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ABSTRACT 

As part of a research activity at Politecnico di Torino, aiming to develop multi-disciplinary design procedures imple-
menting nature inspired meta-heuristic algorithms, a performance design optimization procedure for helicopter rotors 
has been developed and tested. The procedure optimizes the aerodynamic performance of blades by selecting the point 
of taper initiation, the root chord, the taper ratio, and the maximum twist which minimize horsepower for different flight 
regimes. Satisfactory aerodynamic performance is defined by the requirements which must hold for any flight condition: 
the required power must be minimized, both the section drag divergence Mach number on the advancing side of the 
rotor disc and the maximum section lift coefficient on the retreating side of the rotor disc must be avoided and, even 
more important, the rotor must be trimmed. The procedure uses a comprehensive mathematical model to estimate the 
trim states of the helicopter and the optimization algorithm consists of a repulsive particle swarm optimization program. 
A comparison with an evolutionary micro-genetic algorithm is also presented. 
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1. Introduction 

The successful design of a helicopter relies on multi- 
disciplinary optimization, perhaps to a greater extent than 
for any other aerospace vehicle [1,2]. From the extensive 
literature review presented in Ref. [2], it can be outlined 
that these optimization problems may involve 1) compu-
tationally expensive aeroelastic or finite element analysis, 
2) presence of local minima, and 3) presence of numeri-
cal noise and convergence difficulties. Therefore, the 
availability of robust and computationally light optimiza-
tion procedures becomes relevant for rotorcraft optimal 
design. 

An example of rotorcraft optimization is the design of 
the main rotor system, which requires a merging of sev-
eral disciplines, such as aerodynamics, dynamics, struc-
tures, and acoustics. An even broader integration may be 
required when handling qualities considerations are 
brought into the design [1]. As a matter of fact, one of 
the primary goals for main rotor design is to improve the 
aerodynamic performance of rotor blades in both hover 
and forward flight by optimally selecting certain blade 
design parameters such as twist, chord distribution, taper, 
sweep, and airfoil sections. The rotor blade aerodynamic 
design process is also made complex by conflicting per-
formance requirements between hover and forward flight. 
An example for this type of design process is given in 

Ref. [3]. 
The purpose of the present paper is to develop and test 

a performance design optimization procedure (eventually 
also applicable to a multi-disciplinary design approach) 
by accounting for nature inspired meta-heuristic algo-
rithms, exploring the ability of these methods to over-
come some of the limitations of conventional gradient 
based optimization algorithms (including a straightfor-
ward software implementation). The procedure aims to 
optimize the aerodynamic performance of helicopter ro-
tor blades by selecting the point of taper initiation, root 
chord, taper ratio, and maximum twist which minimize 
horsepower for different flight regimes. Satisfactory 
aerodynamic performance is defined by the requirements 
which must hold for any flight condition: The required 
power must be minimized, the section drag divergence 
Mach number on the advancing side of the rotor disc as 
well as the maximum section lift coefficient on the re-
treating side of the rotor disc must be avoided and the 
rotor must be trimmed. The procedure uses a compre-
hensive mathematical model to estimate the trim states of 
the helicopter and the optimization algorithm consists of 
a repulsive particle swarm optimization program. The 
performance of this solver is compared with an alterna-
tive optimizer based on an evolutionary micro-genetic 
algorithm. 
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2. The Optimization Algorithm 

Optimization, that is finding minimum or maximum of a 
single-valued function, is required in many practical ap-
plications. If the problem is convex (it has only one 
minimum or maximum point), the local minimum (max- 
imum) is also a global minimum (maximum). However, 
this is not always the case. One may have to optimize a 
function that has many local optima (and sometimes sev-
eral global optima as well). Programs that work very well 
in optimizing convex functions very often perform 
poorly when the problem has multiple local minima or 
maxima. They are often caught or trapped in the local 
minima/maxima. 

The main types of search methods are considered in 
Ref. [4]: Calculus-based, enumerative and random. Cal-
culus-based methods are local, i.e. the optimal conditions 
they search are the best in a neighborhood of the current 
point. They depend upon both the existence of deriva-
tives and the continuity of the function to be maximized. 
This last point is a severe limitation in terms of robust-
ness for several engineering applications. Enumerative 
methods seek the optimal solution by computing the ob-
jective function in every point of the search space. This 
makes the enumerative algorithms substantially ineffi-
cient and time consuming when applied to large domains 
of possible solutions. Random search and meta-heuristic 
algorithms constitute an alternative strategy that can by-
pass the limitations of the previous methods. A complete 
review and the state-of-the-art of nature-inspired meta- 
heuristic algorithms for global optimization is given in 
Ref. [5], including Particle Swarm Optimization (PSO) 
algorithms. 

PSO may have some similarities with Genetic Algo-
rithms (GA) but it is much simpler as it does not use mu-
tation and crossover operators. Instead, it uses the real 
number randomness (no encoding/decoding of the pa-
rameters is required) and the global communication 
among the swarm particles. Various studies show that 
PSO algorithms can outperform genetic algorithms and 
other conventional solvers for solving many optimization 
problems [5]. 

The particle swarm optimization algorithm belongs to  

the category of swarm intelligence techniques. The 
swarm intelligence concepts are inspired by the social 
behavior of flocking animals such as swarms of birds, 
ants and fish school. PSO was first developed and intro-
duced as a stochastic optimization algorithm by Eberhart 
and Kennedy [6]. The approach can be viewed as a dis-
tributed behavioral algorithm that performs a multidi-
mensional search. PSO has been found to be useful in a 
wide variety of optimization tasks. Due to its natural 
ability to converge faster, PSO algorithm is also used to 
solve multi-objective optimization problems. PSO is a 
population based algorithm that exploits a population of 
individuals to probe promising regions of the search 
space. The individual behavior is affected either by the 
best local or best global individual. The performance of 
each individual is measured using fitness function similar 
to evolutionary algorithms. The population is referred as 
a swarm and individuals are called particles. The parti-
cles move in a multidimensional search space with adapt-
able velocity. In PSO, the particles remember the best 
position in the past and the best position ever attained by 
the particles. This property helps the particles to search 
the multidimensional space faster. 

The particle swarm method has many variants. The 
Repulsive Particle Swarm (RPS) method of optimization, 
one of such variants, is particularly effective in finding 
out the global optimum in very complex search spaces 
(although it may be slower on certain types of optimiza-
tion problems). The traditional RPS gives little scope of 
local search to the particles. They are guided by their past 
experience and the communication received from the 
others in the swarm. The traditional RPS method was 
modified and extensively tested in Ref. [7] by endowing 
stronger (wider) local search ability to each particle. This 
solver (Fortran library) was adopted for the present ap-
plication. 

3. The Mathematical Model 

The mathematical model [8] is a nonlinear blade-element 
type representation of a single rotor helicopter with rigid 
fuselage (see Figure 1). 
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Figure 1. The mathematical model (helicopter dynamics). 
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The main rotor blades are individually modeled as 

rigid bodies and the coupled flap-lag dynamics is in-
cluded. The equations of motion of the rotor are formu-
lated and solved in a rotating coordinate system. No 
small angle assumption is invoked for aerodynamic an-
gles of rotor and fuselage. The profile aerodynamic loads 
are calculated using two-dimensional blade element the-
ory corrected for blade twist. A NACA0012 symmetric 
airfoil is considered for blade design and the lift/drag 
coefficients are given as a function of local angle of at-
tack and Mach number [9]. The reactions generated by 
the lag dampers are linear functions of the axial velocity 
of the damper itself (damping ratio is 0.348). The aero-
dynamics of fuselage and stabilizers is modeled using 
coefficients derived from wind tunnel data interpolated 
for varying angles of attack and sideslip. A three-state 
dynamic inflow model [10] is used for the main rotor. 

The rigid body motion of the aircraft is modeled using 
six nonlinear force and moment equations and three ki-
nematic relations: 

1) Force equilibrium along body axes: 

 = sX m u qw rv mg in    

 = sY m v ru pw mg in cos     

 = cZ m w pv qu mg os cos     

2) Moment equilibrium about body axes: 
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3) Relationships between aircraft angular rates and 
Euler angles: 

= sinp      

= cos sin cosq        

= cos cos sinr    


   

The heading rate   is assumed to be constant for 
trim analysis only (coordinated turn with null lateral load 
factor): 

sin = cos cos sin tan cos
V

g

       


    (1) 

The climb angle γ is related to fuselage attitudes and 
aerodynamic angles for trim computation: 

 cos cos sin sin sin sin cos cos cos

= sin

        


 
 

(2) 

The forces (X, Y, Z) and the moments (L, M, N) depend 
on the blade motion and provide the main source of cou-
pling between the rotor and the fuselage. They also con-
tain contributions from fuselage, tail rotor and other 
aerodynamic surfaces. The most important feature of the 
set of equations of motion for the fuselage used in the 
present study is that the fuselage states need not to be 
small quantities; thus, all the kinematic nonlinearities 
associated with the motion of the fuselage are retained. 

The trim procedure is the same as in Ref. [11]. Thus, 
the rotor equations of motion are transformed into a sys-
tem of nonlinear algebraic equations using the Galerkin 
method (10 eqns.). These residuals are estimated consid-
ering 240 azimuth positions for the blade, dividing the 
lifting surface into 200 segments (spanwise discretiza-
tion). The algebraic equations enforcing force and mo-
ment equilibrium (9 eqns.), the additional kinematic 
equations (2 eqns.) that must be satisfied in forward 
flight (or in a turn), and the momentum inflow equations 
for both main and tail rotor (3 + 1 eqns.) are added to the 
rotor equations, and the combined system (25 eqns.) is 
solved simultaneously. The solution yields the harmonics 
of a Fourier series expansion of the rotor degrees of 
freedom, the pitch control settings, trim attitudes and 
rates of the entire helicopter, and main and tail rotor in-
flow. 

Flight without sideslip is arbitrarily assumed for μ ≤ 
0.1, while roll attitude is set to zero for higher airspeed. 

The propulsion system is not included in the trim 
process. This implies two assumptions. The first is that 
the engine can generate a sufficient torque in any flight 
condition. The second is that the small fluctuations of 
rotor speed associated with the lag dynamics of the rotor 
do not affect the engine torque. 

4. Discussion of Results 

The helicopter adopted for the present analysis is a single 
rotor helicopter (Table 1) with articulated flap and lag 
hinges. The reference blades are rectangular (untapered 
planform). The flight condition corresponds to sea level 
flight in standard atmosphere and, more specifically, for 
the nominal rotor design TC   = 0.055 in hover. 

The parameters of the particle swarm optimization 
program were set selecting the population size N = 30 
individuals, the number of randomly chosen neighbors 
NN = 15 individuals, the number of iterations ITRN = 
250, enabling random chaotic perturbation of individuals, 
this last feature helping to jump out of local minima. 

The fitness function   *=PSO M T df P P C   to be  
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Table 1. The helicopter configuration. 

Helicopter mass 1055 kg 

Rotor angular speed 51.5 rad/s 

Rotor disc radius R 4.025 m 

Rotor hinge offset e 0.5 m/12.5% 

Blade root chord cr 0.18 m 

Blade taper ratio τ 1.0 

Blade twist ε –0.157 rad (–9˚) 

Blade Lock number γ 5.6 

nb (main rotor) 5 

nb (tail rotor) 2 

Tail rotor angular speed 307 rad/s 

Tail rotor radius 0.685 m 

Tail rotor chord 0.12 m 

 
minimized is the sum of main rotor and tail rotor power 
multiplied by the parameter , i.e. the maximum pro-
file drag coefficient along the blade for each of the azi-
muth coordinates outside of the reverse flow region. This 
multiplier helps to address the convergence to a blade 
design without drag divergence on the advancing side of 
the rotor disc limiting the maximum section lift coeffi-
cient on the retreating side of the rotor disc. As a general 
comment, the representation of airfoil aerodynamics 
(drag and lift coefficients) may change the fitness func-
tion PSO

*
dC

f  in a way to introduce multiple minima. This 
case was not explored in the present analysis, even if the 
full nonlinearity of 2D airfoil aerodynamics was retained 
[9]. The robustness of the repulsive PSO algorithm to 
trapping in local minima was already demonstrated in 
Ref. [7]. A penalty function for untrimmed flight condi-
tions (based on the size of the numerical residual) is also 
introduced, preventing the convergence towards unrealis-
tic blade designs. 

The procedure aims to optimize the aerodynamic per-
formance of the helicopter rotor blades by selecting the 
point of taper initiation ( br R  = 0.25/1), the root chord 
(cr = 0.175/0.225 m), the taper ratio (τ = 0.25/1), and the 
maximum twist angle (ε = −0.25/0 rad) which minimize 
the fitness function for different flight regimes (μ = 
0.0/0.1/0.2). 

The design parameters of the blade were also opti-
mized with a search strategy based on a genetic algo-
rithm (GA). The genetic solver adopted for the design of 
the rotor is a Fortran version of the driver described by D. 
Carroll in Refs [12,13], widely tested in Refs [14,15]. 
The micro-GA operating mode was adopted combined 
with uniform crossover (the probability for a crossover 
occurring at each chromosome position was fixed to 0.5). 
The code was set for a maximum micro population size 

of 5 individuals, 48 bits per individual and 4 parameters 
(i.e. 12 binary bits per parameter and 212 possible solu-
tions per parameter). Niching and elitism were activated, 
creep mutation was disabled and one child per pair of 
parents was considered. The fitness function to be maxi-
mized was adapted as 2

GA PSO=f f
PSO

. In any case, the 
coincidence of minimum for f  and maximum for 

GAf  was verified numerically. 
The output of the optimization process is presented in 

Table 2. The results for μ ≥ 0.1 show that the solvers aim 
to select a very slender design falling outside of the al-
lowable design range. The most significant result is 
found for μ = 0.0, i.e. for the dimensioning flight condi-
tion for which maximum power output is required (hov-
ering flight). The PSO algorithm provides a very accurate 
estimation of the optimal design measured for reference 
with an enumerative approach (marked as FCN in Table 
2). The convergence of PSO to the solution is in any case 
slower if compared with that shown by the GA solver (as 
usually observed for RPS algorithms). On the other side, 
the GA solver provides the solution with some inaccu-
racy induced by the binary encoding of the variables. 

The impact of inaccuracy on the estimation of the op-
timal design is evaluated in terms of required horsepower 
(see Table 3). 

The planform design of the optimal blade is presented 
in Figure 2. The lower and higher allowed boundaries 
for the optimization process are also shown. As expected, 
the optimization procedure addresses the design towards 
slender blades as a mean for increasing aerodynamic 
efficiency of the lifting surface. 
 
Table 2. The output of optimization process (design pa-
rameters). 

 ε (rad) cr (m) τ br R  (−) σ (−) 

Nominal −0.157 0.18 1.0 1.0 0.071 

μ = 0.00 (FCN) −0.157 0.199 0.25 0.45 0.062 

μ = 0.00 (GA) −0.164 0.217 0.25 0.3905 0.066 

μ = 0.00 (PSO) −0.156 0.198 0.25 0.45 0.062 

μ = 0.1 (GA) −0.25 0.175 0.25 0.25 0.05 

μ = 0.1 (PSO) −0.25 0.175 0.25 0.25 0.05 

μ = 0.2 (GA) −0.25 0.175 0.25 0.25 0.05 

μ = 0.2 (PSO) −0.25 0.175 0.25 0.25 0.05 

 
Table 3. The output of optimization process (main and tail 
rotor power). 

 Nominal (kwatt) GA (kwatt) PSO (kwatt) 

μ = 0.00 153 139 138 

μ = 0.1 94 74 74 

μ = 0.2 91 70 70 
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Figure 2. The optimal blade design (hover – μ = 0). 
 

The effect of the design parameters on the minimum of 
the fitness function PSOf  in hovering flight (μ = 0) is 
shown in Figure 3. The plots show that minimal changes 
of the size of the root chord cr and the position of the 
taper initiation point rb (for constant blade twist ε and 
taper τ) induce a relevant shift of the minimum i.e. mi- 
nimal inaccuracies in the estimation of these design 
variables may compromise the accurate estimation of the 
optimal solution, as observed with the results obtained 
with the GA solver for the same advance ratio. 

Even if this study aimed to design an optimal blade 
with minimum horsepower requirements in hover, it is 
relevant to verify how the blade performs in forward 
flight at several advance ratios. Figure 4 shows a plot of 
the horsepower required versus advance ratio for the 
blade design obtained from the particle swarm optimiza-
tion process compared with the nominal design. As 
shown in the figure, the optimized blade requires less 
horsepower than the reference blade over the flight speed 
range shown (advance ratios of 0.0 to 0.325). The pri-
mary reason for this is that the optimized blade has less 
solidity σ than the reference blade. The reference rectan-
gular blade is designed for wider flight requirements 
(higher CT and advance ratios) than those chosen in this 
analysis, including maneuvering flight. 

5. Concluding Remarks 

The present paper shows a numerical procedure to opti-
mize the aerodynamic performance of helicopter rotor 
blades by selecting the point of taper initiation, root 
chord, taper ratio, and maximum twist which minimize 
horsepower for different flight regimes. The procedure 
uses a comprehensive mathematical model to estimate 
the trim states of the helicopter and the optimization al-
gorithm consists of a repulsive particle swarm optimiza-
tion program developed in Ref. [7]. A comparison with 
an evolutionary micro-genetic algorithm [12,13] is also 
presented. The results show that the PSO algorithm is 
slower but very accurate, matching the optimal design 
with negligible error. Differently, the GA solver con- 
verges quite fast to the solution, failing to be as accurate 

 

Figure 3: The impact of design parameters on the global 
minimum of the fitness function (hover – μ = 0 – ε = –0.157 
rad – τ = 0.25). 
 

 

Figure 4. The nominal and the optimal blade design (total 
power). 
 
as the particle swarm optimizer. This result is promising 
in order to extend the use of this optimization procedure 
to critical multi-disciplinary design problems that are 
sensitive to fractional changes of the design variables, in 
which the design may be compromised by these inaccu-
racies (blade aeroelastic design). As an additional com-
ment, a remarkable advantage of PSO (and specifically 
RPS) is the straightforward implementation, requiring a 
minimum programming effort. 
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Nomenclature PSO: Particle Swarm Optimization 

R: Rotor disc radius (m) 
cr: Blade root chord (m) 

RPS: Repulsive Particle Swarm 
ct: Blade tip chord (m) 

rb: Point of taper initiation (m) 
CT: Thrust coefficient 

u, v, w: Velocity components (body axes) (m/s) 
e: Hinge offset (m) 

V: Airspeed (m/s) 
f: Fitness function 

α: Angle of attack (rad) 
FCN: Function 

β: Angle of sideslip (rad) 
g: Acceleration due to gravity (m/s) 

ε: Blade twist (rad) 
GA: Genetic Algorithm  

γ: Blade Lock number 
Iii: Aircraft moment of inertia (kg·m2) 

μ: Advance ratio 
Iij: Aircraft product of inertia (kg·m2) 

ϕ, θ, ψ: Fuselage Euler angles (rad) 
m: Helicopter mass (kg) 

σ: Main rotor solidity 
nb: Number of blades 

τ: Blade taper ratio  p, q, r: Angular velocities (body axes) (rad/s) 
PM: Main rotor power (watt) 
PT: Tail rotor power (watt) 

t

(·): Time derivative (s–1) 
rc c  
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