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ABSTRACT

Consider a first-order autoregressive processes X, =¢X,

+Z,, where the innovations are nonnegative random vari-

ables with regular variation at both the right endpoint infinity and the unknown left endpoint §. We propose estimates
for the autocorrelation parameter ¢ and the unknown location parameter € by taking the ratio of two sample values cho-

sen with respect to an extreme value criteria for ¢ and by taking the minimum of X, — gan ., over the observed series,

where ¢3,7 represents our estimate for ¢. The joint limit distribution of the proposed estimators is derived using point

process techniques. A simulation study is provided to examine the small sample size behavior of these estimates.

Keywords: Nonnegative Time Series; Autoregressive Processes; Extreme Value Estimator; Regular Variation; Point

Processes

1. Introduction

In many applications, the desire to model the phenomena
under study by non-negative dependent processes has
increased. An excellent presentation of the classical the-
ory concerning these models can be found, for example,
in Brockwell and Davis [1]. Recently, advancements in
such models have shifted focus to some specialized fea-
tures of the model, e.g. heavy tail innovations or non-
negativity of the model. In this paper we examine the
behavior of traditional estimates under conditions leading
to non-Gaussian limits. For example, the standard ap-
proach to parameter estimation within the AR(1) process
is through the Yule-Walker estimator;

n-1 _

XX (X, - X)
¢LS:t:1 n >

> (XX (L1)

t=1

where X 212)(,.
n-

A slightly different approach presented in Mathew and
McCormick [2] used linear programming to obtain esti-
mates for ¢ and 6 under certain optimization con-
straints. While there are many established methods to
estimate the autocorrelation coefficient in an AR(1) mo-
del, there are just a few approaches on estimating the
unknown location parameter in an AR(1) model. One,
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was mentioned in McCormick and Mathew [2] where
they considered

X, —X.

t +1 J

where ¢,

=X. _¢ X range :ﬁ
r !

range j range ™ *_p2 b

t* and j° provides the index of the maximal and
minimal X, respectively for 1<i<n.

In this paper we examine estimation questions and
asymptotic properties of alternative estimates for ¢ and
6 respectively, relating to the model

X, =X, +Z,t>],

where 0<¢<1,0>0 and {Z} is an iid. sequence
of nonnegative random variables whose innovation dis-
tribution F is assumed to be regularly varying at infinity
with index —f and regularly varying at ¢ with index
a , where 6, denotes the unknown but positive left
endpoint. As a result of not restricting the innovations
{Z,} to be bounded on a finite range, we can first
estimate the autoregressive parameter ¢ through re-
gular variation at infinity and then estimate the positive
but unknown location parameter through regular vari-
ation at @, the left endpoint.

While we have mentioned a few established estimation
procedures, one notable exception was that of maximum
likelihood. Although typically intractable and intricate in
the time series setting, when the innovations in the AR(1)
model are exponential, the maximum likelihood proce-
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dure had a major contribution on the estimation of posi-
tive heavy tailed time series. With these considerations in
mind, Raftery [3] determined the limiting distribution of
the maximum likelihood estimate for the autocorrelation
coefficient ¢ . As a result, the estimator

. X
=N\ 1.2
h=Dx (1.2)

was considered. The realization of this estimator was the
stepping stone for the work done in this paper along with
Davis and McCormick [4] which first considered this
alternative estimator and used a point process approach
to obtain the asymptotic distribution of the natural esti-
mator ¢?n. This was done in the context that the in-
novations distribution F varies regularly at 0, the left
endpoint, and satisfy some moment condition.

The work presented in this paper is an extension of the
work done in Davis and McCormick [4] including the
following contributions to dependent time series with
heavy-tail innovations. The first contribution involves the
development of estimates for the autocorrelation coeffi-
cient and unknown location parameter under regular vari-
ation at both endpoints, with a rate of convergence
n'y (n) , where ¢ 1is slowly varying function. The
second contribution involves using an extreme value
method, e.g. point processes to establish the asymptotic
distribution of the proposed estimators and weak con-
vergence for the asymptotically independent joint dis-
tribution. An initial observation is that our estimation
procedure is especially easy to implement for both ¢
and @. That is, the autoregressive coefficient ¢ in the
causal AR(1) process is estimated by taking the mini-
mum of the ratio of two sample values while estimation
for the unknown location parameter € was achieved
through minimizing X, —¢,X,, over the observed
series.

This naturally motivates a comparison between the
estimation procedure presented in this paper and the
standard linear programming estimates mentioned above,
since within a nonnegative AR(1) model the linear
programming estimate reduces to the estimate proposed,
namely, min_,_, (X,/X, ), where {X,} denotes the
AR(1) process. This comparison along with the com-
parison between Mathew and McCormick’s [2] opti-
mization method and Bartlett and McCormick [5]
extreme value method was performed through simulation
and is presented in Section 3. The results found appear to
demonstrate a favorable performance for our extreme
value method over the 3 alternative estimators.

The main proofs in this paper rely heavily on point
process methods from extreme value theory. The essen-
tial idea is to first establish the convergence of a se-
quence of point processes based on simple quantities and
then apply the continuous mapping theorem to obtain
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convergence of the desired statistics. More background
information on point processes, regular variation, and
weak convergence can be found in Resnick [6]. Also, a
nice survey on linear programming estimation proce-
dures and nonnegative time series can be found in Andél
[7], Andél [8], and Datta and McCormick [9], whereas
more applications on modeling the phenomena with
heavy tailed distributions and ensuing estimation issues
can be found in Resnick [10].

The rest of the paper is organized as follows: asympto-
tic limit results for the autocorrelation parameter ¢,
unknown location parameter &, and joint distribution of
(¢,6) are presented in Section 2, while Section 3 is
concerned with the small sample size behavior of these
estimates through simulation.

2. Asymptotics

The following point process limit result is fundamental.
Since the result makes no use of an ARMA structure, we
present it for more general linear models subject to usual
summability conditions on the coefficients. In that regard
for this result, we assume that {X,,n>0} is the sta-
tionary linear process given by

X, = ichn_j

=0
with Z|cj|5 <o for some 0<d < f,8<1. Further-
=0

more for this result we may relax our assumptions on the
innovation distribution and we require that |Z1| has a
regularly varying tail distribution, i.e.,

P(|Z,|>x)=x"1(x),x>0 for a slowly varying fun-

ction ¢ and the innovation distribution is tail balanced
P(Z1 <-x)
————~ g as x >,
P(|z,|>x)

Define point processes
n
=)ce€ nx1
§n ; (b;le,]‘Z]()’

and let Zejk denote PRM(v) on R, =R/{0} where

k=1
v has Radon-Nikodym derivative with respect to Lebes-
gue measure

1 %4 o —f—
a(x):l’ﬁx g 1l(o,oo)(x)Jf‘113|"| ! 11(_00‘0)()6).
Let {Zi’k,iZO,kZl} be an iid array with Zl.’kiZ1

and independent of Zg./k . Define
k=1

Ms
M

§ - E(Cijk Zik)

B
n
Il
o
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Our basic result is to show that M, (RO x ]R) equipped

with the topology of vague convergence
& —15&in

which is close in statement and spirit to Theorem 2.4 in
Davis and Resnick [11]. In view of the commonality of
the two results, we present only the needed changes to
the Davis and Resnick proof to accommodate the current
setting. Aside from keeping track of the time when points
occur, ie. large jumps, the difference in the point pro-
cesses considered here with those in Davis and Resnick
[11] is the inclusion of marks, i.e. the second component

of the point (bn’ 'X, ,Z k) . This complication induces an

additional weak dependence in the points which is
addressed in Lemma 2.2 through a straight forward
blocking argument. First, we establish weak convergence
of marked point processes of a normalized vector of in-
novations. For a positive integer m define

Z/EM) :(Zk’Zk—U”"Zk—erl)

and point process

n

7 =% ,n>1.
" ; (62" 211
Let e =(0,---,1,---,0),1<i<m denote the standard
basis vectors for R™. Define an associated marked point
process with the first component placed on an axis by

ZZ

=1 i=1 leel Zk+z
In the following Lemma, we show that I ) and I

are asymptotically indistinguishable in the followmg

sense. Let Ry =R"/{0} and E=Rj xR . Consider

the class of rectangles
S= {Rx(—oo,x] ‘R = ?fl(ci,di],

x < oo and EX(—OO,,X‘]CE}

Lemma 2.1. As n tends to infinity
7" (B)-Z\" (B)—2—0 for all BeS.

Proof. Following the proof presented in Proposition
2.1 of Davis and Resnick [11], suppose that Be S is
such that for some 1<i'<m,B(Re,xR)=D. As

noted in Davis and Resnick [11] for all i#i', one has
¢, <0<d,;. Observe that
I,Sm) (B)< I,Em) (Rx e, d,]x -~><]R><(—oo,x])

n—i'+1

x ux[cl.,,dl.,]x---xRx(—oo,x])

2.1
and d=n,,d >0 .

€ (IR{
i) (bn Zkef',zkn’)

c. <0

izl i

Similarly let c¢=v
Then
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7" (B)
> 1" ([e.d]x+x[c,.d, ]x+x[e,d]x(—»,x])
> 7" (Rx-x[e,,d, | xR x(~o0,x]) (2.2)

~ 21" (E x(-0.x])

where  y=(y,,»,)€E,
and y, €[c,,d,]. Note that

E|:I}Em) (Ei x(—OO,x]):|
< np[bi|zl| >|d] Ad,bi|zl| >l A|d,.,|] (23)
= 0(1).
Thus from (2.1)-(2.3) we obtain
‘I m _frgm) (B)‘

sz(i'_l)p[bl

n

according to y, ¢[c,d]

Zl>|ci,|/\|di,|]+0(l)=o(l) (2.4)

as n — 0.

Then the result follows as in Davis and Resnick [11],
Proposition 2.1, completlng the proof o

Lemma 2.2. Let V and V") be the point pro-
cesses on the space E =R xR" defined by

L "L

Y\ k> 1} is an iid sequence with

) and Y

by Zy, k +m
where {

d )
Yl("’)z(Zl,'--,Zm) and is independent of ZEjk . Then
k=1

in M,(E),
V('") d )V('”)

Proof. We employ a blocking argument to establish
this result. Let », be a sequence of integers such that
r=r,—>o as n—>o and r=o(n). Let h=|n/r|
and /2> m . Define blocks

I, :[r(s—1)+l,~-,rs—l],
J, ,:[rs—l+1,-~~ rs]
for 1I<s<h and J

nh+l

[rh +1,- ]
Then it is clear that for s #¢

(Z kel O<z<m)

k+i? n,s?
Llo(Z,.kel,, 0<i<m).
Write
Vis k; e( ) and V" k; e(b” adlt))
AM
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Then

h hel
Y =3y S g, (2.5)

s=1 t=1

Let Bc E be adisjoint union of rectangles

B=J.,B (2.6)

where B, =[c;,d,|xR, with R =X [x,,»,]. Let
H=vxFx--xF denote the mean measure of )
which is PRM(x) on E. To complete the proof we
first show that for all sets B of the form given in (2.6)
that

limP(Vn("’)(B)=0)=exp(—u(B)). Q@.7)

n—o

The above limit result follows from the easily veri-
fiable relations:

2.8)

PV (B) AV (8 )Zl)zo(éj 2.9)

Tﬂlvs
U:J;/
N

(2.10)
P (8)21)=La(8) (1o () @11

and
”Z*ivw( B)—2—0as n— o, (2.12)

Indeed, in view of (2.5) and (2.12), (2.7) is equivalent
to showing

hmP(Z " (B)= j—exp(—,u(B)) (2.13)

n—x

and the above relation holds by (2.8), (2.10), and (2.11),
viz.

P(Zh: ! (8)= Oj - (I_P(Vn(,i") (B)> 1))h

It is immediate that for a rectangle
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B=[c,d]xX!" [x,,y;] < E we have
lim £[ V") (B) | = u(B).

Therefore the result is seen to hold by (2.7) and (2.14)
by application of Theorem 4.7 in Kallenberg [12]. o
Lemma 2.3. Let I,Em) and T"™ be point processes

on the space E = R(O'") xR

(2.14)

k=1

(m) _ m _NN
In - Ze[b;‘z,(('”),zm)’n >2land 7V = ZZ€(jkef,Z;,k)

Thenin M, (E),
I(m) d I(m).

Proof. We begin by applying the argument used in
Theorem 2.2 of Davis and Resnick [11] with the modi-
fication that the relevant composition of maps of point
processes is given by

Z E(uk »mGf"s‘/lk) = (Z E(uk ,mG)’ B ze(uk,vlk)j
k=1 k=1 k=1
= (; Cuerme)> " Z ke i) ]

k=1

= ZZE(“M:VM-)
k=1 i=1
Each map being continuous, the composition is a con-
tinuous map from M, (ROXR’”) to M, R(O’”)XR)
with each space being equipped with the topology of
vague convergence. Therefore by the continuous mapp-
ing theorem and Lemma 2.2 we obtain

m

Fm) _ RS
1, - ZZE b Zge, Z,H, zze(/kehzi.k)

o0
k=1 i=1 ( n ok k=1 i=1

(2.15)
=7,
Finally we complete the proof by Lemma 2.1 and
(2.15) arguing as in Davis and Resnick [11].
We are now ready to present our fundamental result.
Theorem 2.1. Let &, and & be the point processes
on the space E =R xR defined by

n [e's)
£ :ge(h;l)(kfhzk)’n >1and &= Ze (i7es)

1i=0

MS

>~
I

where i% is PRM (v) and {Zl.‘k,iZO,kzl} is
k=1

d 0
an iid array with Z,, =7 and independent of Zejk .
k=1
Thenin M, (E),
& ——¢.

Remark. Apart from considering a time coordinate
and restricting the process to an AR(1) process, the above
Theorem 2.1 and Theorem 3.1 in Mathew and Mc-
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Cormick [2] consider essentially the same point process

limit result. However, their result gave a wrong limit

point process. This error is corrected in the current paper.
Proof. Observe that the map

m—1
(Zk 52515 9 Lot ) = Z CiZpi
i=0

induces a continuous map on point processes given by
00

€ =D )
! (2 s 2k15 " Zhems1 s Zk41) s [’"*‘ ]

CjZk—jZk+1
0

M

=
I

=t

Thus we obtain from Lemma 2.3 that

L’Z

o m-1
k=1i=0

n m

€ € . . (216
k=1 [brjlnil(’izkfhzkﬂl (6o Zia ) ( )
i=0

The result now follows from (2.16) by the same argu-
ment in Davis and Resnick [11] to finish their Theorem
2.4.

Returning to the AR(1) model under discussion in this
paper and the estimate ¢3,, given in (1.2), we obtain the

following asymptotic limit result.
Theorem 2.2. Let {X,,t > 0} be the stationary solu-
tion to the AR(1) recursion X, =¢X, | +Z, and

¢Zn = /\7—1 i :
h thl

and the innovation distribution F has regularly varying

right tail with index —f and finite positive left endpoint

0,

Under the assumptions that 0< ¢ <1

lim P(b,, (4,-¢)> x) e for all x>0,

where W:/\;”_O% and b, =F (1-1/n).

Proof. For x>0 define a subset

Qx ={(x1,x2):x—zﬁx,xl >0,x2 29}.
X

1

Then note that for the point processes

n
£ = kZ:; e(b;lXH z) we have

{6 (0)=0}= {A bZX > x} ~{b,(4,-¢)> /.

Applying Theorem 2.1 in the case of an AR(1) process
sothat ¢, =¢',i >0, we have

gn_d_)g :zze(¢/

S5 Vi)

Note that as a subset of E=(0,00]x[6,0), the set
Q. is a bounded continuity set with respect to the limit
point process & so that

Copyright © 2012 SciRes.

lim (5, (4, ~4) > x) = P(£(2.)=0)
= P(/m\/w\ Zl’k > xj = P(/w\ﬁ> x]
g, b

where (Wk =N\ 7Z, k> 1) is an i.i.d. sequence in-
dependent of (j,,k>1). Let

é?: ZE(/k’Wk)'

k=1

(2.17)

Then by Proposition 5.6 in Resnick [10], we have that
if G denotes the distribution of W,, then & is a
Poisson random measure on E with mean measure
1=vxG , where v(dx):ﬂx’ﬁ’ll[o,w)(x)dx . Using
(2.17) we can write

P(/w\ﬁ> xj =P(£(0,)=0)=exp(-4(Q.)).

k=1

Since w(Q,)=x"EW™", the result follows.
Corollary 2.1. Under conditions given in Theorem 2.2,

¢Zn L)¢

Proof. Since b, = F (1-1/n) —> o we have
¢, —L—> 4. But this implies ¢ —=—>¢. since ¢, > ¢
and is non-increasing.

Let us now define our estimate of 6

én =\ (X; _énXt—l)a

tel,

where we define the index set
Iﬂ:{t:IStSn and X, <(a,b )p} where 0< p<1

-1 — n-n
is a fixed value.

Lemma 2.4. Under the assumptions that F is regularly
varying with index o at its positive left endpoint 0
and F is regularly varying with index —f at infinity,
its right endpoint, and o > [, then

a (49" -N Z,)L)O,as n—> o,
tel,

where a, = F (1/n)—6 . Furthermore, for any y >0

limP(a;1 (én —49) > y)

= hmP[a;l [/\lzt _HJ >yJ: e_ya.
n—»o0 1=

Proof. Since o> f,wehave lim,_ _ab =o.

n—ow 'n-n

Therefore since (bﬂ (43” —¢),n21) is a tight sequence

by Theorem 2.2 and since max,.; X, / (a,b,)’<1 with

0< p<l1,wehave
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a;I (én _¢) \[/ Xz—l —=0.
tel,
The first statement now follows since

ar:l én_/I\ZtSan ‘¢n ¢\1/X
tel, te

For the second statement observe

0<P( (/\Z 6’)>y) [a;l[,/"\lzt—ﬁj>y]
:P[anl(t/i\lZ,—HJSy<a (tél\Z 6)}

<P U (%> (an) maa (2-0)< )

1<t<n

<nP(X >(ab) ) (Z, <a,y+6)=0(1).

n-n

(2.18)

The result for the second statement now follows from
(2.18) and the first part of the lemma. Finally, the iden-
tification of the limit distribution is well known. o

A useful observation follows from this lemma which
we state as a corollary.

Corollary 2.2. Under the assumptions of Lemma 2.4
forany x,y>0

lE?C{PbH ((¢ ~¢)>x.a,'(6,-0)> y)

—P[bn (¢fn —¢) > x,a;1 [t/i\l(Z, —9) > yD =0
Proof: By Lemma 2.4 we have
m{P(bn (4.-9)> x40, (6,-0)>»)

—P(bﬂ (4,-¢)>x.a, (/,\ Z, - e) > y)} =0

The result then follows from

osm{bn(&n ~¢)> x}

(betpm-opofe(fa-o))
<P( (/\z (9)>yj (anl[t/i\lZ,—ﬁj>yJ.

i

Corollary 2.2 allows a simplification in determining

the joint asymptotic behavior of (ﬁn,én) by allowing us

to replace :9 with min,_, Z,. The next lemma will

provide another useful simplification—this time on ¢, .
For a positive integer m define

Copyright © 2012 SciRes.

)71 Z¢Z

Lemma 2.5. Let U,(l) and U, be defined as

-1 n t-1

Then for any € >0

m—>00 n—»0

lim lim P(‘U,(,”’) ~u,|> e) 0.

Proof. We first note for any positive M that

P(‘Uf,"” -u,|> e) - P[U(”’)U L

U(’") U_

n n

1 1
(

SP[__

v U,

n

>e/M2J+P(U,§"’) >M).

U(’") U

n n

In order to calculate P( —_— > eJ we partition

X, . That is, we write

X, =x" 4 x/™

where X" =Y ¢'Z,_, , so that
j=m
e E A X
ez sz E 7 ’

Define point processes

(m)
;g(n i) and &

where {j,.k>1} and {Z,.k>1i>0} have the dis-
tributional properties given in Theorem 2.2. Applying
Theorem 2.2 with ¢, =¢' for i>m and ¢, equalto0
otherwise, we obtain

ZZ Wi

k=1i=m

é:(m) ég

Then letting for x>0

R. z{(u,v):u >0,v> 9,and£>x},

X
A4

we have

lim P(\/b X" /z < x]

n—x%

= lim P(&" (R,)=0) = P(£" (R, ) =0).

n—»0

Setting

=N S ana £ =2
ik =

AM



A.BARTLETT, W. MCCORMICK 2139

where
S = {(u,v) cu>0,v>6,and uv > x}.

Since ¢ is Poisson random measure with mean
measure y, =vxH, where V") ~H_ and

m

u, (S ):x’ﬁE(V,('”))ﬂ,

X
we obtain

lim P(\n/ b;l)(t'ff’)/zt < xj = eXp(—x‘ﬂE(Vl(’”) )ﬂ)'

n—o t=1
Next since
1 _L < \n/—b”_lX’,ET)
U™ u,\l = z

we have for large # that

{
SZ(I—exp(—eﬂM”E(Vl("’)) D

<2 "M (V" )ﬂ .

um U

n n

1
(

Therefore, since Vl(m) <¢"/0,

>6/M2J:0.

1

lim lim P( -

Mm—>00 n—>0

1
U(’") R

Next, note that from the limit law for the maximum
obtained above, by replacing X,’ET) with X,(f"l) and by
taking reciprocals, we derive the limit law for minimum,

A V4
limP| U = \—"t—s < x
r=1 bn—lX(m)

n—o
t-1

(2.19)
=1—exp(—xﬂEWr;ﬁ)
where 17, has the distribution of /\"'Z /¢’ . Thus,

for any integer m>1,

1imP(U,(,m) < x) Zl—exp(—(x/e)ﬁ).

n—o

Thus for any ¢>0, we have for M large enough
that

lim sup sup P(U,(,’”) > M) <€

n—w  m21

completing the proof. o

Copyright © 2012 SciRes.

With Lemma 2.5 in hand we can now focus our atten-
tion to the limiting joint distribution of (U,E"’>,/\" z ) .

t=1"t

This will be accomplished by a blocking argument. To
that end for a fixed positive integer k., let r, =|n/k |
and define blocks for i=1,---,| n/r, | by

J, 2[(1'—1)};1 +1,---,ir, —q],
and J/ =[ir" —q+1,---,irn]

where ¢ is a positive integer greater than m . Further-
more, let

J; =[r" |_n/r"J+l,~-,n].

Now we define the events

v/
Z :{Elle./i :(b_l)é(m)]Sxor a,' (2, —G)Sy},
-1

=11

n

and

Z
li,:{zlle‘]i’:[bl)é(m)lgxor ar:I(Zl —Q)Sy},
n 1-1

=0,

n

where [, =| n/r, | . We begin by showing that the events
x| are negligible.
Lemma 2.6. For any x,y >0

Iy
lim P(U X |=0.

n—»o0 ;
i=0

Proof. Observe that

Z
nP{ - l(m) Sx]SnP _19(,”) Sx}
b, X, b X

(2.20)
~ xﬂg—ﬂ'fqyﬂ < ¥’
par 0" (1-¢4")
and
nP(a,' (2,-0)<y)~ " (2.21)

Thus for some constant ¢ and any n>1,

In
P(U ;([J <ck/n
=0

establishing the lemma.
Define events 4, and B; by

V4
Ai:{flle.],:{ _1 l(m)JSx}
bn lel

and B, ={3leJ;:a,'(Z,-0)<y}.
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The following result provides the asymptotic behavior
of the probability of these events.
Lemma 2.7. Forany x>0,y >0, wehaveas k — o

a

lim P4~ £, and fimP (8,) ~2—.

n—o n—»o

Proof. Since the events 4, are independent, we have

k V4
PN 1 f( >x,VledJ,
i=1 b); Xlinl)
k
Z
:[P{ — l(m) >x,VleJ1D .
n lel

Using Lemma 2.6 we have that

P(/\ Z >x]
I nX_)
k 1

=P ﬂ ™ >x,VieJ, +O(—]
i=1 n

k
=(P[—>x VZeJ]J +O[lj.

b— ( ) n

From (2.19) we showed that

hmP( /’\b ) ﬁxJ

-1
:1—exp( xPEW ﬁ)

Hence using this limit law on /\", (Z, / b' X, ,(:”)) , we

1
obtain
k
. Z,
lim lim| P >x,Vied,
k—on—w brlel(—l)

= exp(—xﬂEWrgﬂ).

Thus,

lim P[4 ] ~7EWmﬂ,as k—ow  (2.22)

n—o

Similarly using the result of Lemma 2.4, we obtain

lim P[B,] ~y7,ask — . (2.23)
Hence the lemma holds. O
Lemma 2.8. For some constant ¢

P(A4.NB)<cP(4,)P(B,).

i

Remark. Since the cardinality of J, depends on 7,
which depends on & and the events 4, and B, de-
pend on n, P(4) and P(B;) depend on k and n.
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The conclusion of this lemma provides that for all &
and n, there is a constant dependent on no parameters
for which the inequality stated there holds.

Proof. To calculate the intersection we define the
following sets

K =K, ={(1.0,):1., e J,and [, ¢ [l, -1-m. [, ]}
and
K, =K, ={(L.L,):1,.l, € J, and [, €[, =1-m.}, ]}

Now for /,-1-m </, <] -1 and n sufficiently large,

{b;‘z)[r]}m{ ] - x}“{a; (2, -6)< |
c{ s

i#l —l,-1,0<i<m-1

¢i 4 li_bn x 6 1}
ﬂ{Z,2 S6’+any}.

It then follows from (2.20), (2.21), and independence

that
P 2 ¢ h=1-i = bn 0 1
i#l —l,—1,0<i<m-1 X

ﬂ{le <6+ any}]

o)

If [, =1, =1, wehave

Therefore, for some constant ¢

Z -
P[(/l,lzL)JeKz {b;')l(z(f"{ < x}ﬂ {anl (le B 0) < y}]

=c/nk.

In order to handle set K, observe from construction
of the blocks J, and set K, that if (/,/,)eK, then
the events

Z
{b,;vl},ﬁ'"i ) } nd fa,' (2, ~0) <)

are independent. Thus, if we define {Z/,ieZ} as an
independent copy of {Z/,ieZ}, then

AM
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Z —
P (I‘JLZJ)EK‘{[),:I/\ZL,(IT? Sx}ﬂ{ahl(zlz —Q)Sy}

Z - !
=P (UEJ)EK' {bgl)](ll(l,ﬂ Sx}ﬂ{anl(zlz_e)gy}

_P(AinBi,):P(Ai)P(Bi)Sc/kz

where B = {Ell €J :a,'(Z/-0)< y} and where we
used Lemma 2.7 in the last step. Thus, we have that for
some constant ¢

P(4NB)

Z
=P (1],1EJ)6K1 {bn—v;(lm% < X}ﬂ{a;l (le _0) < y}

Z
U(ll,lzL)JeKz {bgl)l(ll(l,ﬂ < x}ﬂ {a;l (le - 9) < y}

O(P(4,)P(B,)),
which completes the proof in view of Lemma 2.7. o
Lemma 2.9. Forany x>0,y>0,

) n Z » n
ll_r)gP(/\(b (”)j>x,an t/_\l(Zt—9)>y]

= exp(—xﬂEWm'ﬂ —y“).

Sc/kzz

Proof. First from Lemma 2.6, we have as n— o

that
n Zt _1 n
P| N\ > x,d /\(Z[—9)>y
=1 —IX(’") LS|
n t-1

:P(ﬁ;gf}ro(l).

i=1

Next by (2.22), (2.23), and Lemma 2.8 we obtain that
as k tends to infinity

limP()(,)~%(xﬁEVf/f +y“).

n—»00

Therefore, we obtain

k
it (2 |- tim(1- 28077+

= exp(—(xﬂEW";ﬂ + )7 ))

Hence

lirgP(/n\(b Z (m)]>x a’l/:\(Z 9)>y]

=exp(—xﬂEW,;ﬁ —y“).
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Theorem 2.3. Let {X,,t>1} denote the stationary
AR(1) process such that the innovation distribution F
satisfies F is RV , atinfinity and F"is RV, at 6.

If a>f thenforany x>0,y>0 we have

lim P(5, (4, ~¢) > x.a,' (6,-0) > y)

n—o0

_XPEW P -2
=e " Y R

where W =/\7 Z /4.
Proof. Let us first observe that for € >0

P(U,ﬁ’” >x+e.a, Nz, -0)> y]—P(‘U,(,m)

—U"‘>e)
sp[Un >x,a;1/\l(Zt—9)>yj
< P(U,(,”’) >x.a,'/\(Z,~0)> y].

Thus by Lemma 2.9 we obtain
exp{—(x+e)ﬁ EW” —y”‘}

()] 5 e)

<11m1an[U > X,a, 1/\(2 6’) J

n—»0

—limsup P(

n—o

< limsupP(Un >x,a; /\1(2’ -0)> y}
t=

< exp(—xﬂEW,;ﬂ -y )

Letting m tend to infinity in the above and then e
tend to O, we obtain from Lemma 2.5 and
lim,  EW,” =EW™" that

hmP[U >xa1/:\(Z 9)>yJ

= exp(—x"”EW'ﬂ -y )
The theorem now follows from this and Corollary 2.2.

3. Simulation Study

In this section we assess the reliability of our extreme
value estimation method through a simulation study. This
included a comparison between our estimation procedure
and that of three alternative estimation procedures for
both the autocorrelation coefficient ¢ and the unknown
location parameter € under two different innovation
distributions. Additionally, the degree of approximation

for the empirical probabilities of ¢ and 6. to its
respective limiting distribution was reported.
To study the performance of the estimators
. X . .
Prin = /\;1:1 —— and 0, = /\tel (Xt - ¢minXt—1) re-
X[71 n
AM
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spectively, we generated 5000 replications for the non-
negative time series (XO,XI,W,Xn for two different
sample sizes (500,1000), where 8X;} is an AR(1)
process satisfying the difference equation

X, =¢X,_ +Z, for (1<t<n) and Z, >6.

The autoregressive parameter ¢ is taken to be in the
range from O to 1 guaranteeing a nonnegative time series
and the unknown location parameter € is positive when
the innovations Z, are taken to be

c(z-0)",if 0<z<O+],
1-d(z-0)",if 0+1<z <,

F(z)=
For this innovation distribution let ¢ and d be non-
negative constants such that c¢+d =1, then this dis-
tribution is regularly varying at both endpoints with in-
dex of regular variation —/f at infinity and index of re-
gular variation o at &. For this simulation study two
distributions were considered:
) F,c=0,d=1, ii)F,,c=0.5,d=0.5.
Now observe in case i) the innovation distribution F
is a Pareto distribution with a regular varying tail distri-

A.BARTLETT, W. MCCORMICK

bution at oo with index of regular variation —f and
regular varying at 6+1 with a fixed index a=1,
whereas in case ii) the innovation distribution F, is
regular varying at o and 6 with no restriction on «
or .

First we examine the simulation results for ¢ =0.9
under F; for each of the six different £ values con-
sidered by computing 5000 estimates using

. X . X . X,

/\n t 41 t+l J
¢m' = t=1 ’¢ma = ’¢a e 4
in X X X* rang X[,‘ —X* 1

-

-1 ;

where t* and ;* provides the index of the maximal
and minimal X, respectively for 1<i<n,and

s

n—1 n

XX, /2 X if0<p<]
_ )=t t=1

n

> (X, - X)(X,., - X) i(x, ~X).if1<p<3

t=1

where X =3" X, /n. The means and standard de-
viations (written below in parentheses), of these esti-
mates are reported in Table 1 along with the average

Table 1. Comparison of estimators for ¢= 0.9 under F;.

95% C.I. Avg. Length

n . b ;nge 43:.5 Min est. Max est. Range est. LS est.

0.2 500 0.9000 0.9002 0.9002 0.8988 <0.0001 <0.0001 <0.0001 0.0288
(<0.0001) (0.0015) (0.0016) (0.0219) - - - -

1000 0.9000 0.9001 0.9002 0.8997 <0.0001 <0.0001 <0.0001 0.0091
(<0.0001) (0.0009) (0.0009) (0.0112) - - - -

0.8 500 0.9004 0.9026 0.9032 0.9231 0.0046 0.0139 0.0228 0.0657
(0.0016) (0.0083) (0.0083) (0.0251) - - - -

1000 0.9002 0.9020 0.9014 0.9158 0.0023 0.0072 0.0133 0.0529
(0.0008) (0.0064) (0.0064) (0.0186) - - - -

1.2 500 0.9049 0.9072 0.9067 0.8923 0.0271 0.0449 0.0548 0.0623
(0.0078) (0.0146) (0.0139) (0.0176) - - - -

1000 0.9029 0.9117 0.9047 0.8964 0.0187 0.0325 0.0389 0.0439
(0.0056) (0.0117) (0.0109) (0.0117) - - - -

1.8 500 0.9191 0.9202 0.9136 0.8947 0.0562 0.0763 0.0846 0.0695
(0.0622) (0.0673) (0.0612) (0.0381) - - - -

1000 0.9113 0.9208 0.9116 0.8989 0.0501 0.0690 0.0743 0.0485
(0.0313) (0.0367) (0.0384) (0.0223) - - - -

22 500 0.9236 0.9313 0.9176 0.8917 0.0670 0.0847 0.0944 0.0709
(0.0909) (0.1050) (0.0244) (0.0281) - - - -

1000 0.9207 0.9293 0.9151 0.8961 0.0623 0.0821 0.0874 0.0494
(0.0412) (0.0456) (0.0217) (0.0228) - - - -

2.8 500 0.9475 0.9505 0.9205 0.8873 0.0767 0.0905 0.1050 0.0737
(0.1378) (0.1471) (0.0723) (0.0691) - - - -

1000 0.9437 0.9484 0.9187 0.8906 0.0735 0.0885 0.0956 0.0516
(0.0834) (0.1163) (0.0317) (0.0331) - - - -

Copyright © 2012 SciRes. AM
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length for a 95 percent empirical confidence intervals
with exact coverage. Since the main purpose of this sec-
tion is to compare our estimator ¢?min to Bartlett and
McCormick [5] estimator ¢?max, McCormick and Ma-
thew [2] estimator érange, and Davis and Resnick’s [13]
estimator ¢, , the confidence intervals were directly
constructed from the empirical distributions of

nl/ﬁ (&min - ¢)9nl/ﬁ (émax - ¢)9nl/ﬁ (érange - ¢)
and (n/log n)l/ﬁ (éLS - ¢)

respectively.

To evaluate and compare the performance of four
location estimators, six different scenarios for o and
[ are presented in Table 2 under F,. When 6=2,
5000 estimates for each estimator;

Ouin =Ny (X, =0 X1) + O =X

min tel, range

>

- ¢rangeX *

J i

2143

n
A

0, = (1_&range)/\Xt » and éeZZ(l_&LS)t/Z\IX were ob-

r=1 !

tained. The exponent p inside the index set
I, :{tzlﬁtﬁn and X, <(a,b )p}, was set to 0.9.

=1 — n-n

The means and standard deviations (written below in
parentheses), of these estimates are reported in Table 2
along with the average length for a 95 percent empirical
confidence intervals. For convenience, the empirical dis-

tributions of n~"* (émm - 9) Ve (émge _ '9),
q, (9:4 - 0—(1—(3mgc)wn ) , and

q, (éez -0- (1 - &LS ) w, ) were respectively used, where

the normalizing constants ¢, and w, are obtained
through Equations (3.12)-(3.16) of McCormick and
Mathew [2]. .

Remark. In the case that 0< f# <1, 0, converge at

Table 2. Comparison of estimators for ¢ =2 under F,.

95% C.I. Avg. Length

Fooe b o= 0, 6. wmer (OB e Al
0.5 0.6 500 2.00 2.44 3.16 3.98 <0.0001 2.34 2.09 3.02
(0.0087) (0.4068) (0.6775) (0.7657) - - - -
1000 2.00 2.39 3.77 3.67 <0.0001 1.89 1.69 2.60
(0.0002) (0.3605) (0.4381) (0.4960) - - - -
1.6 500 1.94 2.68 3.34 4.10 0.0273 2.37 3.18 3.66
(0.0879) (0.35606) (0.6656) (0.7503) - - - -
1000 1.99 2.63 3.94 3.81 0.0152 1.87 2.23 2.79
(0.0503) (0.3199) (0.4311) (0.4780) - - - -
2.6 500 1.87 2.77 3.41 4.16 0.1422 2.19 2.85 2.38
(0.4697) (0.7553) (0.6733) (0.7632) - - - -
1000 1.89 2.73 3.99 3.87 0.0988 1.74 2.21 2.03
(0.4045) (0.3143) (0.4276) (0.4822) - - - -
1.5 0.6 500 NA 1.72 2.35 2.15 NA 1.57 1.28 2.21
) (0.9410) (0.5327) (0.3706) - - - -
1000 NA 1.80 2.19 2.65 NA 1.20 1.25 1.88
©) 0.9141) (0.4381) (0.2565) - - - -
1.6 500 2.80 1.95 2.54 2.26 1.72 2.23 2.18 1.94
(0.3863) (0.9569) (0.5298) (0.3815) - - - -
1000 2.38 2.03 2.37 2.84 1.28 2.10 1.78 1.31
(0.2263) (0.9308) (0.4461) (0.2701) - - - -
2.6 500 2.99 2.16 2.79 2.35 1.83 2.47 2.21 2.09
(0.3604) (0.9443) (0.5271) (0.3982) - - - -
1000 2.68 2.12 2.27 2.93 1.26 2.10 1.81 1.42
(0.2956) (0.9010) (0.4398) (0.2837) - - - -
Copyright © 2012 SciRes. AM
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a faster rate than 612 and in the case that 1< <3,
éez converges at a faster rate than éel . Lastly, since the
McCormick and Mathew [2] paper has the restriction that
Var(Z,)<co, only when @ >2 can the estimators 6,
and 6,, be fairly compared, whereas only when o >
is our estimator applicable.

Now observe for the selected £ values being con-
sidered, Table 1 shows that our estimator performs at
least as well as the three other alternative estimators.
This is particularly true under the heavier tail models, i.e.
when 0< f<2. In this regime our estimate shows little
bias and the average lengths of the confidence intervals
are smaller than the other three estimates, sometimes by
a wide margin. In particular, when f=0.8 and n =
1000 the 95% confidence interval average length for
our method is 3.13, 5.78 and 23 times smaller than the
three alternative estimators respectively. This is in part
due to the use of one-sided confidence intervals since
¢?min > ¢, forall >1. Naturally, when 1< f <3, Davis
and Resnick least square estimator is more efficient than
all three extreme value estimators. While our estimator
qgmm will always perform slightly better than the ¢?max

estimator, Bartlett’s and McCormick [5] estimator ¢?

max
main advantage lies with its versatility to perform well
for various nonnegative time series, including but not
restricted to higher order autoregressive models, along
with ARMA models.

A.BARTLETT, W. MCCORMICK

Table 2 reveals that our estimator for 6 generally
performs better than the three alternative estimators for
a=0.6,1.6,2.6 when 0< g <1. This is particularly
true when comparing average confidence interval lengths.
Although all three estimators émm , émnge , and éel
converge to the true value of the parameter € as n
tends to infinity respectively, in this setting they may not
compete asymptotically with, say, a conditional least
square estimator éez when g >1. Nonetheless for
small sample sizes our simulation study favors érange
over the other three estimators. The difficulty for a least
square estimate is that a small negative bias for the esti-
mate of the autocorrelation parameter ¢ gives rise to a
much larger positive bias in the estimate of éez. While
the affect is not as great, the positive bias found in our
estimator 4’3min and the others for ¢ has a significant
effect on the estimate for 4.

Figures 1-4 show a comparison be tween the prob-

ability that estimators @, & . &ange, and ¢, are

within 0.01 of the true autocorrelation parameter value,
respectively. With a sample size of 500, these figures
plotted the sample fraction of estimates which fell
within a bound of ¢£=0.01 of the true value. Good
performance with respect to this measure is reflected in
curves near to 1.0 with diminishing good behavior as
curves approach 0.0. When 0< f <1, the figures seem
to show that our estimator compared to the other three

Accuracy for Min Estimator (n = 500)
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Accuracy for Max Estimator (n = 500)
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Accuracy for Range Estimator (n = 500)
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Accuracy for LS Estimator (n = 500)
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produced a higher fraction of precise estimates, especial-
ly compared to Davis and Resnick estimator. When the
regular variation index value is closer to 2, we see a
higher fraction of the Davis-Resnick estimates showing
better accuracy by this measure. The figures also indicate
that McCormick and Mathew’s range estimator produced
a consistent high fraction of precise estimates when
p>2.

Lastly, we performed a Monte Carlo simulation to
study the degree of approximation for the empirical

probability P[bn (G —9) > x], P[a,;l (6 -0)> yJ ,

and P|:b,, (¢?min - ¢) > X, a;l (émin

. [y BEwP s
ing values e ", e, and e respec-

tively. The empirical distributions were calculated from
5000 replications of the nonnegative time series
(Xy, X+, X, ) forasample size of 5000, where
) M ¢(/f’i(i+3)/2) ,
EW’ :1—2—(1—¢ﬂ(”2)), and M was set to
i=0

—9)>x} to its limit-

500. Additionally, we restricted o« > . The top two
plots in Figure 5 below shows the performance when
Z, ~F and the autocorrelation coefficient ¢ is 0.9
for a=1 and f equal to 0.8, 1.5 respectively. Ob-
serve for 0 < x <7 that the empirical tail probability

b, (¢2\min - ¢) > x mirrors the theoretical probability quite

nicely. The lower left plot in Figure 5 displays the
asymptotic performance when Z, ~ F, and the location
parameter 6 is 2 for a=0.9, f=0.8. Notice that
the convergence rate of the empirical probability to the
theoretical probability is extremely slow. This is not sur-
prising since on average our estimate falls more than 0.1
from the true value when £ =0.8. The lower right plot
in Figure 5 displays the asymptotic performance when

Z, ~F, for the joint distribution of (émin,émin). Ob-
serve that this plot solidifies the asymptotic indepen-
—¢) and a;'(émin —6’).

A

dence between b, (¢mm
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