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ABSTRACT

Let Q be the Q-matrixof an irreducible, positive recurrent Markov process on a countable state space. We show that,
under a number of conditions, the stationary distributions of the n x n north-west corner augmentations of Q converge
in total variation to the stationary distribution of the process. Twoconditions guaranteeing such convergence include
exponential ergodicity and stochastic monotonicity of the process. The same also holds for processes dominated by a
stochastically monotone Markov process. In addition, we shall show that finite perturbations of stochastically monotone
processes may be viewed as being dominated by a stochastically monotone process, thus extending the scope of these
results to a larger class of processes. Consequently, the augmentation method provides an attractive, intuitive method
for approximating the stationary distributions of a large class of Markov processes on countably infinite state spaces

from a finite amount of known information.

Keywords: Invariant Measure; Truncation Approximation; Augmentation; Exponential Ergodicity; Stochastic
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1. Introduction

Let Q:(q(i.j),i,jeS) be the stable, conservative
Q-matrix of a continuous-time Markov process on a
countable state space S={O,l,2,~-} The Q-matrix
satisfies

J
(i):=—Q(i,i) < oo,if j=i,and
(i,j)=0forallies

In addition, we assume that Q is regular, which means
there exists no non-trivial, non-negative solution
x=(x(j).jes) to

> Q(i, j)x(j) =kx(i):0< x(i)<lies
jeS
for some (and then all) k >0.

Under these assumptions, the state transition prob-
abilities of the process are given by the unique Q-func-
tion F =(F‘ (i,j).i,jesS,t> 0) which satisfies the
Kol- mogorov backward equations,

d

—F'=QF".t>0,F’ =1.
dt Q

called a transition function, is a family of SxS matri-
ces indexed over the reals which constitutes an analytic

The object F, which is also
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semi-group. an analytic semi-group is characterised by
three properties: F° is the identity matrix, the row
sums of F' are less than or equal to unity and F**' is
equal to the matrix product F°F' for all s,t>0. This
last property, known as tthe Chapman-Kolmogorov equa-
tion, implies F' = (F') . Thus, even though F'is gener-
ally thought of as the matrix of state transition probabili-
ties at time t, it serves as an analogue to the t-th power of
the transition matrix of a discrete-time Markov chain on
the state space S. Consequently, using the superscript
to denote F as a function of t should not cause any confu-
sion. While on the subject of notation, we should men-
tion that we are using a standard notation common in the
literature of continuous-time Markov processes on gen-
eral state spaces. In the discrete state space setting, this
notation causes matrices to look like functions of two
variables (or kernels) while measures and vectores ap-
pear to be functions over the state space. We have elected
to follow this notation in an endeavour to reduce the
number of subscripts and superscripts in the sequel.

Note that in the conservative setting posed here, regu-
larity of Q is equivalent to honesty and uniqueness of
the transition function, that is, » F'(i,j)=1 for all

jes
ieS and t>0.
The state space S is irreducible if F' (i, j) >0 for
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all i,jeSandt>0. On such a state space, a Markov
process is said to be positive recurrent or ergodic if
F'(i,j)>n(j)>0 for all i,jeS as t—>ow. For a
positive recurrent process, it can be shown (for example,
see Theorem 5.1.6 in [1]) that the limn=(m;,ieS$)
satisfies

3, xi)=1 and X2 ()F (i) = x(3).
jes )
jeS,t>0

More generally, any measure 7 satisfying (1) is called
an invariant or stationary measure for the process. If, in
addition, the measure has mass 1, it is referred to as a
stationary or invariant distribution. Any measure satisfy-
ing (1) with “=" replaced by “>" is called a subinvari-
ant measure for F. Conversely, if F has a stationary
distribution 7, then the process is positive recurrent and
Ft(i,j)—>7r(j)ast—>oo.

In this paper, we are interested in approximating =
using the nxn north-west corner truncations of Q.
The analogous problem for discrete-time Markov chains
has been studied in [2-7]. The final reference contains a
review of the literature on the discrete-time version of the
truncation problem. Some properties of truncation in
continuous-time Markov processes were studied in [8,9].

Truncations of Q are submatrices of Q defined by

(n)Q :((H)Q(I’ j)’is J € Sn)a Where (n)Q(Is j):: Q(Ia J)
and (S,,neN) is an increasing sequence of subsets of
Ssuchthat |J S =S.

neN N
The truncation , Q is not conservative. By adding
the discarded transition rates to (n)Q , we may produce a

conservative Q—matnx(n)Q which generates a unique,
honest, finite, continuous-time Markov process. For ex-
ample, we may choose to perform linear augmentation,

where the aggregate of the transition rates outside of S,
is dispersed amongst the states in S, according to some

probability measure (& = ((n)a(i),i € Sn) . Then, the

n-th order augmentation (n)Q is given by

— Qi)+ me(i) 2 Q(ik),ifi, jes,,
(H)Q(l.j)z keS,
0, otherwise.

An important example of this is where we only aug-
ment a single column, say h, in which case (& is the
Dirac measure at h and we obtain The n-th order aug-
mentation ,Q, as

. Q(i,j)+5jhZQ(i,k),ifi,jeSn,
(n)Q(I'J): keSy
0, otherwise.

Here, &, denotes the kronecker delta.
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Linear augmentation obtains exactly one irreducible,
closed class A, =S, together with zero or more open
classes from which A, is accessible. Since A, is closed,

mQ s conservative on A, and so the minimal

(nyQ-function \F is honest and positive recurrent on

A, . Finiteness of S, ensures that the remaining open
classes are transient. Hence, there exists a unique invari-

ant measure for  F. We shall be mainly concerned

with Q. where either h=0 or h=n. The minimal
m-function will be denoted , F, while

(%0 = (o (i), €8, ) will be its invariant probability

measure.
Two obvious questions now arise. Firstly, when does

(mTh — T as N —oo? )]

Here, we use —— to denote convergence in total
variation norm. Secondly, how quickly does this conver-
gence occur? This paper considers the first question. We
shall present augmentation strategies for approximating
invariant distributions for two classes of Markov proc-
esses via (, m, fornlarge. The classes are:

e Markov processes which satisfy

F'(i,i)-n(j)|=0(c™).i.jes,t>0,

for some « > 0. Such processes are called exponen-
tially ergodic.
e Stochastically monotone Markov processes, which

have the property that

ZF‘(i, j)< ZF‘(k, i)

j>n j=n
for all i<k,i,k,neSandt>0, and processes dom-
inated by stochastically monotone processes.

Parallelling results for discrete-time chains in [7], we
shall also show that Markov processes constructed from
finite perturbations of stochastically monotone processes
are always dominated by some other stochastically mo-
notone process. This extends the class of processes for
which our results are applicable.

In the next section, we begin by showing that the limit
of the n' is unique when it exists. Then, Section 3
considers exponentially ergodic Markov processes while
Section 4 studies stochastically monotone Markov proc-
esses and their above-mentioned variations.

Finally, some concluding remarks are made in Section
5.

2. Preliminaries

The problem of proving that (m T — > may be bro-
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ken into two parts. Firstly we must show that (m T

converges weakly to some limit, say 7, and secondly,

that 7 =m. We consider the latter in this section.
Theorem 2.1 Consider a sequence of linearly aug-

mented Q-matrices ( (n)Qh) derived from Q and let
(P be the minimal -\ Q, -function. Then
(n)th(i,j)|—> F'(i,j)asn—>ow,i, jes. ?3)
Proof: Let  F denote the minimal Q -function.
F'(i,j)< o F(i,j) forall

i,jeS and t>0. This can be seen inductively using
the backward integral recurrences for F and ,F,
The argument parallels the proof of Theorem 2.2.14 in [1]
which states that

(n)Ft(i,j)/'Ft(i,j)asn—mo 4)

Firstly, observe that (n)

forall i,jeS,t>0

Next, since F, is honest and  F is dishonest,
we see that
wF () S R (D)< o F (i )+ 65 () )

for i,jeS,,t>0,n>1, where

5,§(i):=1—kezSn (n)F‘(i,k),ieSn,tzo (6)
Applying (4) to (6) together with monotone conver-
gence shows that &, (i) monotonically decreases to 0 as
n— o . Taking limits in n on both sides of (5) then
completes the proof.
Remark 2.2 Although we have only considered linear
augmentations, the statement and proof of Theorem 2.1
is in fact valid for any sequence of augmentations

(F):

Since the transition function ,F, is finite, it is posi-
tive recurrent on some subset of S . Hence it possesses
a unique stationary distribution (m T and

2 omaf )= gm) O

for jeS§,,t>0. Positive recurrence establishes anequi-
valence between the stationary distributions for Fa
and invariant distributions for Qh An invariant dis-
tribution for an arbitrary Q—matrle is any probability

measure 7 such that Y 7(i)Q(i,j)=0 forall
jeS. So, (T uniquely satisfies
Zigsn () h (i) el (i,j)=0 forall jeS,

Let us assume for the moment that

oMy converges
weakly to some limit measure 7 = ( (i), jeS)

require that m=mn. Weak convergence to T implies
that T is a probability distribution. By taking the limit
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infimum on both sides of (7) and applying Fatou’s Lem-
ma, we have

J_Ezsﬁ(i)':t(ia i)

<r111_r)r0101nf162S ()n)th(i»J')
m, (1) =7 (1)

for je€S,t>0. The measure ® is therefore a subin-
variant probability measure for F. However, F is posi-
tive recurrent and hence, by Theorem 4 in [10], 7 is
both invariant and the unique probability measure satis-
fying (1). Hence, T=m.

=1lim 1nf( )

n—oo

3. Exponential Ergodicity

Let Q be the Q-matrix of a positive recurrent Markov
process y on S. Consider an increasing sequence of

sets (S,,neN) such that |J S,=S and 0eS,

for all n. Let ,,Q be the truncation of Q correspond-
ing to S, . In this section, we shall consider augmenta—
tions ,Q, obtained by linearly augmenting in
column 0. We shall prove that exponential ergoélclty of
the Markov process is sufficient for , t1——>7m as
n—o where , m is taken to be  m,, the invariant
distribution for ,Q,. In order to do this, we shall re-
quire the notion of a V -norm. LetV = (V( ).ie S) be
an arbitrary vector (function) such that 1<V ( ) <o for
all ieS .In future, we abreviate thisto V >1. The V -
norm of a signed measure n is then

ML= sup ()= SO )

£f|<v
ieS,)e B(S)) is a matrix, then the

[AGL,

V(i)

Rather than working with the Q-matrix augmenta-
tionsdirectly, we will use the f -resolvents associated
with these. The J -resolvent of a continuoust-time
Markov process is the stochastic matrix
Rﬂ = (Rﬂ(i, i)ije S) given by,

:J'wﬂe’ﬂ‘F[ (i.j)dt,i, j €S, B>0. Wenote

that Rﬁ satisfies the resolvent forms of both the back-
ward and forward equations which are R, =1+ /4" QR
and R, =1+/4" RﬁQ respectively.

Slnce Q isregular, R, is the unique solution to the
resolvent form of the backward equations. Let 'R,
and (R, denote the unique / -resolvents of (n)F
and ,F, respectively. Here, . F is the minimal
nQ -funcction while  F,~ denotes the minimal ,Q, -

unction. Since S, is a finite set, ,Q,, ,F and

If A=[A(i,J)
V -norm of A is

1A, = sup
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) R, have the same invariant distribution 7, . The
same is true for F and R,, which share the distribu-
tion .

In the sequel, we shall have need of the following cor-
ollary to Theorem 2.1.

Corollary 3.1

i.Forall i,jeS,,f>0and neN,

Rs (1:1) = oy Ran (1.1)

S(n) Ry (1, §)+ P (1)

where 5, (1) =1-3 15, Ry (i, 1) and

ii. (n)Rﬁ’h(lz!)%Rﬁ(l,j) as N— . .

Proof: Part i is obtained by integrating both sides of (5)
with respect to be Se”'dt. Part ii then follows by tak-
ing limits in (8) and observing that

R,(i.j) /' Ry(i.j) and p, (i)N0 as n—oo

Next, the various “drift to C” conditions introduced in
[11] will play an important role in allowing us to pass
between the continuous-time process and the discrete-
time / -resolvent chain. The drift conditions require the
notion of a petite set in both continuoustime processes
and discrete-time chains. Let B(S) denote the Borel
o -algebra on S. Then, A set C e B(S) is a petite set in
the continuous-time setting if there exists a probability

distribution a on (R*,B (R+ )) and a non-trivial posi-

®

tive measure v, such that

)= F'(i,d)a(dt) =V, (J)

for ieC,J eS(B), where Ft(i,J)szJ FU(i,j).

Petite sets for discrete-time chains are defined analo-
gously. According to Theorem 5.1 in [11], the following
three drift conditions are equivalent, although the petite
set C and function V may differ in each instance.

(D;): Drift for T-skeletons. For some T >0, there
exist constants A(S) bounded for all se(0,T] with
A(T)<Lb<oo, together with a petite set CeB(S)
and a function V; =21 such that

2 P2 (i 3)Vr (1)< A(8)Vr (i) +DIe (i),

jesS
for ieS,s<T.Weuse I. (i) to denote the indicator
function of the set C which is 1 if ieC and 0 other-
wise.

(ﬁﬁ) : Drift for f -resolvents. For some

2€(0,1),b<a, >0,
function

DR (1N, (§) <AV, (i)+bI (i),ieS.

jeS

a petite set CeB(S) and a

D) : Drift for the Q-matrix. For constants b,c>0, a
petite set C e B(S) and a function V >1,

Copyright © 2012 SciRes.
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2. a(i.

jeS

V(i) <—cV (i)+bI (i).ies.

An irreducible continuous-time Markov process X is
V -uniformly ergodic if, for some invariant probability

kernel 7t,“|Ft —n”L/ —0ast—o. In the special case

where V =1, the chain is said to be uniformly ergodic or
Ft—7z||1 —0 as to> o

where, by an abuse of notation, we use 7T to denote the
invariant transition kervnel x(i,j)==(j) for all
i,jeS.

The following theorem collects together a number of
results on exponential and V -uniform ergodicity of
Markov processes from the literature.

Theorem 3.2 Let X be an irreducible, aperiodic con-
tinuous-time Markov process on S. The following condi-
tions are equivalent.

i. One of the drift conditions (D ),(15,5 ) or (’15)
holds, in which case they all hold, but not necessarily
with the same petite set C ;

ii. For all T >0, the T-skeleton chain is geometrically
ergodic;

iii. For all f>0, the f-resolvent chain is geomet-
rically ergodic;

iv. X is exponentially ergodic.

v. X is V -uniformly ergodic for some V >1.

In particular, it is V; -uniformly ergodic, V, -uni-
formly ergodic and v —umformly ergodic where VT Vg
and V satisfy (D ),(D )and (D) respectively.

Proof:

ii < 1iii < iv. This was proved in Theorem 5.3 of [11].

i< iv. Theorem 5.1 of [11] shows that
(D ),(ﬁﬁ) and (15) satisfy a solidarity property in that
either all of them hold or none hold. Next, fix N >1
and set C = {1,2, . N} which is trivialy petite Since it

is finite. In (75) ,set c=2 and V(i)=cy,+1, where

N,A andthe VY, ’s are those appearing in Theorem 3 of
[12]. Finally, an appropriate relabelling of the states in

S reveals (15) to be equivalent to the necessary and

sufficient condition for exponential ergodicity givenin
Part (ii) of Theorem 3 in [12]. Consequently X is expo-
nentially ergodic if and only if (25) orany of the other
drift criteria holds.

i= v. Theorem 5.2 in [11] says that any of
(Dr ),(@ﬂ)or (75) is sufficient for X to be V -uni-
formly ergodic where V is either V;,V, or V re-
spectively.

v=ii. If X isV -uniformly ergodic for some V >1,
then so to is the T - skeleton for any T >0 and an ap-
plication of Theorem 16.0.1 in [13] shows that

NFT” —7;”‘\/ <Mp" for some M <o and pe(0,1).
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Geometric ergodicity of the T -skeleton F™ then fol-
lows from the definition of the V -norm.

Next, suppose that the Markov process X is exponent-
tially ergodic. From Theorem 3.2, there exist constants
0<c,d <o andafunction V >1 such that

jEZSQ(i,j)V(j)ﬁ—CV (i)+dI. (i),
ieS.

®

Without loss of generality, we may take C={0} and
assume that V (0)=1. The state space can always be re-
labelled to accommodate this convention. Then, since
V(k)=V(0)=1 for all k=0, the augmented Q -ma-

trices ((H)QO) each satisfy
2 Qo (L §)V (1) <—ev (i)+dL, (i),
jeSy
ieS,.

Multiplying both sides by ) R, and re-arranging,
we obtain

2 Reo (1 1)V (1)

€Sy

B . d .
< ﬁ’+cv(l)+ Bic (H)Rﬂ’O(I,O),.
fories,

Now, choose & <c/(+c) such that
(N)Rﬂ(0,0)25:=g(ﬂ+c)/d >0 for some

N =N(,&)e N This is always possible since R, isa
strictly positive matrix (in particular, R;(0,0)>0 and,
as noted in the proof of Corollary 3.1,

R (0,0) /"R, (0,0) as n— oo Therefore,

mRso (0,0) > mR
being strongly aperiodic, we see that () R, 1s strongly
aperiodic for all n> N . A transition matrix is strongly
aperiodic if it is primative and possesses a non-zero di-
agonal entry.

Define C, = {k €S, (mRpo(k,0)2 5}. By Proposi-

,(0,0)>5 . So, in addition to R,

tion 5.5.4 in [13], the set C, 1is petite since the singleton
set {0} is trivially petite and {0} is uniformly acces-
sible from C, under the resolvent chain Ry, that is,
(mRpo(k,0) is bounded away from 0 forall keC,.By
the definition of C,, we have R, (i,0)<s for

ieS,\C,. On the other hand, R,,(i,0)<1 for

ieC,, since Ry, is a stochastic matrix. Hence we
have

> wReo (1 1)V (1) (10)

j€Sy

Copyright © 2012 SciRes.

g . d _
< ﬂ+cv (I)+,B+c (n)Rﬂ’O(I,O)

Fuined 1 |
Sﬂ+cv(l)+,3+cﬂc”(I)MHS“\C"(I) 11y

< s i)+ d i)+eV (i
S VS (v ()

=2V (i)+b1, (i).ieS,.n=N,

where A':=B/(B+c)+&<1 and b =d/(f+c)>0.

Note that 0eC, forall n large enough.

Next, set P= R;,S=5,C=C,a={0},4 =4’
and b. =h) =b: =b" in Theorem 6.1 of [14]. It can be
seen that the conditions of the theorem are satisfied and
so there exists some V'>1 such that

> o0 (L DV (1)< AV (i) 4D, (i), €5,

j€Sn
where A:”+b’/5:ﬂ+g(ﬂ+c)+d/5 and
1+b'/& p+c+d/s
b=(1+1/5)b =d(1+1/8)/(B+c) . Furthermore, we

have

R0 ()= (o) (.)‘L <MV (i)p",meN,

where m, is the unique invariant distribution for
(n)QO, and M <o and p<1 are completely deter-
mined by f,c,d and 6. Note that this is true for
every n>N so that the rate of convergence p is in-
dependent of the truncation size. In addition, by applying
the preceding argument directly to Q instead of (n)QO , We

also have ”R/”; (i,-)—n(-)|L <MV (i) p" for all m, since,

by assumption, (9) holds and R,;(0,0)>5>0. Thus,
not only are R, and R, V-uniformly ergodic, they
are geometrically ergodic with the same convergence rate
p.

We can now prove the main result of this section.

Theorem 3.3 Let X be an exponentially ergodic, con-
tinuous-time Markov chain on a countable, irreducible
state space S. Let m and . m, be the invariant dis-
tributions for Q and (n)QO respectively. Then,

(n)no—n“—>0 as N—oo.

Proof: Choose an arbitrary number m>2. From the
triangle inequality, we have

<n>“0‘““

<|RF (i) =+ () R, (i) = (o W
+[R7 ()= o RY, (i)

<OMV (i) p" + [R5 (i) = (o RT, (i)

As was pointed out in [7], if A and B are two sto-
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chastic matrices, then
|A" (i) -B" (i)
< 3

0<s<m-1,we$S

. 14)
A (i,w)[[A(w.) - B(w, )]
for m>2. Applying this to the last term in (13), we

obtain
[R7 ()= R, (00

< Y Ry(i,w)s, (w),

n
0<s<m-1,weS

(15)

where
5, (1)= Ry ()= (R ()]
- Z;‘Rﬂ(i,j)—(n)Rﬁ’o(i, i)
je
Now, since &, (i) >0 as n—o forall jeS, we
can use dominated convergence to conclude that the third
term in (13) vanishes as n tends to infinity. Thus,

lim

n—w

(™o —7tH <2MV (i) p",

for me N, and since m was chosen arbitrarily,

lim

n—w

(m ™o —n” =0.

Example

Let A,u4>0 anddefine Q by
ALifi20,j=i+],
w1,if j=0andi>1,
Q(i,j)=q4.if j=i=0,
—(A+p),if j=i>0,

0, otherwise,

The process with this Q -matrix is essentially a re-
newal process with renewal times marked by visits to
state 0. Each renewal time consists of a geometric num-
ber of exponential times of mean 1/4 followed by an
exponential time of mean 1/4 . At each jump, the proc-
ess passes from state i to state i+1 with probability
y =A/(A+u) and falls back to state 0 with probability
1—y . the state space is clearly irreducible and the proc-
ess has a geometric stationary distribution 7, where
n(i)=(1-y)y'. Existence of the stationary distribution
ensures positive recurrence. _

Next, let the vector V be given by V (i)=(1+35),
where & e(0,/1). Also define b=y and Set

C={ies: u=(a6-u)(1+6) >~C|, where ¢ is a

small positive number. Then, the drift condition (Ij)
holds for the specified V,C,b and c. The process is

Copyright © 2012 SciRes.

therefore exponentially ergodic by Theorem 3.2. Further,
all the conditions of Theorem 3.3 are satisfied. Thus, we
can construct augmentations (n)QO on corresponding
sets S, = {0,1,---, n} and use their invariant distribu-
tions mTo to approximate T.

We can confirm this by solving

Zinzo (n)no(i)(n)Qo (Ia J) = 09 J = 0,1,"',n with

> T (i)=1. We have ,\m, (i)= (1—7/);/i/(1—)/”)
for i=0,1,---,n, from which it is evident that

(T (1) (i) as n—oo. Convergence in total vari-
ation follows by the same argument used later in the
proof of Theorem 4.2.

4. Stochastic Monotonicity

In this section, we develop results for stochastically mo-
notone Markov processes. Our key result says that sto-
chastic monotonicity of the process is sufficient for (2) to
hold under arbitrary linear augmentation. The remain-
ing results extend this to larger classes of Markov proc-
esses. While our methods generally parallel those em-
ployed in [6] TO study the same problem in discrete-time
Markov chains, itt is necessary to take greater care con-
structing the augmentations in the continuous-time set-
ting.

Let 4 and v be two non-trivial measures. Then, v
stochastically dominates 4 if » u(k)<) _ v(k)

for all neN, in which case we write u<v. If F
and F are two transition functions, we say that F
stochastically dominates F (written F < F) if, for all
t>0, F'(i,) Ft (i,-) forall ieS. A more strict clas-
sification is stochastic comparability. The transition
functions F and F are stochastically comparable if
F'(i,)<F'(m,) for all t=0 and i,meS with
i<m. We use the notation FC F to mean that F
and F are stochastically comparable. A stochastically
monotone Markov process is one whose transition func-
tion is stochastically comparable to itself. Thus, if F is
stochastically dominated by a transition function F
which itself is stochastically monotone, then F and F
are stochasticallly comparable. Clearly, F T F implies
F<F.

The following theorem is the key to obtaining suffi-
cient conditions for (2) to hold in continuous time. It
characterises stochastic comparability and monotonicity
in terms of Q -matrix structure and is a special case of a
more general result which was proved in [15] (also see
Theorem 7.3.4 in [1] for an account). The reader is di-
rected to the last two citations for the proof.

Theorem 4.1 ([15] and [1, Chapter 7.3])

i. Let Q and Q be two conservative Q -matrices.
Their corresponding minimal transition functions F
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and F are stochastically comparable iff, whenever
i <m, andKk is such that either k<i or k>m, then

>Q(i,j)<>.Q(m, j). (16)
j>k >k

ii. Let Q be a conservative Q -matrix. Its minimal
Q -function F is stochastically monotone iff, Whenever
i<m andk is such that either k<i or k>m, then

> Q1)< XQ(m. j). (17)
>k >k

As a consequence of this result, we shall speak of sto-
chastically monotone Q-matrices and of two Q-matrices
as being stochastically comparable, etc. This abuse of
terminology should not cause any confusion.

If F is an irreducible, positive recurrent transition
function and it stochastically dominates another irreduci-
ble transition function F, then F is also positive re-
current. Furthermore, if m and 7 denote the stationary
distributions of F and F respectively, then n <7,
which can be seen by letting t — o in

SFU(i, )< S F (i, j),Vikes.
>k =k

In fact, we may say something stronger than this. If
F is reducible and contains a collection of closed ire-
ducible classes (C;), each C; is positive recurrent with
invariant probability measure m;. Since F is dominated
by F on C;, it follows that m; <@ Now, any in-
variant measure on S for Q can be written as a linear
combination of the m’s; that is, == a(i)m for

some probability measure a=(a(i),i=1,2,-). There-
fore, m <@ for all invariant distributions 7.

Throughout the rest of this section, we shall use the
north-west corner truncations of Q, that is, truncations
of the form S, ={0,1,2,---,n} for n=0,1,2,---

4.1. Stochastically Monotone Processes

Let Q be the Q-matrix of a positive recurrent, sto-
chastically monotone Markov process F. By construction,
the nxn north-west corner truncations of Q aug-
mented in the nth column are stochastically monotone.
Since (n)Qn is conservative on a finite set S,, . F

has precisely one positive recurrent class, which contains
n and is a subset of or equal to S. Its limiting distri-

bution (7, satisfies > o (7, (i), Qun(i.J)=0
for all jeS. From Theorem 4.1, we also see that
(mF, 18 stochastically monotone.

Let (n)Q be an arbitrary augmentation of (n)Q and

note that m is stochastically comparable with (n)Q

ne

As per our comments above, the minimal  , Q -function

Copyright © 2012 SciRes.

(H)F is positive recurrent on one or more irreducible
subsets of S, and hence any invariant distribution for

E,say (> 18 stochastically dominated by , 7,.

Now, let us extend \Q, and @ to S as follows:

Q(i. j).if j<n,

Zkan(i’k)sif J =nandi< n,
(n)Qn(i,j): i:nQ(i,k),ifi>nand j=n, (18)
ZkziQ(i»k)if i>nand j=1i,

0, otherwise,

and

(n)Q(i,j),ifOSi,j <n,

! Q(i.k).if i >nand j=0,
Zkle(lyk),lf i>nand J = i’
0, otherwise.

@Q(0.J)=

We also extend , m, and mT to S by appending
a countably infinite number of 0’s to each, so that
(T (i)= n(i)=0 for all i>n. Note that =
(resp. (n)n)remains invariant for (H)Qn (resp. (n)Q ).

n

Moreover, since the minimal -\ Q, -function  F is

positive recurrent on some subset of {0,1,---,n} con-
taining N and transient elsewhere in S, the measure
(mTn 1 the limiting distribution of
mF. (n)Ftn (i,j)— (n)nn(j) as t—>oo forall
i,jeS. Similarly, (™ is the limiting distribution for
the minimal (n)Q -function () F when given an appro-
priate initial distribution.

The stochastically monotone matrix Q, dominates

E while ,Q, and . ,Q = arestochastically

comparable for all n=0,1,2,--- So too are (n)Qn and
Q for all n. Thus, (n)QE (H)Qn C (n+1)Qn+| CQ. An
application of Part i of Theorem 4.1 then shows that

WFEWF CuyF, CF for all neN

mFEwm Con-

squently,

"= 0T = T, 3T (19)
where 7 is the unique stationary distribution for F.
The sequence ((n)n) is therefore tight and so

(n)ﬂ?(j)—)ﬂ?j for all jeS as n-—»>o. The same is

true for {7, ).

From (19), we observe that
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Oszizk(n(i)—(n)nn(i))gzizk(n(i)—(n)n(i)), for all
keS, and so ()T is at least as good an approxima-
tion to p as (- Thus, any invariant measure derived
from a north-west corner truncation of Q augmented in
its last column is optimal for approximating 7.

As was pointed out in [7], the pointwise convergence
of measures on a countable set can easily be extended to
convergence in total variation. We therefore have the
following result.

Theorem 4.2 Let Q be the Q-matrix of a positive
recurrent, stochastically monotone Markov process on
S. Let p be the stationary distribution of the minimal
Q-function F and denote the invariant distribution of
an arbitrary NxN north-west corner augmentation

m by (m Furthermore, let ,Q  be the nxn

north-west corner truncation augmented in column n and
take 7 = to be its invariant distribution. Then,

(n)n—n“—>0 as N—oo. The same is true of the se-

quence ((n)nn) which is the optimal approximation in

the sense that its tail mass more closely approximates
that of =.

Proof: The fact that, for all jeS,  n(j)—>n(j)
and (n)nn(j)—>n(j) as N—oo was established in
the preceding discussion. So too was the optimality of
(o as an approximation to 7m. To prove convergence
in total variation, fix an arbitrary finite k € S. Then, we
obtain

(n)“‘“”: 2.

jes

)

(n)“(j)_“(j)‘
(n)n(i)—ﬂ(i)\+2

i)+ (i)

j=k i>k
< zk\(n)n(j)-n(j)\uzkn(j).
1< j>

The analogous statement holds for Q ~ and the
proof is completed by letting first n ané then k tend
to infinity.

As remarked in [6], n)n(a) will be strictly positive
for sufficiently large n where a is an arbitrary state in S.
Thus, S, contains a positive recurrent class to which n
belongs. Computationally speaking, this means that any
invariant distribution will suffice as an approximation to
n, provided n is sufficiently large.

Finally, if n is large enough so that (n)Q possesses a
quasistationary distribution (n)r supported on a nonde-
generate irreducible subset of S, then the sequence of
distributions (n)Y) converges weakly to m. We can
always find a sequence (Cn,n =1, 2,---) of irreducible
sets such that C, cC, c---cS and UneN C,=S.

See Lemma 5.1 in [16] for a proof of this; the ana-

Copyright © 2012 SciRes.

logue for discrete-time Markov chains may be found in
[3], Theorem 3.1.

For a finite state Markov process, every quasistation-
ary distribution is equivalent to a probabilitynormalised
left eigenvector of its Q -matrix restricted to an ire-
ducible class. In other words, If Q is a nonconservative
Q-matrix on a finite state space S containing an ire-
ducible class C e S,r= (r(i),i € C) is a quasistation-
ary distribution on C for the process if and only if
Di.cF(i)=1 and, for some 4 >0,

>r(i)Q(i,j)=-4r(j).jeC.

jesS

Note that by virtue of A -theory, r(i) is strictly pos-
itive for all ieC. By convention, we extend r to S
by setting r(i) =0 for ieS\C. If we then construct
the linear augmentation Q as

Qli1)=Q( i)~ Zelwr(i). o
keC
i,jes, itis not difficult to see that the invariant distri-
bution 7 for Q isunique and equivalent to T.

Now, let us return to the case of a countably infinite

state space. Given n large, we may construct (H)Q from

(n)Q in the same manner as (20) using a left eigenvector
m" of )Q supported on an irreducible class C,.
The conditions of Theorem 4.2 are satisfied and so the

sequence ((n)r) converges in total variation to the in-

variant distribution of Q. This observation subsumes
results concerning the truncation approximation of in-
variant distributions of birth-death processes and sub-
critical Markov branching processes, for example, see
[16-18]. The convergence of quasistationary distributions
of truncations to the invariant distribution of the original
process also holds under the weaker conditions we dis-
cuss in the next two subsections.

4.2. Processes Dominated by Stochastically
Monotone Processes

Now we shall consider a much larger class of Markov
processes, namely those whose transition functions are
stochastically dominated by a positive recurrent, stochas-
tically monotone process. To begin, let F be the sto-
chastically monotone transition function of an irreducible,
positive recurrent Markov process. Suppose that F do-
minates a transition function F. We shalluse Q and Q

to denote the corresponding Q -matrices. As noted ear-
lier, F must be positive recurrent and the invariant distri-
butions 7 and %, corresponding to F and F re-
spectively, satisfy ©=<17.

Let ,,Q, and (n)(jn respectively denote the nxn
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north-west corner truncations of Q and Q augmented
in the Nth column. By extending these in the analogous
way to (18) and applying Part i of Theorem 4.1, we see
that ) F, and ) F are stochastically comparable.
Also, let (n) Q be an arbitrary augmentation of an nxn
north-west corner truncation of Q and note that

(n)Q C (n)Qn, whence )F C )F . From the previous

F.,CF for n=0,1,2--

subsection, FE . \F.,
Combining these, we obtain

(n)F,(n) FC (n) |En (n+ Fn+1 C F which implies that

@™ )T = (T = (qa1) T ST Thus, the sequence

((n)n) is tight and  m— 7 componentwise as N— co.

Convergence in total variation follows in the same way

as in the proof of Theorem 4.2 and the same is true of

((n)nn ) Thus we have proved the following result.
Theorem 4.3 Let Q be the Q -matrix of an irreduci-

ble Markov process which is dominated by a positive
recurrent, stochastically monotone Markov process. Then,

(n)n—n“—>0 as N —oo where p is the unique in-

variant distribution for Q and w, for neN, con-
stitutes an invariant distribution of an arbitrary N xn
north-west corner augmentation of Q.

As the augmentation  Q

n is a special case of |\ Q,

it follows from the theorem that

()T~ n” —0 as

n—oo. However, unlike the situation in which F is
stochastically monotone, it is not clear which of
and (T provides the better approximation to 7.

4.3. Finitely Perturbed Stochastically Monotone
Markov Processes

Finally, we consider an even more general class of Mar-
kov processes which was introduced in [7]. We say that
Q is a finite perturbation of Q if the two Q-matrices
differ in at most a finite number of columns. Let Q be
stochastically monotone and suppose without loss of ge-
nerality that Q and Q differ in the first k columns. Let

r:min{Q(m):m=0,1,---,k—1} and construct a
Q-matrix Q as follows:

—7,if j=i,0<i<Kk,

r+3 Q(i,m).ifi<k, j=k
> Q(i,m),ifi>k, j=k
Q(i, j),if j>k

0, otherwise

Qi i)=

Observe that Q is stochastically monotone. This is

Copyright © 2012 SciRes.

due firstly to the way in which the first k columns have
been constructed from Q, and secondly to the agree-
ment between the remaining columns of Q with the
corresponding columns of the stochastically monotone
Q. Now, Q satisfies (17) and so, by Theorem 4.1, the
minimal Q-function F and Q-function F are stochas-
tically comparable. Direct application of Theorem 4.3 to
F and F then yields the following result.

Theorem 4.4 Let Q be a finite perturbation of a Q-
matrix Q whose minimal Q -function is irreducible,
positive recurrent and stochastically monotone. Also, let
p be the unique invariant distribution for Q and denote
the invariant distributions of arbitrary nxn north-west
corner augmentations Q by T Then,

mT= n”—)Oasn—mo

4.4. Example

Conrth-death process, whose tridiagonal Q-matrix
A,if 120, j=i+1,

H,if j20i=j+1,
Q(i,j)=14,if j=i=0,

(A +u),if j=i>0,

0, otherwise,

where (ﬂ,, = 0) are strictly positive birth rates and
( i > 1) are strictly positive death rates. Here, we take

the state space S to be the set of non-negative integers.
Such processes can be used to model queues having
memoriless arrival and service times, simple circuit-
switched teletraffic networks and buffers in computer
networks, etc.

Let Q be the Q-matrix of an irreducible birth-death
process. Then, it can be shown (see [1], Chapter 3) that

Q isregular ifand only if ) " ie Zj:orj =

_ bAoA

Hyfy - H
Q regular, the unique minimal transition function F is

where 7,=1 and 7, = for i>1. Now for

o . . z 1
positive recurrent if and only if A:Z—:oo and

i=0 4T

B=) 7, <. The stationary distribution for F is
i=0
n=(mn(i),ieS) where m; =7/B
Now, it is straight forward to verify that Q satisfies
(17) and hence, by Theorem 4.1, F is stochastically
monotone. furthermore, by Theorem 4.2, we may use
T to approximate m. Letting (H)Q denote the

north-west corner truncation on {0,,---,n}, augmenta-
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tion in column n yields the matrix ,Q, which differs

from ,Q only in its (n,n) element. More precisely,

(n)Qn(n,n)z—yn and (n)Qn(i,j)=(n)Q(i,j)=Q(i,j),
if either i<n or j<n. The stationary distribution

(T corresponding to the augmentation (m) Gn is given

=0

n
by (n)”n(i):Ti/ZTj ,0<i<n From this closed form

expression, it can immediately be seen that
()N w(i) as n—>ow since 370 7, B<w as

n — oo . Convergence in total variation then follows as in
the proof of Theorem 4.2.

5. Conclusion

Here we have investigated procedures based on the aug-
mentation of state-space truncations for approximating
the stationary distributions of positive recurrent, con-
tinuous-time Markov processes on countably infinite
state spaces. We have shown that approximation tech-
niques first proposed for application to discrete-time
markov chains are also efficacious in the continuous-time
setting. Two classes of Markov process were considered:
Exponentially ergodic processes and stochastically
monotone processes. It was shown that the invariant dis-
tributions T corresponding to the augmented

Q-matrix (n)Q of finite statespace truncations of a

Q-matrix converge in total variation to the invariant
distribution of the Markov process generated by that
Q-matrix . It remains to study the speed of such conver-
gence. An understanding of the convergence rate would
enable the truncation size to be selected in order to guar-
antee that the measure )™ approximates m to a de-
sired degree of accuracy.
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