
Applied Mathematics, 2012, 3, 2080-2088 
http://dx.doi.org/10.4236/am.2012.312A287 Published Online December 2012 (http://www.SciRP.org/journal/am) 

The Markovian Approach for Probabilistic Life-Cycle 
Assessment of Existing Structures 

Elsa Garavaglia, Noemi Basso, Luca Sgambi 
Department of Structural Engineering, Politecnico di Milano, Milano, Italy 

Email: elsa.garavaglia@polimi.it 
 

Received August 28, 2012; revised November 12, 2012; accepted November 19, 2012 

ABSTRACT 

The reliability of structural systems, lying in aggressive environments, changes over time. Proper maintenance is usu- 
ally required to achieve a suitable performance level of life-cycle. The damage process affecting the systems often suf- 
fers from uncertainty due to the randomness involved in each environmental attack. Therefore, basing on suitable dam- 
age modeling as well as on probabilistic analysis, the main features of time-variant deterioration process are modeled 
and then the life-cycle is assessed. On the basis of Markov renewal theory (MRT), this paper proposes a combined ap- 
proach using an appropriate time dependent damage model and probabilistic analysis. Since repairing deteriorated 
structures requires the arrangement of maintenance strategies, possible selective maintenance scenarios have to be con- 
sidered. Referring to the relationship between MRT and an appropriate condition index, some repair strategies have 
been proposed and compared with each other. Those strategies are applied just to seriously deteriorated members. Fur- 
thermore selective maintenance benefits are economically investigated. 
 
Keywords: Structural Deterioration Process; Transition Processes; Markov Renewal Processes; Lifetime Assessment; 

Selective Maintenance Planning 

1. Introduction 

Since any structural system in aggressive environment 
suffers from deterioration over time, the damage in- 
creases, while some structural capabilities decreases [1, 
2]. Thence system’s performance is reduced. Usually 
deterioration laws governing environmental aggression 
are unknown; therefore, just a stochastic approach en- 
ables to assess the life-cycle of the system [3,4]. 

Biondini and Garavaglia [5] refer to the life-cycle of a 
deteriorated structure as a reliability problem, where a 
loss of performance greater than a prescribed threshold 
value is considered as a failure. When a failure occurs, 
the system moves from the current state to another one 
characterized by a lower level of performance. Main- 
taining and/or repairing lead to the opposite process: the 
system moves from an initial low state of performance to 
a higher one. Both cases describe the failure process as a 
transition process through different states, due to envi- 
ronmental attacks and/or maintenance actions. 

Assuming the Markov Renewal Process (MRP) as the 
most suitable stochastic dynamic method, the transition 
process can be modelled [6,7]. 

MRP is usefully applied in predicting natural hazard 
and catastrophic events (e.g. earthquakes and typhoons) 
[7-13] as well as in forecasting material deterioration 
over time [14-17]. Thence MRP seems to be the best 

approach for modelling the deterioration of structures in 
aggressive environment. 

Basing on MRP, a deteriorated steel truss has been 
chosen as the case study for assessing life cycle reliabil- 
ity and planning selective maintenance strategies. Mate- 
rial damage is described in probabilistic terms within a 
Markov renewal model [14]. The probability of the sys- 
tem’s transition through different performance states has 
been investigated. Regarding results from Markov me- 
thod, some selective maintenance scenarios have been 
discussed. Repair interventions have just been applied to 
seriously deteriorated members and/or characterized by a 
low safety margin. Thence following Biondini et al. [7] 
approach, a suitable condition index is used. Considering 
the effects of selective maintenance, the here proposed 
procedure has been applied to life-cycle reliability analy- 
sis and maintenance planning of a steel truss structure 
[18]. 

2. Markov Renewal Processes and Structural 
Deterioration Processes 

The deterioration process can be seen as a loss of per- 
formance affecting a material system. Whenever deterio- 
ration reaches a given threshold, the system suffers a 
“failure” and a loss of performance. This phenomenon 
can be described as the transition of the system (i.e. the 
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material) through different service states characterized by 
different levels of performance. Thus, the deterioration 
process (failure process) may be defined as a transition 
process [14].  

Every transition depends on: 
 Magnitude of attack (stress cycle). 
 System’s capability to withstand the attack. 

Both these parameters depend on a large number of 
time dependent random variables (r.v.); therefore the 
transition process is rightly interpreted as a stochastic 
process. A possible r.v. which can be assumed to de- 
scribe a transition process is the service lifetime i de- 
fined as “the waiting time spent by the material in the 
performance state i before a transition” [14]. 

From this point of view the reliability function  R t  
can be defined as: 

   Pr  iR t t  .            (1) 

Equation (1) is the probability that a transition from 
state i to a next state doesn’t happen by waiting time i 
[19], and it can be described as the survival function of 
the r.v. i.  

If the deterioration process is assumed to be a transi- 
tion process, a stochastic dynamic process can be as- 
sumed to represent it, and Biondini and Garavaglia [5] 
have shown that the Markov Renewal Process (MRP) 
seems to be suitable method to describe it [6,7]. MRP are 
a class of stochastic processes generalizing the Markov 
jump process as well as the renewal process. It can illus- 
trate the evolution of the system’s life through different 
service states with different waiting times, and it also 
enables to consider the age t0 of the system, i.e. the time 
already spent by the system in the current service state 
before the prediction is made. This aspect is very impor- 
tant in reliability analysis when maintenance must be 
planned.  

2.1. Introducing Markov Renewal Processes 

Here has been proposed a brief review of both the defini- 
tion and some properties of the MRP with a finite state 
space where, for 1, , A S   with  S N

  ij ij A
F


 F  denotes a matrix of the distribution fun-  

ctions on ,  denotes a transition matrix    ij ij A
p


P

on A, and  a probability distribution on A   1, , Sa aa 
S





(i.e.  and ). 0ia 
1

1i
i

a



Considering a two-dimensional stochastic process  

  0
,n n n

J 


 defined in a complete probability space  

 , , P   satisfying [6,7]:  
1) Initial conditions of 0 = 0 a.s.  
2)  0Pr kJ k a   for every k  A. 

 0 1 1 1 13) Pr , , , , , ,n n n nJ k t J J J         

 p F t
1 1, ,n nJ k J k 

 a.s. for every  and 0,t  k A .  
The probabilities 

1 ,nJ kp


 are the transition probabili- 

ties of the Markov chain   0n n
J


 and  

1 ,nJ kF t


 are the  

distribution functions associated to waiting times in the 
state Jn−1 before moving to the next state nJ k . 

DEF. The process   0
,n n n

J 


 is called the MRP and  

is determined by  , , ,A a P F . 
Some consequences of that definition are recalled 

hereunder: 
1)   0n n

J


 is a A-valued Markov chain with transi- 

tion matrix P and initial distribution a. 
2) for every n>1, τ1, ,τn are conditionally independ- 

ent, given   0n n
J


 and 

   
11 1 ,

1

Pr , , , 0
i i

n

n n n J J i
i

t t J n F 




    t  a.s.  (2) 

The Markov chain   0n n
J


 represents the states suc-  

cessively visited, and the process  represents the    0n n




successive waiting times. The application here proposed 
assumes the performance levels reached by a structural 
system along its life as the transitory states. Those levels 
have been classified with respect to different damage 
severity. τn are the waiting times between successive 
losses of performance. Basing on 2) consequence, if 
damage is classified by severity i  A and the next dam- 
age severity is j  A, the time between the two losses of 
performance is a positive random variable with distribu- 
tion Fij, and density fij, for every i, j = 1, , S. 

Supposing (J0, J1, t1, ..., tq−1, Jq) describes the MRP 
within the time-window [0,T], q represents the number of 
states visited over [0,T]. Thence the last event Jq has an 
incomplete waiting time tq, which represents the cen-  

sored data:  1 1q qt T t t 
       

Thus, the conditional likelihood is: 

   

 

1 1

1

0 , , 0
0

, ,
1

1

i i i i

q q

q

J J J J i q q
i

S

J k J k q
k

L J p f t

p F t

 



 




0

 
  
 

   





1 1

     (3) 

where 
1,i iJ Jp


and ,qJ kp  are the transition probabilities  

defined above, 
1,i iJ Jf


 and ,qJ kF  are the density and  

the cumulative distribution of the probability distribution 
function chosen and 1 stands for indicator functions. 

Maximizing the log-likelihood over the time-window 
 0,T , the maximum likelihood for 

1,i iJ J 
 and for the 

parameters of 
p

1,i iJ JF


 has been estimated. 
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2.2. Crossing State Prediction 

Knowing the last transition state i as well as the time t0 
passed since the transition occurred, the j-state of next 
transition in a lower performance level has been pre- 
dicted. 

When the MRP is defined (points I-III), considering t0 
as the time already passed by the system in the current 
i-state, the probability that the system will pass to state j 
is: 

 1 0Pr , , ,

1, , , 1, ,

n ij n ij 0J j t t J i t

i S j S

       

  
   (4) 

Jn is the state of the present performance, Jn+1 is the state 
of next reduced performance, τij is the waiting time spent 
by the system in the state i before moving on j, under the 
condition that no transition has already occurred (defined 
by the condition: 0,n ijJ i t  ); t is the discrete time 
when the prediction can be obtained. 

Once distribution functions  ijF t  have been defined 
and 0ij t  , Equation (4) results in: 

     

 
0

0 0

0
1

1

ij ij ijij
t t s

ik ik
k

F t t F t p
P

F t p




    
  

       (5) 

Experimental observations give the probabilities  
using the ratio: 

ijp

observed transitions from to

observed transitions from  ij

i
p

i


j
      (6) 

2.3. Deterioration Process as a MRP 

The stress value  recorded and evaluated at every 
monitoring stage is the random variable chosen for de- 
scribing the deterioration process of the here proposed 
system. It is the ratio between the internal forces and the 
deteriorated area of the members’ cross-sections. Refer- 
ring to Markov renewal model, the time evolution mod- 
eling of such variable need for the following assumptions 
[5]: 
 The structure is undamaged at the initial time 0t0  . 
 The damaged structure is considered to be in a state 

0i   when  1i i     , where i and  1i   
are the lower and upper thresholds, respectively, which 
characterize the state i. 

 The structure evolves from a state 0i   to another 
state j i , characterized by a lower level of perfor- 
mance i , i j  , over a time interval τij. Of 
course, the condition j i , with i j  , is also 
possible if some maintenance is performed. 

Under the hypothesis of MRP, the time evolution of 
structural behavior is then represented as transitions be- 
tween different states of performance. 

Choosing an appropriate PDF, the waiting time τij has 
been modeled for each transition. This choice is not sim- 
ple and it may be “not unique”. It should be made on the 
basis of physical knowledge of phenomenon and on the 
characteristics of the distribution in their tail area where, 
usually, not much data are recorded. 

Physical knowledge suggests that the deterioration fol- 
lows a damage law that increases over time; therefore the 
distributions satisfying this tendency are distributions 
with increasing hazard rate functions    ij t

 
   

 0

Pr
lim

1

ij ij ij
ij

t
ij

t t t t f t
t

t F

 


  

    
 

  t
  (7) 

Although Weibull distributions and Gamma distribu- 
tions are distributions characterized by a time-dependent 
increasing hazard rate function, their behavior is quite 
different. Regarding Weibull distributions at the increas- 
ing of t, with t  , the function  tends to an infi- 
nite value. Otherwise, considering Gamma for t  , the 
function 

 t

 t  tends to an asymptotic value. Then ap- 
plying the abovementioned general knowledge to the 
case-study here discussed, for Weibull it comes out that 
higher is the waiting time spent by the system into the 
present state i highest the immediate transition into an- 
other state of j with lower performance (alert for an im- 
mediate failure). Whereas for Gamma we have that 
higher is the waiting time in the state i highest is the 
probability of transition but it tend to become almost 
constant (alert for a probable failure). 

Experimental data recorded and their modeling brings 
out that the most probable behavior is the one modeled 
by a Gamma distribution (Figure 1). 

Basing on previous considerations, a Gamma distribu- 
tion has been chosen in order to model the waiting times 
τij. The density of the Gamma distribution is: 

 
 

 
 1

exp
ij

ijij
ij ij

ij

f t t




t


    
 ,       (8) 

where the shape parameter ij and the inverse scale pa- 
rameter 1ij ij   (rate parameter) are positive para- 
meters. 

Thus, though without great emphasis, rare events 
within the distribution tail have been taken into consid- 
eration. After a long waiting time τij, if the transition 
from the state i into j isn’t occurred yet, the occurrence 
probability in the next Δt increases with a rise in time, τij. 
Anyway since values usually refer to a quasi-assured 
occurrence, the probability never tends to an infinite 
value. 

Although the credibility, or validation, of one model 
on another is a relevant and largely debated topic [20-22] 
and mainly one the authors deals with it [23] the issue 
hasn’t been examined in this paper. 
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Figure 1. Comparison between hazard rate behaviors in the 
experimental evidence modeling. 
 

The maximum likelihood estimates for the parameters 
pij, ij, ij, here presented results maximizing the log- 
likelihood (3) over the time window [0,T]. Using a com- 
puter code, where the routine ROSE of IMSL Fortran 
Library, involving the Rosenbrock’s optimization me- 
thod, was implemented, the maximum likelihood as- 
sessment has been performed. 

3. Deterioration Modeling 

Materials deterioration due to aggressive environments 
or material fatigue compromises the performance of a 
structural system and its reliability over time. Moreover 
damage induced by environmental attacks suffers from 
uncertainty and requires to be appropriately modeled. In 
the following, a general approach for deterioration mod-
eling of structural members is proposed [17]. 

Damage Index 

Assuming  as a generic material property, its deteriora- 
tion over time t is expressed below: 

   0 1t     t                  (9) 

where 0 denotes the initial undamaged state, and the de- 
terioration over time t is measured by a time-variant 
damage index    0,1t   . The following damage 
model is assumed [17]: 

     

1

1

,

1 1 1 , 1

1, 1

 

 

   

     






 
     
 

   (10) 

where Ct T  , C  is the normalized time instant of 
reaching the failure threshold 

T
1  ,  and  are damage 

parameters defining the shape of the damage curve. 
The damage parameters  and  must be chosen ac- 

cording to the actual evolution of the damage process. 

Damage rates may be associated with the aggressiveness 
of the environment, as well as with the active stress level. 

The following linear relationship is assumed [17]:  

 a b a                     (11) 

 a b a                     (12) 

where subscript a refers to damage associated with envi- 
ronmental aggression, subscript b refers to damage asso- 
ciated with loading effects, and  refers to the ratio be- 
tween the level of active stress and the limit state value. 

In this way, the damage law proposed is able to repre- 
sent damage mechanisms induced by environmental de- 
terioration, like carbonation of concrete, corrosion of steel 
or material fatigue. Generally, these mechanisms are 
present and interacting, and a proper calibration of the 
damage parameters is required based on experimental 
observations and/or laboratory accelerated test data. 

4. Application 

Attention is focused on truss systems subjected to a dete- 
rioration process involving a reduction of both the cross- 
sectional area A and material strength   of each struc- 
tural member. Without loss of generality, in this study it 
is assumed that these properties undergo the same dam- 
age process: 

  0 1  A t A t                (13) 

   0 1t    t               (14) 

where 0 denotes the initial undamaged state, and the 
damage rates may be associated with the aggressiveness 
of the environment, as well as with the level of acting 
stress  with respect to the material strength  , or 
   . The damage model assumed is Equation (10). 

Application is made on a statically indeterminate truss 
system with a members’ area of A = 2500 mm2 and total 
volume of V = 0.0723 m3. The allowable material 
strength is  140 MPa. Buckling failures are assumed 
to be avoided. The structure is subjected to a set of forces 
F = 25 kN as shown in Figure 2. The initial value of the 
member cross-sectional area A and of the material 
strength  , as well as the force F are assumed as de- 
terministic. 

Each probabilistic approach requires several experi- 
 

 

Figure 2. Statically indeterminate truss system with member 
area A = 2500 mm2 and total volume V = 0.0723 m3. 
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mental data, which are usually difficult to collect. Using 
the Monte Carlo simulation the samples were obtained. 
Based on prescribed probability distribution, the simula- 
tion process models the damage parameters a, b, ωa, ωb, 
and TC, as random variables. Considering physical knowl- 
edge of phenomena investigated, each distribution has 
been chosen. Starting from a mean and standard devia- 
tion, the model was defined [24,25]. 

Each probabilistic approach requires several experi- 
mental data that is usually difficult to collect. In this 
study, the samples were obtained by using the Monte 
Carlo simulation. In this simulation process the damage 
parameters a, b, ωa, ωb, and TC, are modeled as random 
variables with a prescribed probability distribution. Each 
distribution is chosen on the basis of physical knowledge 
of phenomena investigated and the model is made start- 
ing from a mean and standard deviation [24,25]. 

During its life the structure moves into different ser- 
vice states; here three different states are assumed: State 
1 relates to low damage, State 2 relates to moderate dam- 
age and State 3 relates to heavy damage. The boundaries 
of the states are chosen on the basis of expert judgment 
and are presented in Table 1. 

For each simulation cycle, a time-variant structural 
analysis is carried out by updating step-by-step updating 
of the stiffness matrix of the deteriorated structural 
members. Referring to the limit state i, max

i  , when 
a member reaches the upper bound max

i  of the state i, 
the system’s transition occurs when a member reaches 
the upper bound max

i  of the state i. For each transition 
the crossing time is recorded and it is interpreted as the 
waiting time ij spent by the system in state i before the 
transition into the next state j. 

Considering the deterioration process, if the states are 
significant, the transition can move state by state, other- 
wise the transition can involve two or more states; in 
other words, the transition can pass through two or more 
states at each step. It is clear that the choice of the size of 
the state is crucial and it can compromise the model. In 
the case study proposed, the transition always occurs 
state by state until failure. 

With reference to the limit state   0   , the sys- 
tem failure is reached when the number of failed mem- 
bers is able to activate a mechanism. The time in which 
the failure occurs is called failure time. Furthermore 
whenever the system reaches a given damage threshold, 
 

Table 1. State boundaries. 

States min (MPa) max (MPa) Damage level 

State 1 >0.00 ≤1100 Low (undamaged)

State 2 >1100 ≤1250 Moderate 

State 3 >1250  Heavy 

the time to reach this threshold value is called crossing 
time. 

Then the abovementioned probabilistic approach has 
been applied to probabilistically investigate the next 
transition of the system, from the actual state i since t0 to 
the state j in the next interval Δt. Basing on MC simula- 
tion, a population of 5000 samples has been built. For 
each sample, the failure time and the crossing time re- 
lated to each damage threshold have been recorded and 
modeled with Gamma distributions (Equation (8)). Fol- 
lowing Equation (5), the probabilities  

0t t  are evalu- 
ated. Since the transition between i and j could be immi- 
nent, probabilities 

ijP

 
0t t  with  of ijP i j 410n   (n = 

positive number) are assumed to be dangerous for the 
structure. Therefore maintenance should be planned at 
instants close to which this probability is recorded. 

5. Selective Maintenance Schedules 

Generally, for maintaining two approaches can be per- 
formed: 

1) Repairing all damaged members: the initial system 
reliability is fully restored and next maintenance can be 
applied at constant time intervals. 

2) Repairing several damaged members: the initial 
system reliability is only partially restored. 

The application of the MRP can lead to decide “When 
to operate” but not “Where to operate”. However, con- 
sidering complex structural systems, it is crucial to de- 
cide which members require maintenance. Otherwise 
investigating where to repair scenarios just involves the 
deteriorated members. Selective maintenance requires 
suitable life-cycle performance indicators able to select 
among the whole system which members require main- 
tenance. To achieve this aim, Biondini et al. in 2008 have 
pointed out the following condition index  has been 
defined [17]: 

        
 

, 1 , k k

k

R t S t
t k t k

R t
 


          (15) 

where  is the damage index,  kR t R k  is the limit 
strength assumed for each member k, and  kS t  is the 
corresponding loading demand. The index  t   
can be evaluated for each member k at each t-time over 
the structure’s lifetime. Basing on a suitable threshold 
μmin, the condition   mint   can be used to identify 
members which are seriously deteriorated and/or charac- 
terized by a low safety-margin. 

Considering results provided by the reliability analy-
sis, different maintenance strategies can be scheduled 
and different maintenance scenarios can be investigated. 

In MRP the initial process instant (i.e. initial state) is 
relevant. Therefore if the system is new and State 1 = 
undamaged is the initial state, or the system is an existing 
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building and the initial state is a generic damaged state k, 
the application of the method changes. 

For new buildings, when the probability  
0t t  reaches 

a value less than or equal to , maintenance can 
be performed on the whole system or on some members 
with a  less than a certain value. Thence the system will 
return to State 1 = undamaged or will be improved in a 
service state of major performance. The next mainte- 
nance depends on the state reached by the system after it. 
Then the next transition process will be modeled again as 
MRP. 

ijP
410n 

Considering previous observations, the life-cycle as- 
sessment of the system in Figure 2 has been performed. 
Supposing the system “new” and assuming t0 initially 
equal to zero and the State 1 undamaged, Equation (5) 
describes the occurrence of the transition probability  

from State 1 to State 2, i.e.  
0

12
1 17 0.000760489t tP     in  

the next year (Δt = 1) after 17 years of construction (t0 = 
17). Furthermore the transition from State 2 into State 3 
could occur 2 years after the last transition with a prob- 

ability  
0

23
1 2 0.000262627t tP    . When the structure is  

25 years old, the prediction of failure in the following  

year becomes very probable,  
0

1failure
1 25 0.000294986t tP    . 

Therefore, maintenance scenarios involve:  
a) The repair of the whole system after 17 years of 

construction. The system will return to State 1 = un-
damaged, the deterioration process becomes a renewal 
process and maintenance will be carried out every 17 
years.  

b) The repair of the whole system at the time of failure 
(25 years). The process becomes again a renewal process.  

c) The repair of just some members of the system will 
move it into a state j equal or different to the initial state 
State 1 = undamaged. The next maintenance will occur 
with t0 difference in comparison to the initial one (ex.: t0 
= 11 years). The process can be modeled again as a MRP 
and the new probability of transition is investigated. 
Considering this scenario, the use of condition index  is 
crucial. 

Figure 3 shows the comparison between the behaviors 
of the survival functions  121 F x   of scenarios a) 
and b) over the system’s service life. Whenever mainte- 
nance is carried out, the system renews itself and the 
process restarts with the same survival function. Con- 
cerning scenarios a) and b), Figure 4 shows the condi- 
tion index’s behavior over the life of some members of 
the system when the danger limits assumed are  

 
0

12
1 17 0.00076049t tP     and  

0

1failure
1 25 0.00029499t tP    ,  

respectively.  
Scenario c) enables to propose several other possible 
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Figure 3. Comparison between survival functions of sce-
nario (a) and (b) throughout system’s service life; in both 
the scenarios when maintenance is carried out the system 
renews itself. 
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Figure 4. Condition index’s

pported by the behavior of condition index . Thus, for 

 behavior for scenario (a) and 
scenario (b) throughout the service life and concerning 
members 6, 8, 9 and 10 of the system. 
 
su
instance, the first scenario (scenario (1)) foresees main- 
tenance performed after 17 years 

  12 0.000760489P   on tho
01 17t t   se members with a con- 

dition index 0.40  . This m

 the nex

aintenance moves the sys-
tem from State 2 into State 1 = undamaged, but the 
probability of t transition into State 2 is higher 
than the probability connected with the new system. 
MRP suggests that the new transition into State 2 could 
happen in t = 1 year and t0 = 11 years with a probabil- 

ity scenarios connected with selective maintenance and  
 12

1 11 0.000297616t tP    . 
0
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At the new transition (11 year after the first one) there 
are .4012 members with 0  ; once again it seems to 

 

be convenient to replace only these twelve members. 
After maintenance, the system moves from State 2 into 

State 1. Running a new Monte Carlo simulation and ap- 
plying MRP, the occurrence of the new transition from 
State 1 into State 2 just 6 years after the last maintenance 

  0

12
1 6 0.0002862t tP     comes out. Furthermore a re- 

placement of the whole system is necessary. Since main- 
taining the whole system after 6 years may be not con- 
venient, scenario (2) is approached. In this case the 
maintenance of the whole system is performed at the 
28th year and the system renews itself after the second 
maintenance. 

Figure 5 shows the comparison between the behavior 
of the survival functions for scenarios (1) and (2) through 
the service life of the system. Assuming a danger limit 
threshold of 0.40  , the time-dependent behavior of 
the condition index concerning some of the members has 
been investigated (Figure 6). 

6. Maintenance Cost 

Each maintenance scenario considered must be conven- 
ance cost. Considering a pre- iently associated to mainten

scribed maintenance scenario, the total cost of mainte- 
nance Cm can be estimated as the sum of the costs Cq of 
the individual interventions [18], 

  0
1 1 q

n n
q

m qt
q

C
C C

v

 


             (16) 
1q

where the cost Cq of the qth rehabilitation
initial time of construction with a prop
rate of money v ]. The cost C  of the individual inter-

where 

 depends on the 
erly discounted 

 [18 q

vention is assumed as follows: 

1

m

q f k k qk
k

C C V c


                 (17) 

0fC C  
 of the in

is a fixed cost computed a
age  itial cost C0, k is the 

r k belonging to t
memb

cted [3,4,17]. 

 and mainte- 

s a percent-
damage index of 

membe he structural system, Vk is the 
volume of er k, and cqk is the volume unit cost for 
restoring member k.  

Basing on this cost model, different maintenance sce- 
narios can be economically compared and optimal main- 
tenance strategies can be sele

Firstly scenario (a) (Figure 4(a)) is compared with 
scenario (b) (Figure 4(b)). Figure 7 shows the total cost 
Ca, computed as the sum of initial cost C0

nance cost Cm of scenario (a) normalized to the cost Cb of 
scenario (b), a a bc C C , versus the discount rate , for 
different values α of the fixed cost of maintenance, 

0fC C . Considering a discount rate  less than 0.04 
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Figure 5. Comparison between survival functions of sce-
nario (1) and (2) throughout the service life; when mainte-
nance is carried out the system returns to initial state. 
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Figure 6. Condition index’s behavior for scenario 1) and 
scenario 2) throughout the service life and concerning 
members 6, 8, 9 and 10 of the system. The table below th

r 

e 
figures shows the members replaced at every maintenance 
action. The members are pinpointed in dark gray. 
 
and a percentage  less than 0.15, the economic primacy 
of scenario (a) over scenario (b) is evident. Fo 0a   
(no fixed cost admitted) scenario (a) is the most conven- 

ways

 order to return the system to initial condition. 

ient one. 
When maintenance is performed, scenario (b) al  

requires the replacement of the 99% of the system’s 
volume in
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Figure 7. Total cost Cb, computed as the sum of initial cost 
C0 and maintenance cost Cm, of scenario (b) normalized to 
cost Ca of scenario (a), or ca = Ca/Cb versus the discount ate 

rio (a) requires a 40%-re- 
lacement of the system’s volume otherwise. In this case 

tw

 cost, C1, of scenario (1), versus the discount rate, 
,

s

ity 
 as for the maintenance schedule 
ural systems have been proposed

erio-
ra

 r
, for different values  of the fixed cost of maintenance Cf 
= C0. 
 

Anyway, just one maintenance is scheduled over the 
system’s life cycle. Scena
p

o maintenance actions must be planned. Thence sce- 
nario (a) becomes less convenient when the fixed costs 
connected with each maintenance action become signifi- 
cant. 

Figure 8 compares scenario (1) and scenario (2). The 
behavior of the total cost, C2, of scenario (2), normalized 
to the

 for different values α of the fixed cost of maintenance 
Cf = C0 has been presented. The economic primacy of 
scenario (2) over scenario (1) has been pointed out. Be- 
ides, scenario (2) is less sensitive to  value and seems 

to confirm that a renewal with two maintenance actions 
is better, especially with a discount rate close to 0.03. 

7. Conclusions 

The main features of a method for life-cycle reliabil
assessment as well
deteriorating struct

of 
. 

Basing on the effective modelling of structural damage 
and using a Markov Renewal Process, this procedure 
enables to model the deterioration process as a transition 
process through performance states. For supporting the 
MRP with experimental data, a Monte Carlo simulation 
is introduced. The Monte Carlo simulation collects many 
samples and provides a significant population for a 
probabilistic approach. The next step of this research will 
develop a validation for this probabilistic approach. 

This paper proposes a definition of a condition index 
which identifies selective maintenance scenarios, where 
repair interventions are only applied to seriously det  

ted members and/or elements characterised by a low 
safety-margin. 

 

Figure 8. Total cost C2, computed as the sum of initial cost 
C0 and maintenance cost Cm, of scenario (2) normalized to 
cost C1 of scenario (b), or c2 = C2/C1 versus the discount rate 

aintenance scenarios, where maintenance is per- 
rmed as selective maintenance or total maintenance of 

th
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