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ABSTRACT 

Consider a first-order autoregressive processes 1t t tX X Z   , where the innovations are nonnegative random vari-

ables with regular variation at both the right endpoint infinity and the unknown left endpoint θ. We propose estimates 
for the autocorrelation parameter  and the unknown location parameter θ by taking the ratio of two sample values cho-

sen with respect to an extreme value criteria for  and by taking the minimum of 1
ˆ

t n tX X   over the observed series, 

where n̂  represents our estimate for . The joint limit distribution of the proposed estimators is derived using point 

process techniques. A simulation study is provided to examine the small sample size behavior of these estimates. 
 
Keywords: Nonnegative Time Series; Autoregressive Processes; Extreme Value Estimator; Regular Variation; Point 

Processes 

1. Introduction 

In many applications, the desire to model the phenomena 
under study by non-negative dependent processes has 
increased. An excellent presentation of the classical the- 
ory concerning these models can be found, for example, 
in Brockwell and Davis [1]. Recently, advancements in 
such models have shifted focus to some specialized fea- 
tures of the model, e.g. heavy tail innovations or non- 
negativity of the model. In this paper we examine the 
behavior of traditional estimates under conditions leading 
to non-Gaussian limits. For example, the standard ap- 
proach to parameter estimation within the AR(1) process 
is through the Yule-Walker estimator;  
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A slightly different approach presented in Mathew and 
McCormick [2] used linear programming to obtain esti- 
mates for   and   under certain optimization con- 
straints. While there are many established methods to 
estimate the autocorrelation coefficient in an AR(1) mo- 
del, there are just a few approaches on estimating the 
unknown location parameter in an AR(1) model. One,  

was mentioned in McCormick and Mathew [2] where 
they considered 
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t  and j  provides the index of the maximal and 
minimal iX  respectively for 1 . i n 

In this paper we examine estimation questions and 
asymptotic properties of alternative estimates for   and 
  respectively, relating to the model 

1 , 1,t t tX X Z t     

where 0 1, 0      and  tZ  is an i.i.d. sequence 
of nonnegative random variables whose innovation dis- 
tribution F is assumed to be regularly varying at infinity 
with index   and regularly varying at   with index 
 , where  , denotes the unknown but positive left 
endpoint. As a result of not restricting the innovations 
 tZ  to be bounded on a finite range, we can first 
estimate the autoregressive parameter   through re- 
gular variation at infinity and then estimate the positive 
but unknown location parameter through regular vari- 
ation at  , the left endpoint. 

While we have mentioned a few established estimation 
procedures, one notable exception was that of maximum 
likelihood. Although typically intractable and intricate in 
the time series setting, when the innovations in the AR(1) 
model are exponential, the maximum likelihood proce- 
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dure had a major contribution on the estimation of posi- 
tive heavy tailed time series. With these considerations in 
mind, Raftery [3] determined the limiting distribution of 
the maximum likelihood estimate for the autocorrelation 
coefficient  . As a result, the estimator 
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n
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∧              (1.2) 

was considered. The realization of this estimator was the 
stepping stone for the work done in this paper along with 
Davis and McCormick [4] which first considered this 
alternative estimator and used a point process approach 
to obtain the asymptotic distribution of the natural esti- 
mator n̂ . This was done in the context that the in- 
novations distribution F  varies regularly at 0, the left 
endpoint, and satisfy some moment condition. 

The work presented in this paper is an extension of the 
work done in Davis and McCormick [4] including the 
following contributions to dependent time series with 
heavy-tail innovations. The first contribution involves the 
development of estimates for the autocorrelation coeffi- 
cient and unknown location parameter under regular vari- 
ation at both endpoints, with a rate of convergence 

 1n n  , where   is slowly varying function. The 
second contribution involves using an extreme value 
method, e.g. point processes to establish the asymptotic 
distribution of the proposed estimators and weak con- 
vergence for the asymptotically independent joint dis- 
tribution. An initial observation is that our estimation 
procedure is especially easy to implement for both   
and  . That is, the autoregressive coefficient   in the 
causal AR(1) process is estimated by taking the mini- 
mum of the ratio of two sample values while estimation 
for the unknown location parameter   was achieved 
through minimizing 1

ˆ
t n tX X   over the observed 

series. 
This naturally motivates a comparison between the 

estimation procedure presented in this paper and the 
standard linear programming estimates mentioned above, 
since within a nonnegative AR(1) model the linear 
programming estimate reduces to the estimate proposed, 
namely, 1 1min t n t tX X    , where  tX  denotes the 
AR(1) process. This comparison along with the com- 
parison between Mathew and McCormick’s [2] opti- 
mization method and Bartlett and McCormick [5] 
extreme value method was performed through simulation 
and is presented in Section 3. The results found appear to 
demonstrate a favorable performance for our extreme 
value method over the 3 alternative estimators. 

The main proofs in this paper rely heavily on point 
process methods from extreme value theory. The essen- 
tial idea is to first establish the convergence of a se- 
quence of point processes based on simple quantities and 
then apply the continuous mapping theorem to obtain 

convergence of the desired statistics. More background 
information on point processes, regular variation, and 
weak convergence can be found in Resnick [6]. Also, a 
nice survey on linear programming estimation proce- 
dures and nonnegative time series can be found in Anděl 
[7], Anděl [8], and Datta and McCormick [9], whereas 
more applications on modeling the phenomena with 
heavy tailed distributions and ensuing estimation issues 
can be found in Resnick [10]. 

The rest of the paper is organized as follows: asympto- 
tic limit results for the autocorrelation parameter  , 
unknown location parameter  , and joint distribution of 
 ,   are presented in Section 2, while Section 3 is 
concerned with the small sample size behavior of these 
estimates through simulation. 

2. Asymptotics 

The following point process limit result is fundamental. 
Since the result makes no use of an ARMA structure, we 
present it for more general linear models subject to usual 
summability conditions on the coefficients. In that regard 
for this result, we assume that  is the sta- 
tionary linear process given by 

 , 0nX n  
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   for some 0 , 1     . Further-  

more for this result we may relax our assumptions on the 
innovation distribution and we require that 1Z  has a 
regularly varying tail distribution, i.e.,  
   1 ,P Z x x x x   0  for a slowly varying fun- 

ction  and the innovation distribution is tail balanced  
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Our basic result is to show that  0pM    
with the topology of vague convergence 

  equipped

ind
n   

which is close in statement and spirit to Theorem 2.4 in 
Davis and Resnick [11]. In view of the commonality of 
the two results, we present only the needed changes to 
the Davis and Resnick proof to accommodate the current 
setting. Aside from keeping track of the time when points 
occur, i.e. large jumps, the difference in the point pro- 
cesses considered here with those in Davis and Resnick 
[11] is the inclusion of marks, i.e. the second component  

of the point . This complication induces an   1
1,n k kb X Z
 



.



additional weak dependence in the points which is 
addressed in Lemma 2.2 through a straight forward 
blocking argument. First, we establish weak convergence 
of marked point processes of a normalized vector of in- 
novations. For a positive integer m define  
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Let  denote the standard 
basis vectors for . Define an associated marked point 
process with the first component placed on an axis by  
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Lemma 2.1. As  tends to infinity n
        0 for allm m p
n nB B B    . 

Proof. Following the proof presented in Proposition 
2.1 of Davis and Resnick [11], suppose that B
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such that for some 1 , i  As 
noted in Davis and Resnick [11] for all , one has 
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Similarly let  and . 
Then 
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where  1, , m iy y E y   according to  ,iy c d  
and  ,i i iy c d   . Note that  
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Thus from (2.1)-(2.3) we obtain 
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Then the result follows as in Davis and Resnick [11], 
Proposition 2.1, completing the proof. □ 

Lemma 2.2. Let  and  be the point pro- 
cesses on the space  defined by  
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Then 
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where  ,i i iB c d R  i  with  1 ,m
i l il ilR x y . Let  
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  on . To complete the proof we 

first show that for all sets  of the form given in (2.6) 
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The above limit result follows from the easily veri- 
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Indeed, in view of (2.5) and (2.12), (2.7) is equivalent 
to showing 
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and the above relation holds by (2.8), (2.10), and (2.11), 
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It is immediate that for a rectangle 
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Therefore the result is seen to hold by (2.7) and (2.14) 
by application of Theorem 4.7 in Kallenberg [12]. □ 

Lemma 2.3. Let  and  be point processes   m
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Proof. We begin by applying the argument used in 
Theorem 2.2 of Davis and Resnick [11] with the modi- 
fication that the relevant composition of maps of point 
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with each space being equipped with the topology of 
vague convergence. Therefore by the continuous mapp- 
ing theorem and Lemma 2.2 we obtain  
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Finally we complete the proof by Lemma 2.1 and 
(2.15) arguing as in Davis and Resnick [11].  

We are now ready to present our fundamental result. 
Theorem 2.1. Let n  and   be the point processes 
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Remark. Apart from considering a time coordinate 
and restricting the process to an AR(1) process, the above 
Theorem 2.1 and Theorem 3.1 in Mathew and Mc- 
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Cormick [2] consider essentially the same point process 
limit result. However, their result gave a wrong limit 
point process. This error is corrected in the current paper. 

Proof. Observe that the map  
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The result now follows from (2.16) by the same argu- 
ment in Davis and Resnick [11] to finish their Theorem 
2.4. 

Returning to the AR(1) model under discussion in this  

paper and the estimate n̂  given in (1.2), we obtain the  

following asymptotic limit result. 
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Then by Proposition 5.6 in Resnick [10], we have that 
if  denotes the distribution of 1W , then G   is a 
Poisson random measure on E with mean measure 
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The result for the second statement now follows from 
(2.18) and the first part of the lemma. Finally, the iden- 
tification of the limit distribution is well known. □ 
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we have 
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where 

  , : 0, ,andx u v u v uv x     

Since  m  is Poisson random measure with mean 
measure m mH    where  and  

1
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    1 ,m
m x x E V


   

we obtain 
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we have for large n that 
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Therefore, since  
1
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Next, note that from the limit law for the maximum 
obtained above, by replacing  with  

1
m

tX 
 

1
m

tX   and by 
taking reciprocals, we derive the limit law for minimum, 
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      (2.19) 

where m  has the distribution of W 1
0 ,

m
i i kZ i
∧ . Thus, 

for any integer ,  1m 

     lim 1 exp .m
n

n
P U x x




     

Thus for any , we have for 0 M  large enough 
that 

  
1

limsupsup m
n

n m
P U M

 
    

completing the proof. □ 

With Lemma 2.5 in hand we can now focus our atten-  

tion to the limiting joint distribution of .    1,m n
n t tU Z∧

This will be accomplished by a blocking argument. To 
that end for a fixed positive integer , let k nr n k     
and define blocks for 1, , ni n r    by  

 
 
1 1, ,

and 1, ,

i n n

i n n

,J i r ir q

J ir q ir

     
   




 

where  is a positive integer greater than . Further- 
more, let 

q m

0 1, , .n nJ r n r n        

Now we define the events 
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1
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: or

1, ,

l
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where n nl n r    . We begin by showing that the events 

i  are negligible. 
Lemma 2.6. For any  , 0x y 
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and 

  1 .n lnP a Z y y           (2.21) 

Thus for some constant  and any ,  c 1n 

=0
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 k n  

establishing the lemma.  
Define events iA  and  by  iB
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The following result provides the asymptotic behavior 
of the probability of these events.  

Lemma 2.7. For any , we have as  0, 0x y  k 
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lim and .limi m i
n n

y
P A x EW P B

k k


 

 
    

Proof. Since the events iA  are independent, we have  
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Using Lemma 2.6 we have that  
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From (2.19) we showed that 
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Hence using this limit law on   1
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n

x
P A EW k
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Similarly using the result of Lemma 2.4, we obtain  

 lim ,as .i
n

y
P B k

k




           (2.23) 

Hence the lemma holds. □ 
Lemma 2.8. For some constant  c

     .i i i iP A B cP A P B  

Remark. Since the cardinality of iJ  depends on  
which depends on  and the events 

nr
k iA  and  de- 

pend on ,  and 
iB

n  iP A   iP B  depend on k and n. 

The conclusion of this lemma provides that for all  
and , there is a constant dependent on no parameters 
for which the inequality stated there holds.  

k
n

Proof. To calculate the intersection we define the 
following sets  
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It then follows from (2.20), (2.21), and independence 
that  
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Therefore, for some constant   c
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In order to handle set 1K , observe from construction 
of the blocks iJ  and set 1K  that if  then 
the events  

 1 2 1,l l K
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1
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are independent. Thus, if we define   as an 
independent copy of 

,iZ i 
 ,iZ i  , then 
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where  and where we 
used Lemma 2.7 in the last step. Thus, we have that for 
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which completes the proof in view of Lemma 2.7. □ 
Lemma 2.9. For any ,  0, 0x y 
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Thus by Lemma 2.9 we obtain  
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3. Simulation Study 

In this section we assess the reliability of our extreme 
value estimation method through a simulation study. This 
included a comparison between our estimation procedure 
and that of three alternative estima ion procedures for 
both the autocorrelation coefficient   and the unknown 
location parameter   under two different innovation 
distributions. Additionally, the degr of appr mation 
for the empirical probabilities of min

ˆ
ee oxi
  and min̂  to its 

re
To study the pe the estimators 
spective limiting distribution was reported. 

rformance of 

min 1
1

t
t

ˆ n tX

X
 



∧  and  re-   ˆ ˆX X  ∧min min 1nt I t t 
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ted 5000 replic bution at   with index of regular variation   and 
regular varying at 1   with a fixed index 1  , 
whereas in case ii) the innovation distribution 2F  is 
regular varying at   and   with no restriction on   
or  . 

spectively, we genera ations for the non- 
negative time series  0 1, , , nX X X r two different 
sample sizes (500,1000), where 

 fo
tX  is an AR(1) 

process satisfying the  difference equation 

 , for 1 and .X X Z t n Z1t t t t       
First we examine the simulation results for 0.9   

under 1F  for each of the six different   values con- 
sidered by computing 5000 estimates using  



The autoregressive parameter   is taken to be in the 
range from 0 to 1 guaranteeing a nonnegative time series 
and the unknown cation parameter  lo   is positive when 
the innovations tZ  
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where t  and j  provides the index of the maximal 
and minimal iX  respectively for 1 , and  i n 



For this innovation distributio and d  be non- 
negative constants such that 1c d  , then this dis- 
tribution is regularly varying at both endpoints with in- 
dex of regular v iation

c  

  at infinity and index of re- 
gular variation   at  . For this si l
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ati udy two 
distributions w onsi  

on st
ere c dered:

1 2, 0, 1, ) , 0.5, 0.5.F c d ii F c d        
Now observe in case i) the innovation distribution 1

)i where 
1 tt

n
X X n  

. The means and standard de- 
viations (written below in parentheses), of these esti- 
mates are reported in Table 1 along with the average  

F  
is a Pareto distribution with a regular varying tail distri- 

 
Table 1. Comparison of estimators for  = 0.9 under F1. 

      95% C.I. Avg. Length 

  n  
min̂  max̂  rangê  L̂S  Min est. Max est. Range est. LS est. 

0.2 500 0.9000 0.9002 0.9002 0.8988 <0.0001 <0.0001 <0.0001 0.0288 

  (<0.0001) (0.0015) (0.0016) (0.0219) - - - - 

 1000 0.9000 0.9001 0.9002 0.8997 <0.0001 <0.0001 <0.0001 0.0091 

  (<0.0001) (0.0009) (0.0009) (0.0112) - - - - 

0.8 500 0.9004 0.9026 0.9032 0.9231 0.0046 0.0139 0.0228 0.0657 

  (0.0016) (0.0083) (0.0083) (0.0251) - - - - 

 1000 0.9002 0.9020 0.9014 0.9158 0.0023 0.0072 0.0133 0.0529 

  (0.0008) (0.0064) (0.0064) (0.0186) - - - - 

1.2 500 0.9049 0.9072 0.9067 0.8923 0.0271 0.0449 0.0548 0.0623 

  (0.0078) (0.0146) (0.0139) (0.0176) - - - - 

 1000 0.9029 0.9117 0.9047 0.8964 0.0187 0.0325 0.0389 0.0439 

  (0.0056) (0.0117) (0.0109) (0.0117) - - - - 

1.8 500 0.9191 0.9202 0.9136 0.8947 0.0562 0.0763 0.0846 0.0695 

  (0.0622) (0.0673) (0.0612) (0.0381) - - - - 

 1000 0.9113 0.9208 0.9116 0.8989 0.0501 0.0690 0.0743 0.0485 

  (0.0313) (0.0367) (0.0384) (0.0223) - - - - 

2.2 500 0.9236 0.9313 0.9176 0.8917 0.0670 0.0847 0.0944 0.0709 

  (0.0909) (0.1050) (0.0244) (0.0281) - - - - 

 1000 0.9207 0.9293 0.9151 0.8961 0.0623 0.0821 0.0874 0.0494 

  (0.0412) (0.0456) (0.0217) (0.0228) - - - - 

2.8 500 0.9475 0.9505 0.9205 0.8873 0.0767 0.0905 0.1050 0.0737 

  (0.1378) (0.1471) (0.0723) (0.0691) - - - - 

 1000 0.9437 0.9484 0.9187 0.8906 0.0735 0.0885 0.0956 0.0516 

  (0.0834) (0.1163) (0.0317) (0.0331) - - - - 
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length for a  percent empirical confidence intervals 
with exact coverage. Since the main purpose of this sec-  

95

tion is to compare our estimator min̂  to Bartlett and  

McCormick [5] estimator max̂ , McCormick and Ma- 
thew [2] estimator range , and Davis and Resnick’s [13] 
estimator 

̂
L̂S , the confidence intervals were directly 

constructed from the empirical distributions of 

     
   

1 1 1
min max range

1

ˆ ˆ ˆ, ,

ˆand log LS

n n n

n n

  



    

 

 




, 

respectively. 
To evaluate and compare the performance of four 

location estimators, six different scenarios for   and 
  are presented in Table 2 under 2F . When 2  , 
5000 estimates for each estimator;  

 min min 1
ˆ ˆ

nt I t tX X   ∧ ,  range range 1
ˆ ˆ

j j
X X   

  , 

 1 range
1

ˆ ˆ1
n

e t
t

X 


  ∧ , and  2
1

ˆ ˆ1
n

e LS
t

tX 


  ∧  were ob- 

tained. The exponent   inside the index set  

  t n na b1X:1 andnI t t n


    , was set to 0.9.  

The means and standard deviations (written below in 
parentheses), of these estimates are reported in Table 2 
along with the average length for a 95 percent empirical 
confidence intervals. For convenience, the empirical dis-  

tributions of  1
min

ˆn     ,  1
range

ˆn     ,  

  1 range
ˆ ˆ1n e nq w     , and  

  2
ˆ ˆ1n e LS nq      w  were respectively used, where  

the normalizing constants n  and n  are obtained 
through Equations (3.12)-(3.16) of McCormick and 
Mathew [2]. 

q w

Remark. In the case that 0 1  , 1ê  converge at 
 

Table 2. Comparison of estimators for  = 2 under F2. 

       95% C.I. Avg. Length 

    n  
min̂  rangê  1ê  2ê  Min est. 

Range 
est. 

e1 (range) 
est. 

e2 (LS) 
est. 

0.5 0.6 500 2.00 2.44 3.16 3.98 <0.0001 2.34 2.09 3.02 

   (0.0087) (0.4068) (0.6775) (0.7657) - - - - 

  1000 2.00 2.39 3.77 3.67 <0.0001 1.89 1.69 2.60 

   (0.0002) (0.3605) (0.4381) (0.4960) - - - - 

 1.6 500 1.94 2.68 3.34 4.10 0.0273 2.37 3.18 3.66 

   (0.0879) (0.3566) (0.6656) (0.7503) - - - - 

  1000 1.99 2.63 3.94 3.81 0.0152 1.87 2.23 2.79 

   (0.0503) (0.3199) (0.4311) (0.4780) - - - - 

 2.6 500 1.87 2.77 3.41 4.16 0.1422 2.19 2.85 2.38 

   (0.4697) (0.7553) (0.6733) (0.7632) - - - - 

  1000 1.89 2.73 3.99 3.87 0.0988 1.74 2.21 2.03 

   (0.4045) (0.3143) (0.4276) (0.4822) - - - - 

1.5 0.6 500 NA 1.72 2.35 2.15 NA 1.57 1.28 2.21 

   (-) (0.9410) (0.5327) (0.3706) - - - - 

  1000 NA 1.80 2.19 2.65 NA 1.20 1.25 1.88 

   (-) (0.9141) (0.4381) (0.2565) - - - - 

 1.6 500 2.80 1.95 2.54 2.26 1.72 2.23 2.18 1.94 

   (0.3863) (0.9569) (0.5298) (0.3815) - - - - 

  1000 2.38 2.03 2.37 2.84 1.28 2.10 1.78 1.31 

   (0.2263) (0.9308) (0.4461) (0.2701) - - - - 

 2.6 500 2.99 2.16 2.79 2.35 1.83 2.47 2.21 2.09 

   (0.3604) (0.9443) (0.5271) (0.3982) - - - - 

  1000 2.68 2.12 2.27 2.93 1.26 2.10 1.81 1.42 

   (0.2956) (0.9010) (0.4398) (0.2837) - - - - 

Copyright © 2012 SciRes.                                                                                  AM 



A. BARTLETT, W. MCCORMICK 2144 

 
a faster rate than 2ê  and in the case that 1 3  , 

2ê  converges at a faster rate than 1ê . Lastly, since the 
McCormick and Mathew [2] paper has the restriction that 

, only when  1Z  Var 2   can the estimators 1ê  
and 2ê  be fairly compared, whereas only when    
is our estimator applicable. 

Now observe for the selected   values being con- 
sidered, Table 1 shows that our estimator performs at 
least as well as the three other alternative estimators. 
This is particularly true under the heavier tail models, i.e. 
when 0 2  . In this regime our estimate shows little 
bias and the average lengths of the confidence intervals 
are smaller than the other three estimates, sometimes by 
a wide margin. In particular, when 0.8   and n = 
1000 the  confidence interval average length for 
our method is 3.13, 5.78 and  times smaller than the 
three alternative estimators respectively. This is in part 
due to the use of one-sided confidence intervals since 

min . Naturally, when 1

95%

,for all t 

23

ˆ 1 3  , Davis 
and Resnick least square estimator is more efficient than 
all three extreme value estimators. While our estimator 

min̂  will always perform slightly better than the max̂   

estimator, Bartlett’s and McCormick [5] estimator max̂   

main advantage lies with its versatility to perform well 
for various nonnegative time series, including but not 
restricted to higher order autoregressive models, along 
with ARMA models. 

Table 2 reveals that our estimator for   generally 
performs better than the three alternative estimators for 

0.6, 1.6, 2.6   when 0 1 

ˆ

. This is particularly 
true when comparing average confidence interval lengths. 
Although all three estimators min , range , and ̂ 1ê  
converge to the true value of the parameter   as  
tends to infinity respectively, in this setting they may not 
compete asymptotically with, say, a conditional least 
square estimator 2

n

ê  when 1  . Nonetheless for 
small sample sizes our simulation study favors range  
over the other three estimators. The difficulty for a least 
square estimate is that a small negative bias for the esti- 
mate of the autocorrelation parameter 

̂

  gives rise to a 
much larger positive bias in the estimate of 2ê . While 
the affect is not as great, the positive bias found in our 
estimator min̂  and the others for   has a significant 
effect on the estimate for  . 

Figures 1-4 show a comparison be tween the prob- 

ability that estimators min̂ , max̂ , , and rangê L̂S  are  

within 0.01 of the true autocorrelation parameter value, 
respectively. With a sample size of 500, these figures 
plotted the sample fraction of estimates which fell 
within a bound of 0.01   of the true value. Good 
performance with respect to this measure is reflected in 
curves near to 1.0 with diminishing good behavior as 
curves approach 0.0. When 0 1  , the figures seem 
to show that our estimator compared to the other three  

 

 

Figure 1. min
ˆ .   0 01P    for RV  . 
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Figure 2. max
ˆ .   0 01P    for RV  . 

 

 

range
ˆ .   0 01P    for RV  . Figure 3. 
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ˆ .LS
   0 01P    for RV  . Figure 4. 

 

 

Figure 5. Empirical vs. theoretical probability. 
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produced a higher fraction of precise estimates, especial- 
ly compared to Davis and Resnick estimator. When the 
regular variation index value is closer to 2, we see a 
higher fraction of the Davis-Resnick estimates showing 
better accuracy by this measure. The figures also indicate 
that McCormick and Mathew’s range estimator produced 
a consistent high fraction of precise estimates when 

2  . 
Lastly, we performed a Monte Carlo simulation to 

study the degree of approximation for the empirical  

probability 

and   

ing values 

 min
ˆ

nP b x     , 

  1
min min
ˆ ˆ,n nx a   

x EW

 1
min

ˆ
nP a y     , 

 x     to its limit-P b

e
  , e y , and e x EW y     respec-  

ti ed from 
5000 replications of the nonnegative time series 
tively. The empirical distribu ons were calculat

 0 1, , , nX X X  for a sample size of 5000, where  
  

  
3 2

2

0

1 1
2

i i

,i

i

EW
i


  






  
  and M was set to  

500. Additionally, we restricted 

M

 
he perf

. The top two 
plots in Figure 5 below shows t ormance when 

1tZ F  and the autocorrelation coefficient   is 0.9  
for 1   and   equal to 0.8, 

that the empi

 

1.5 re
rica

spectively. Ob- 
l tail probability serve for 0 7 x  

 min
ˆ

nb x    mirrors the theoretical probability quite 

nicely. The lower left plot in Figure 5 displays the 
asymptotic performance when 2tZ F  and the location 
parameter   is 2  for 0.9, 0.8   . Notice that 
the convergence rate of the empirical probability to the 
theoretical probability is extremely slow. This is not sur- 
p i g since on average our estimate falls more than 0.1 r sin
from the true value when 0.8  . The lower right plot 
in Figure 5 displays the asymptotic performance when  

1tZ F  for ion - 

dence

the joint distribut  of . Ob  

serve that this plot solidifies the asymptotic indepen-  

 between 

  min min
ˆ ˆ, 

 min
ˆ

nb    and 1
min

ˆ
na   . 
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