2 7

 

a

a

  

   

 

   

  


    

     


  
 


     


 

(13) 

This time, the resulting solution is always (for re- 
latively small   values) sufficiently close to the exact 
solution to be considered its adequate representation, 
with all the qualitative details (see Figure 1, where the 
solid, dotted and dashed lines represent the exact, the 
fully  -accurate and the current, truncated solution, re- 
spectively; note that the solid and dotted lines practically 
overlap). 

It is worth mentioning that we use our definition of 
orbital elements (adjusted for the orbit’s distortion) for 
all three solutions (the osculating orbital elements have a 
much more irregular behaviour than what we see in 
Figure 1). The exact solution has been obtained by 
highly accurate numerical integration of (1), converting 
the results to the corresponding variation in  . The  - 
accurate solution corresponds to a numerical solution of  

an untruncated (i.e. using all terms of the   expansion) 
version of (13), and is nearly indistinguishabe from the 
exact solution. The “current” solution refers to the result 
of numerical integration of (13); this is the only solution 
which we continue to investigate further. 

It is important to note that, unlike (12), the new set of 
Equations (13) already captures one of the most impor- 
tant feature of the exact solution, namely the occasional 
onset of chaos. This can be conveniently explored by the 
following analog of the Poincaré surfaces of section: 

Using the numerical solution of (13), we collect the  
and 

a
  values as found at the end of each anomalistic 

cycle (i.e. at 0, 2π, 4π,   ), plotting these in a two- 
dimensional graph. As a result, we discover an amazing 
variety of both open and closed, connected and discon- 
nected curves on one hand (see Figure 2, for an exam- 
ple), or (using a slightly different set of initial conditions) 
a scattered cloud of disconnected point on the other (see 
Figure 3), indicating the presence of chaotic motion. In- 
cidentally, when we apply the same technique to diffe- 
rent solutions of (12), we always end up with a simple, 
(near) straight-line segment. 
 

 

Figure 1. Comparing exact and approximate solutions. 
 

 

Figure 2. Poincaré section for regular solution. 
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Figure 3. Poincaré section for chaotic solution. 

5. Conclusion 

We have thus illustrated that all qualitative features of 
the motion of a small body, in the 7:4 resonance with a 
bigger one, are encapsulated in three simple differential 
Equations (13). A similar set of equations can be easily 
constructed for any other resonance (a routine exercise— 
a systematic study of these is yet to be carried out). If 
desired, one can also add the effect of the large-body’s 
eccentricity and the two orbits’ inclination (a three- 
dimensional version of the K-S technique will be re- 
quired to deal with the latter). We believe that this tech- 
nique opens a new level of understanding of resonances 

related to the three-body restricted problem, and of the 
resulting weak chaos. 
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