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ABSTRACT 

The paper illustrates an innovative procedure for experimental design in mixture analysis. It relies on D-optimal designs 
performed on the combinatorial explosion of five levels of components composition, keeping in mind the requirements 
of Central Composite Designs. The final response surface model is obtained by the formerly developed CARSO 
method. 
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1. Introduction 

In chemical processes a number of fields involve prod- 
ucts which are mixtures of several components. Under 
these circumstances the objective of industrial research is 
reaching a satisfactory level of all technological proper- 
ties the mixture is expected to exhibit, keeping, at the 
same time, the cost of raw materials as low as possible. 

The way mixtures are produced today is often based 
on established knowledge and tradition rather than on a 
scientific approach by chemometric strategies. Conse- 
quently it seems likely that most of the mixtures present 
on the market could be still improved, either in a way 
that the same properties could be reached at a lower cost 
or even that technological properties could be improved. 

The state of art in mixture analysis is well described in 
textbooks [1] and brilliantly implemented in commercial 
software [2]. Based on our previous experience in opti- 
mization procedures [3-9] we present here the suggestion 
of an innovative strategy for designing experiments in 
mixture analysis called MAURO, as the acronym of 
Mixture Analysis under Response Optimization. It relies 
on D-optimal designs performed on the combinatorial 
explosion of five levels of components composition, 
keeping in mind the requirements of Central Composite 
Designs (CCD), which represents the best way to gener- 
ate response surfaces. The final response surface model 
is obtained by the formerly developed CARSO method, 

where the surface equation is derived by a PLS model, 
invented by H. Wold [10] and developed by S. Wold and 
his coworkers in Umeå (Sweden) [11], and finally stud- 
ied at extreme points by Lagrange analysis. 

All the software packages used in this study (CARSO 
[3], DESDOP [4] and GOLPE [6]) are inhouse programs 
written ad modified by one of us (MB) and are presently 
available only in DOS versions [12]. Calculations are 
performed on any personal computer, but the programs 
are better compatible with older versions of Windows. 

2. Procedure 

The anchor points wherefrom the strategy was developed 
were the following: 

1) all planned experiments should contain all mixture 
constituents; 

2) the philosophy to be followed is that of CCD, i.e. 
the lowest number of points, distributed in a balanced 
way within the multivariate space, so that the design is as 
centrosymmetrical as possible, with the addition of a few 
experiments at the central point (Figure 1); the CCD 
strategy as such can be used profitably with two or three 
variables, otherwise it requires too many experiments or 
the risk for a loosely defined response surface is too 
high; 

3) D-optimal designs are particularly suitable for se- 
lecting a fairly well balanced number of points from a 
number of candidates; since they generate, in this appli- 
cation, a non perfectly centrosymmetrical design struc- *Corresponding author. 
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Figure 1. Graphic representation of a Central Composite 
Design in 3-dimensions. 
 
ture, the response surface equation cannot be derived by 
the usual ordinary regression method, but it can be easily 
computed by the CARSO procedure [3]; 

4) quite often there are several technological properties 
to be kept under control at the same time: each of them 
should be inside the operative range known to be appro- 
priate; therefore, while each individual response can be 
studied on its own to understand how it is affected by the 
mixture composition, the overall behavior of the mixture 
is better studied in terms of a total desirability function. 

All these criteria were taken into account when devel- 
oping MAURO, but the key novelty is given by the 
choice of the design strategy: we decided to extract 
D-optimal designs from the combinatorial explosion of 
five levels (as in CCD) defined for each mixture compo- 
nent. Moreover, since the mixture composition is usually 
expressed in terms of percentages, the problem is fully 
defined by (n − 1) constituents and the remaining one, 
being the complement to 100 of the sum of all the others, 
can be kept out of the analysis. 

Significant attention has to be paid to the selection of 
the “best” design. Since any D-optimal run produces 
similar but not identical results in terms of D-efficiency 
(there are many ways of picking up a few points out of 
hundreds or thousands in such a way that the volume of 
the polyhedron defined by the chosen points is more or 
less the same) a specific explanation of the criteria to be 
used for selecting the best design will be described in the 
next section. 

Once one has chosen the best design, run the experi- 
ments and collected the required results, these should be 
modelled by an appropriate procedure. This method, 
called CARSO [3], was published some twenty years ago 
by our group in Perugia and since then it has helped us to 
solve a large number of practical problems, although it 
has been used very little elsewhere. 

The response surface equation is a quadric one con- 
taining, for each variable, the linear and the quadratic 

terms, plus all possible bifactorial interactions. The equa- 
tion coefficients are usually derived by Multiple Linear 
Regression on the expanded X matrix when the data are 
collected according to a rigorous orthogonal design. 
Since data extracted by a D-optimal criterion are usually 
well rounded, but not strictly orthogonal, the regression 
method to be used is PLS. The quadric regression coeffi- 
cients can be derived thereafter from PLS loadings, 
equalizing the PLS system to the regression equation. 

The computed pseudo-coefficients define a response 
surface to be studied in order to search for its maximum 
point. The first step is to find out the stationary point, i.e. 
the only point in the domain where all partial first 
derivatives of y with respect to each x-variable are zero. 
However, this point can either be a maximum or a 
minimum or a minimax, and this can be sorted out by the 
signs of the second derivatives. In the latter case, which 
is by far the most frequent, the search is not finished: the 
maximum y value on the surface should be on one of the 
borders of the experimental domain. To this end, the ex- 
treme points (points where one or more variables are 
fixed at the border(s) value(s) and one searches for the 
point where the partial derivative(s) of the other(s) vari- 
able(s) is zero) should be investigated, and the y value at 
those coordinates computed. 

On cutting the response surface at different y levels it 
is possible to generate an isoresponse diagram which 
gives information on the operative ranges. In case of 
multiple response one can either focus on the common 
ranges for all responses or compute individual desirabil- 
ity functions, which all converge to define a total desir- 
ability, given by the n-th root of their product. This total 
desirability function can be used to ensure the best com- 
promise between the requirements of each individual 
response. Details for desirability functions are reported in 
a subsequent section. 

3. Design Selection 

D-optimal designs are straight optimizations based on a 
chosen optimality criterion and the model that will be fit. 
The optimality criterion used in generating D-optimal 
designs is that of maximizing [X’X], the determinant of 
the information matrix X’X. In other words it means 
suggesting a number of points from a larger number of 
candidates in such a way that they define the largest 
possible volume included in the polyhedron defined by 
these points in the multivariate space. 

The problem we handled in the case study, details of 
which are reported in a subsequent section, referred to a 
mixture containing eight different components. When 
one of them, usually the solvent, is kept out of the design 
strategy, we have a 7-variables problem. If we wish to 
take into account as candidates all possible combinations 
of the seven variables at five levels (−1, −0.7, 0, 0.7, 1, in 
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coded terms) we have 5 to the 7th = 78125 points in a 
7-dimensional space. 

Since the D-optimal algorithm contained in our pro- 
gram DESDOP [4], based on the Mitchell algorithm, can 
generate quite a number of designs with roughly the 
same efficiency, a number of required features should be 
decided a priori. In particular it should be decided 
whether the modelling is to be done by a linear or a 
quadratic equation, and the number of experiments one is 
prepared to carry out. 

In principle quadratic designs are better than linear de- 
sign in terms of D-efficiency because they cover a larger 
multivariate space, but they require a greater number of 
experiments:  1 2 1 2n n n    points are needed for a 
fully quadratic model, while (n + 1) are sufficient for the 
linear one. With seven variables this means 35 experi- 
ments instead of eight. However, 35 experiments being 
somewhat too many, we decided to apply the D-optimal- 
ity algorithm using only the linear and quadratic terms, 
and excluding the interaction terms, which makes 14 
experiments, and to compare it with linear models. 

Therefore, in order to mimic the roundness of the phi- 
losophy of CCD, we decided that the number of points to 
be designed is 14, to which a few points at the design 
center (say four, to evaluate the consistency of replicates) 
should be added. 

The first observation was that the results obtained on 
using the standard version of DESDOP were unsatisfac- 
tory. In fact, in order to select the largest possible volume 
included in the polyhedron defined by the points in the 
multivariate space, the standard design picks up only 
points with coordinate at vertices (−1, 1) or zero, whereas 
the intermediate levels (−0.7, 0.7) are never chosen. Ac- 
cordingly we had to define and implement a dedicated 
version of DESDOP with constrained requirements. 

The main constraint we had to apply was defining the 
allowed number of vertices: we focused our attention on 
2, 3 and 4 vertices per object, since on increasing their 
number the results get closer to the traditional one. 
Moreover, we had to define a few criteria to select the 
“best” design among the different results obtained from 
each run. The same criteria can also be used to select the 
best number of vertices. 

Although statisticians use well recognized parameters 
to compare designs, we decided to use three different 
criteria, all aimed to resemble the CCD features of 
roundness: the algebraic sum of the levels for each vari- 
able, computed variable wise and summed up on all 
variables, which should be as close as possible to zero as 
a measure of the design symmetry, together with the 
number of well centred variables and the number of 
missing variable levels for each object. 

The results of the comparison, obtained on performing 
ten different runs for each situation, are reported in Ta- 

ble 1. The best compromise is found between the sim- 
metry of the design and the number of missing levels: 
these clearly indicate that quadratic designs with three 
vertices is the best choice. On using the same criteria we 
could eventually choose the “best” design among the ten 
experiments performed with three vertices and the se- 
lected design is reported in Table 2. 

It should be pointed out that any D-optimal design is 
based on a certain selected candidate set. Hence the 
MAURO approach comprises a particular constrained 
selection of candidate set, followed by D-optimal design 
of a constrained model (no interactions) and consequent 
PLS analysis and model based optimization (CARSO). In 
these connections our approach resembles other types of 
designs that strive for multiple levels, i.e. filling designs 
and onion designs. 

4. Desirability Functions 

A desirability function is a transformation of the nu- 
merical values of the response under study into values 
varying between 0 and 1, where 0 indicates an unaccept- 
able analytical value, and 1 indicates the best possible 
value, thus including into the response evaluation the 
expectations of the investigators. The simplest way of 
 

Table 1. Results of selection criteria. 

Design Sum Centered variables Missing levels

2 Q 0.55 2.9 0.1 

3 Q 0.39 3.1 0.4 

4 Q 0.36 3.0 1.4 

 
Table 2. Selected quadratic design with 3 vertices. 

variable x1 x2 x3 x4 x5 x6 x7 

Exp. 1 −1 0.7 1 0 −0.7 −0.7 1 

Exp. 2 0.7 −1 −1 0.7 −0.7 0 −1 

Exp. 3 −1 0 1 0 1 0.7 −0.7

Exp. 4 −0.7 0.7 −0.7 −0.7 −0.7 −1 −0.7

Exp. 5 −1 1 0.7 1 0.7 −0.7 0 

Exp. 6 0.7 1 1 0.7 −0.7 1 −0.7

Exp. 7 0 −0.7 −0.7 −1 0.7 1 1 

Exp. 8 −1 −1 0 0 −0.7 1 −0.7

Exp. 9 1 0 −1 0.7 0 1 0 

Exp. 10 1 1 0.7 −1 −0.7 0 0 

Exp. 11 0 −0.7 0.7 1 –1 −1 0.7 

Exp. 12 0.7 1 0 0 1 −0.7 1 

Exp. 13 0.7 −1 1 −0.7 0.7 −1 0 

Exp. 14 1 0 0 1 0.7 −0.7 −1 
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defining desirability functions is a linear transformation, 
which is easily done when a response is better if it is 
higher or lower. Quite often, however, the expected op- 
erative ranges of properties are closed intervals: in this 
case the function assumes a trapezoidal form. Under 
these conditions it is convenient to give the value of 1 to 
a small range around the central point of the operative 
interval, and to assign a 0.5 value to the borders of such 
an interval. 

When dealing with several responses at the same time 
there are two alternative ways to handle the problem. On 
one side each individual response can be studied on its 
own either as analytical values or as the corresponding 
desirabilities, and the common operative intervals can be 
derived thereafter. On the other side each response can 
be transformed into its desirability and a total desirability 
function can be computed as their geometrical mean (the 
n-th root of their product). However, if the relative im- 
portance of each response is well known, it is possible to 
define partial desirabilities for groups of responses and 
compute therefore the total desirability giving selected 
weights to individual (or groups of) responses. Indeed the 
best way of defining an industrial problem would be 
finding the cheapest cost of raw materials that ensures 
anyway that all responses are within their operative 
ranges, and this was the philosophy that guided our 
strategy in the Case Study. 

5. Results and Discussion 

The case study we present regards a varnish constituted 
by eight different constituents, the nature of which is not 
reported to preserve the property of the industrial partner. 
On excluding the main solvent the problem is therefore 
defined by seven variables. The design strategy used is 
that reported in Table 3, to which four replicates at the 
central point were added, for a total number of 18 ex- 
periments. 

Two responses were studied: viscosity (Ford cup no. 4) 
and gloss (the attribute that causes objects to have shiny  
 

Table 3. Operative ranges found from the model compared 
to the experimental ones. 

 Experimental range Operative range 

x1 1.25 - 2.25 <1.6 

x2 8 - 12 7 - 11 

x3 21 - 25 22 - 27 

x4 0 - 1 <0.4 

x5 0.5 - 0.8 <0.6 

x6 1 - 3 <1.5 

x7 21 - 29 21 - 33 

or matt appearance). Each response was studied indi- 
vidually as analytical values by the CARSO procedure, 
i.e. running a linear PLS model on the expanded X 
matrix, which contains 35 terms. This step allowed to 
estimate the soundness of each model (in terms of 
explained variance) and to find out which terms 
significantly affect each response.  

We transformed the real technological measurements 
of viscosity and gloss into their individual desirability 
functions as well as their total desirability. This final 
overall desirability was eventually modelled by the 
CARSO procedure against the X matrix built by the 
amount of the seven compounds for each of the 18 ex- 
periments. The resulting operative ranges for each 
component are reported in Table 3, where they are 
compared with the corresponding experimental ranges. 

The PLS score plot is reported in Figure 2. 
The modeling results, as expressed by the PLS load- 

ings, not reported, showed the minor importance of four 
of the components, while the other three significantly 
affect the overall response. Consequently we fixed the 
former components at predefined levels within the ranges 
obtained and we made a number of formulations, pre- 
dicting the technological properties by our model on 
varying the latter variables within their ranges. 

The computational experiments are reported in Table 
4, together with their cost of raw material. In all cases the 
technological properties are within their acceptability 
ranges. The final objective was to test experimentally the 
less expensive mixtures: indeed we found that mixtures 
1 - 4 of Table 4 did show that their properties were 
within the expected ranges. 

6. Conclusions 

A novel procedure, which couples D-optimal designs 
with a combinatorial chemistry approach under the phi- 
losophy of Central Composite Designs, was outlined and 
used successfully in a case study involving a mixture 
with eight components. 
 

 
Figure 2. PLS score plot of the CARSO model of the overall 
desirability function. 
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Table 4. Cost of raw material for predicted properties 
viscosity and gloss. 

Mixture 1 2 3 4 

x2 7 7 8 8 

x3 20 21 22 23 

x7 25 25 27 25 

Cost/kg 1.51 1.54 1.61 1.64 

 
The problem was handled collecting 18 experimental 

results only, and measuring two technological responses, 
which were all described by an overall desirability func- 
tion. The CARSO analysis of the overall function, in 
terms of the expanded matrix of the seven components, 
was used to define a response surface wherefrom the 
operative ranges for each component could be computed. 
A number of simulated predictions, based on CARSO 
models, permitted to establish which are the cheapest 
mixtures still bearing good technological properties: they 
were all experimentally verified. 

By this new approach it was possible to obtain a prod- 
uct that, still having the expected values of properties, 
allows saving about 10% of the cost of raw material. It is 
likely that a similar result could be obtained on studying 
most of the real processes not yet investigated by 
chemometric strategies. 
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