
Applied Mathematics, 2012, 3, 1252-1259
http://dx.doi.org/10.4236/am.2012.330181 Published Online October 2012 (http://www.SciRP.org/journal/am)

An Inexact Restoration Package for Bilevel Programming
Problems

Elvio A. Pilotta, Germán A. Torres
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, CIEM (CONICET), Córdoba, Argentina

Email: pilotta@famaf.unc.edu.ar, torres@famaf.unc.edu.ar

Received June 1, 2012; revised July 1, 2012; accepted July 8, 2012

ABSTRACT

Bilevel programming problems are a class of optimization problems with hierarchical structure where one of the con-
straints is also an optimization problem. Inexact restoration methods were introduced for solving nonlinear program-
ming problems a few years ago. They generate a sequence of, generally, infeasible iterates with intermediate iterations
that consist of inexactly restored points. In this paper we present a software environment for solving bilevel program-
ming problems using an inexact restoration technique without replacing the lower level problem by its KKT optimality
conditions. With this strategy we maintain the minimization structure of the lower level problem and avoid spurious
solutions. The environment is a user-friendly set of Fortran 90 modules which is easily and highly configurable. It is
prepared to use two well-tested minimization solvers and different formulations in one of the minimization subproblems.
We validate our implementation using a set of test problems from the literature, comparing different formulations and
the use of the minimization solvers.

Keywords: Bilevel Programming Problems; INEXACT Restoration Methods; Algorithms

1. Introduction

Bilevel programming problems are optimization prob-
lems whose feasible set is partially restricted to the solu-
tion of another optimization problem. Mathe- matically
speaking, a bilevel problem can be stated by:

 
 

 
 

,min ,

. . , 0, ,

argmin ,

. . , 0

0

x y

y

F x y

s t H x y x X y

f x y

s t h x y

y

  




Y



 (1)

where , , ,
. Eventually, some components of vector

y may be free. The sets X and Y are bounded boxes in
 and respectively. We suppose that the gradi-

ents of F and H, and the Hessians of f and h exist and are
continuous in X × Y. The optimization subproblem ap-
pearing in the constraints is called the lower level prob-
lem.

: n mF   
n m p 

m

: n m qH    : n mf  
:h 

n

The first formulation of bilevel programming was
given in an economical context in [1]. Survey papers on
this problem were published in [2,3]. Different ap-
proaches about the theory of optimality conditions for
bilevel programming problems were introduced in [4]. In
[5,6] necessary and sufficient optimality conditions re-
quire that the lower level problem has a unique optimal

solution.
Following Dempe [7] algorithms for solving bilevel

programming problems can be classified into three cate-
gories: the first group solves the problem globally, the
second group computes stationary points or points that
satisfy some local optimality conditions, and the third
group corresponds to heuristic methods. A review of al-
gorithms for globally solving this kind of problems is
given in [2].

Bilevel programming problems are nonconvex opti-
mization problems and for this reason there are diffi-
culties to solve them globally. Therefore, descent me-
thods were developed to compute stationary solutions.
For the linear case, see [8]. An important fact assumed in
[9] is that the lower level optimal solution is uniquely
determined.

The development of new algorithms and theory of
bilevel programming problems is strongly motivated by a
large number of applications. For instance, determination
of optimal prices [10], aluminium production process
[11], electric utility demand-side planning and engi-
neering applications [12]. An overview of applications is
given in [13].

In order to solve bilevel programming problems we
will consider the ideas proposed in [14-16], called Inex-
act Restoration methods (IR). Let us state the nonlinear
programming problem in the form:

Copyright © 2012 SciRes. AM

E. A. PILOTTA, G. A. TORRES 1253

   Minimize subje 0 Ωct to ,Cf xx  x

 m

 (2)

where and are continuously
differentiable and Ω is a polytope. The IR model algo-
rithm generates feasible iterates with respect to Ω. Each
iteration includes two different phases: restoration and
minimization. In the restoration phase, which is executed
once per iteration, an intermediate point (restored point)
is found such that its infeasibility is a fraction of the
infeasibility of the current point. After restoration we
define a linearization of the feasible region πk around the
restored point. In the minimization phase we compute a
trial point belonging to πk solving a trust-region sub-
problem such that the functional value at the trial point is
less than the functional value at the restored point. A
Lagrangian function can be also used at the minimization
phase as it is presented in [16,17]. By means of a merit
function, the new iterate is accepted or rejected. In case
of rejection, the trust-region radius is reduced and the
minimization phase is repeated around the same restored
point. The philosophy of IR encou- rages case-oriented
applications. Since IR allows us to choose suitable resto-
ration and minimization procedures, the IR approach is
quite appealing in this context.

: nf  : nC  

Many years ago bilevel programming problems were
solved replacing the lower level problem by its KKT
conditions, but this presented a serious drawback because
many spurious stationary points may appear. On the
other hand, one of the reasons for using IR in bilevel
programming problems is that the lower level problem
may be treated at the restoration phase as an optimization
problem. The classical way to find a local solution is to
try to solve the lower level problem using optimization
strategies that consider the lower objective function. Be-
sides that, notice that when Ω is a polytope, the approxi-
mate feasible region πk is also a polytope. Thus, the
minimization phase consists of solving a linearly con-
strained optimization problem. Therefore, available algo-
rithms for these kinds of (potentially large-scale) prob-
lems can be fully exploited, for example MINOS [18],
SNOPT [19] and ALGENCAN [20].

Our main contribution is to propose a user-friendly
environment consisting by a set of Fortran 90 modules to
solve a bilevel programming problem using IR without
reformulating it as a single-level problem. The package is
easily and highly customizable and it is prepared to use
two well-tested minimization solvers and different for-
mulations in the minimization subproblem. Other solvers
can be easily included with minor changes in the code.
The algorithm is based on [6], with additional features:
two versions for solving the minimization step and stop-
ping criteria. One of the most attractive features of this
environment is the autosetting options. That means that
users just need to write Fortran code for the functions

involved in the bilevel programming problem, and not to
write any code about the algorithm and external solvers.
On the other hand, the code is highly configurable,
therefore users with expertise on these topics may take
advantage of the code structure.

The code is written mainly in standard Fortran 90,
with a few features of standard Fortran 2003. The choice
of the language was made because a big number of opti-
mization packages are written either in Fortran 77 or in
Fortran 90. Particularly, MINOS and ALGENCAN are
written in Fortran 77, which are used in our code.

We validate our implementation using a set of test
problems from the literature, comparing different for-
mulations and the use of the minimization solvers.

There are several formulations for the bilevel pro-
gramming problem in the literature with their own code,
but not software packages. For example, in [21] genetic
algorithms are developed using GAMS [22] and MINOS,
in [23] a decomposition based on global optimization
approach to bilevel and quadratic programming problems
is solved by GAMS/MINOS.

The most popular available package is BIPA (BIlevel
Programming with Approximation methods) [24]. BIPA
is a code written in C for solving nonlinear bilevel pro-
gramming problems. It is a trust-region type method
where the subproblem consists in solving a sequence of
mixed-integer programs (MIPs) and nonlinear optimi-
zation problems. The latter programs are solved using
ILOG CPLEX [25] routines and DONLP2 [26] re- spec-
tively. ILOG CPLEX is a high-performance mathemati-
cal programming solver for linear program- ming,
mixed-integer programming, and quadratic programming,
and it is mantained by IBM. DONLP2 is a solver for
general nonlinear programming problems.

The paper is structured as follows. In Section 2 a
mathematical background of IR methods is given. Sec-
tion 3 is devoted to explain an algorithm based on IR
applied to solve bilevel programming problems. Section
4 refers to the design of the package, and Section 5
shows numerical experiments for a set of test problems.
Finally, Section 6 is dedicated to the conclusions.

2. Inexact Restoration Methods

IR methods have been introduced in the last few years
for solving nonlinear programming problems [14-16],
due to the drawbacks present in feasible methods. Feasi-
ble methods generate a sequence of feasible points that,
in the presence of strong nonlinearities, may behave
badly. In these cases, it is not appropriate to perform
large steps far from the solution, because the nonlinearity
forces the distance between consecutive feasible iterates
to be very short. On the other hand, short steps far from
the solution are not convenient because it may produce

Copyright © 2012 SciRes. AM

E. A. PILOTTA, G. A. TORRES 1254

slow convergence. IR methods keep infeasibility under
control and are tolerant when the iterates are far from the
solution. At the end of the algorithm feasibility is pre-
served since the weight of infeasibility is increased dur-
ing the process.

IR methods are intended to solve the following prob-
lem

 
 

min

. . 0,
x f x

s t C x x 

 m

0

 (3)

where and are continu-
ously differentiable and is a closed and convex
set. Each iteration consists of two phases: restoration and
minimization. In the restoration phase an intermediate
point is obtained such that the infeasibility at yk
is reduced with respect to the infeasibility at xk. At the
beginning of the minimization phase a linearization πk of
the feasible region defined by the constraints C(x) = 0 is
constructed around the restored point yk, that is:

: nf 

ky 

: nC  
n  

   ': k k
k x C y x y     (4)

Then, a trial point

 ,
,:k i n k

kz x x y k i 


    

is computed such that  , ()k i kf z f y . Here ,k i is a
trust-region radius. Another formulation [17] solves a
minimization problem where the objective function is
replaced by its Lagrangian function:

     ,
T

L x f x C x   (5)

for all . In order to accept the trial point
 a penalty merit function is considered:

, mx  
,k iz

     
2

, (1)x f x C x      (6)

where  0,1  is a penalty parameter defined by a
nonmonotone sequence. Instead of the merit function, a
filter criterion may be considered to accept the trial point
[27]. Until the acceptance condition is satisfied, the
trust-region radius is reduced and the minimization
problem is solved again.

The minimization phase is a problem with linear con-
straints (if Ω is a polytope), therefore any available
solver for linearly constrained optimization can be ap-
plied. Besides that, the method gives the freedom to for-
mulate each phase and choose the solver in order to take
advantage of the structure of the problem. These features
make the IR methods very attractive.

There exist convergence results for the sequence gene-
rated by the IR methods under mild hypotheses [14,15].

3. IR Bilevel Algorithm

Let us consider, without loss of generality, the following

problem:

 

 
 

,min ,

. . ,

argmin ,

. . , 0

0

x y

y

F x y

s t x X y Y

f x y

s t h x y

y

 




 (7)

We write the KKT conditions of the lower level prob-
lem in the form

 

   
 

1 1

, ,

,

, , ,

y y

m m

f x y h x y

h x y

C x y y

y

 

  



   
 
 
 
 
 
 
 


 (8)

where p  and . Based on [6] we propose
the following algorithm:

m 

3.1. Algorithm

Set the algorithmic parameters tol, M > 0,  1 0,1   ,

min 0  ,  0,1r , {wk} a summable sequence of posi-
tive numbers, and initial approximations x0, y0, γ0 and λ0
(initial Lagrangian multiplier estimators).

Step 1. At iteration k, set

 1 1
min min 1, , ,k k      ,

  , 1
large min largemin 1, ,k k k

kw k     

Step 2. Restoration phase. Find yR, μRand γR such that

   
2 2

, , , , , ,k R R R k k k kC x y r C x y   

Step 3. Minimization phase. Set i ← 0 and choose
,0

min
k  Compute a trial point  , , , ,, , ,k i k i k i k ix y   as

the solution of the following problem

 , , ,min ,x y F x y 

  '. . , , , , , , 0k R R R k R R Rs t C x y x x y y         

    ,, , , , , ,k R R R
k ix y x y    


 

For the Lagrangian formulation, change the objective
function by the Lagrangian function

    , , , , , , , ,
T

L x y F x y C x y       

with k  .
Step 4. Update the Lagrangian multipliers (only for

the Lagrangian formulation). Compute a trial ,k i such
that , .k i M


Step 5. Predicted reduction. Compute

,k i


 as the

maximum , 10, k i      such that

Copyright © 2012 SciRes. AM

E. A. PILOTTA, G. A. TORRES 1255

   

 

,

2

2

1
, , ,

2

 , , ,

k i k k k k

k R R R

Pred C x y

C x y

 

 

 

 





where

    

   

 

,

2

2

, ,

1 , , ,

, , ,

k i k k k i k i

k k k k

k R R R

Pred F x y F x y

C x y

C x y

 

 

 

 

  

 

, ,










For the Lagrangian formulation the predicted reduc-
tion is defined by

   



  

   

 

,

, , , ,

2

2

, , , ,

, , , ,

, , ,

1 , , ,

, , ,

k i k k k k k

k i k i k i k i k

Tk R R R k k

k k k k

k R R R

Pred L x y

L x y

C x y

C x y

C x y

    

  

   

  

 

 



  

  

 

Set .  , ,k i k i k iPred Pred  ,


Step 6. Actual reduction. Compute

    

   

 

, , ,

,

2

, , , ,

2

, ,

1 , , ,

, , ,

k i k i k k k i k i

k i k k k k

k i k i k i k i

Ared F x y F x y

C x y

C x y

 

 

 

   

  

 

,



For the Lagrangian formulation, the actual reduction is
defined by

   

 

   

 

, ,

, , , , ,

,

2

, , , ,

2

, , , ,

, , , ,

1 , , ,

, , ,

k i k i k k k k k

k i k i k i k i k i

k i k k k k

k i k i k i k i

Ared L x y

L x y

C x y

C x y

    

  

 

 





  









 



Step 7. Acceptance and stopping criteria. See the al-
gorithm described below.

3.2. Acceptance and Stopping Criteria

We wish that the merit function at the trial point should
be less than the merit function at the current point, that is,

. However, as in unconstrained optimization
a reduction of the merit function is not enough to guar-
antee convergence. In fact, we need a sufficient reduction
of the merit function, that is defined by the following
test:

, 0k iAred 

, ,0.1k i k iAred Pred

If this test holds, we accept the trial point as a new ap-
proximation and terminate iteration k. Otherwise, we
reduce the trust-region radius and repeat the mini- miza-
tion phase.

The stopping criteria proposed here consists of a com-
parison between two successive approximations of either
the sequence  , , ,k k k kx y   , or the sequence of func-
tional values  ,k kF x y , and a feasibility test using the
KKT conditions of the lower level problem and the upper
level constraints (if there exist).

We remark that the new stopping criteria is different
from the criteria used in [1], where a nonlinear mini-
mization problem has to be solved in each iteration and
this could be computationally expensive. Moreover, the
numerical experiments validate the proposed procedure.

The proposed stopping criteria is:

if , ,0.1k i k iAred Pred then

set k,i k,i

1
δ δ

2
 , 1i i  and

repeat minimization phase (Step 3)
else

compute

   , , , ,, , , , , ,k i k i k i k i k k k kV x y x y ,    

  , ,, ,k i k i k kW F x y F x y  

set    , , , ,, , , , , ,k k k k k i k i k i k ix y x y    ,

, ,,k k i k k i     , ,k k i 

set , ,,k k i k k iAred Ared Pred Pred 

if
2

V to l or W tol then

if  
2

, , ,k R R RC x y tol   then

Terminate declaring finite convergence
Otherwise Return to restoration phase
(Step 2)

end
else

Return to restoration phase (Step 2)
end

end

4. Design

The software environment presented here consists of a

Copyright © 2012 SciRes. AM

E. A. PILOTTA, G. A. TORRES 1256

set of modules, mainly in standard Fortran 90, that solves
the bilevel programming problem using an IR formu-
lation. The algorithm is based on the ideas of [6] with a
new stopping criterion and two optional procedures for
the minimization phase. The code is able to solve resto-
ration and minimization phases by means of two optimi-
zation solvers: MINOS and ALGENCAN. MINOS has
been extensively used for many years and it is one of the
most known codes in optimization, becoming a reference
in this area. Although MINOS is a commercial software,
our code can be compiled using ALGENCAN instead of
MINOS (ALGENCAN can be freely downloaded). Other
solvers could be included with minor changes. Each
problem can be configured in only one module with its
own setting options (default or advanced) independently
of the rest of the code. A list of capabilities is described
below:

Modularity: the modules can be classified into cate-
gories: 1) sizes, bounds and initial conditions; 2) default
algorithmic parameters like solver and formulation
choices, tolerances, etc.; 3) variables of the external
solvers; 4) variables from different phases; 5) definition
of the problem (this is the only one module provided by
the user); 6) modules related to the bilevel algorithm
(completely independent of the problem and external
solvers).

Simplicity: there are no derived types of variables de-
fined in the code. The code has been prepared for both
an expert programmer as well as for a medium pro-
grammer.

Language: the modules are programmed in standard
Fortran 90 with a very few features of standard Fortran
2003 (for instance, array constructors) for easier data
input. It has been successfully compiled and executed
with the Intel Fortran Compiler, Portland Fortran Com-
piler, GNU Fortran and G95.

Configurability: there are two possible configurations:
default and advanced. The default configuration only
requires to set problem sizes, initial conditions and the
functions involved in the problem. The advanced con-
figuration needs the requirements of the default configu-
ration and allows to modify one or several default pa-
rameters and procedures, for instance:
- external solver (MINOS or ALGENCAN);
- Lagrangian or non Lagrangian formulation;
- solver settings for restoration or minimization phases;
- function settings for restoration or minimization

phases;
- KKT conditions of the lower level problem and the

upper level constraints;
Precision: the code handles double precision real

variables, because the external solvers (MINOS and
ALGENCAN) handle double precision real variables by
default.

5. Numerical Experiments

In this section we illustrate the use of our software to
solve a particular bilevel programming problem. Besides
that, we consider a set of test problems from the literature
and present numerical results for different parameters
and options of our code (i.e. external solvers, formula-
tions, etc.).

5.1. Sample Application

We consider the problem BIPA2 from [24]:

     

   

2 2

,

2 3

min , 5 2 1

0

argmin , 1 1.5

3 3 0

0.5 4 0

7

.

0

.

0

x y

y

F x y x y

x

f x y y xy x

x y

x y

x

t

y

s

y

   

 

   

   

  

  

 

We add slack variables and rewrite the problem in the
following standard form:

     

   

2 2

, 1

1

2 3
1 1 1

1 1 2

1 1 3

1 1 4

1 2 3 4

. .

. .

min , 5 2 1

0

argmin , 1 1.5

3 3 0

0.5 4 0

7 0

0, 0, 0, 0

x y

y

F x y x y

x

1

1f x y y x y x

x y y

x y y

x y y

y

s t

s

y

t

y y

   

 

   

    

   

   

       

where x = (x1) and y = (y1, y2, y3, y4).
Specific settings may require additional information

for the restoration and minimization phases, for example
the calculation of the function  , , ,C x y  

' ,C x

 (see Equa-
tion (8)) representing the KKT conditions of the lower
level problem and its Jacobian matrix  , ,y   :

 

 
11 1 1 2 3

1 2

2 3

3 4

1 1

4 4

2 1 1.5 0.5

, , ,
(,)

y x

C x y
h x y

y

y

  

 
 
  





     
 

 
  

   
 
 
 
 
 
 



Copyright © 2012 SciRes. AM

E. A. PILOTTA, G. A. TORRES

Copyright © 2012 SciRes. AM

1257

 '

1 1

2 2

3 3

4 4

1.5 2 0 0 0 1 0.5 1 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1

3 1 1 0 0 0 0 0 0 0 0 0

, , , 1 0.5 0 1 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

C x y

y

y

y

y

 







   
  
 
 

 
 
 

  
 
 
 
 
 
 
  
 

In order to avoid messy computations to obtain func-
tions C and C', or the solver settings, users can choose
the default configuration, in which only the problem data
has to be given. In case of a complex problem, the de-
fault configuration is a good option to prevent human
errors.

The next subsection contains a number of other exam-
ples. For programming details please refer to the user
manual that accompanies the software.

5.2. Additional Test Problems

Table 1 reports test problems from literature. The first
column indicates the problem as it is referenced in the
last column. The numbers n, m, q and p are the same than
in (1).

Most of these problems belong to the test problem
collection in [28]. Initial points are given in Table 1. All
tests were performed in a PC running Linux, Core 2 Duo,
2.0GHz, 3Gb RAM, with the following Fortran compil-
ers: Intel Fortran Compiler, G95, GNU Fortran and Port-
land Compiler.

In all cases the solution was successfully found in a
small number of iterations (except problem 9.2.05 that
converged in 43 iterations) and agrees with the reported
solution (see Table 2). Notice that these results were
obtained using the default configuration. The main de-
fault setting parameters are:
- External solver: MINOS.
- IR formulation: without using the Lagrangian formu-

lation.
- All of the solver dependent functions are automati-

cally set.
For a complete list of setting parameters, please refer

to the user manual.
All the problems in Table 2 were tested with advanced

configurations, for example using a user setting function
C. The same results were obtained using other formula-
tions, for instance, ALGENCAN as the external solver
and the Lagrangian function. The numerical results agree
in all cases unless the number of iterations, due to inter-

nal formulations.
In all cases the CPU time was negligible, therefore no

comparison with other solvers could be made.

6. Conclusions

The main idea behind this work is to provide an en- vi-
ronment in order to solve general bilevel programming
problems. One of the most important features of our im-
plementation besides portability is to provide a user-
friendly code. At the same time the code is intended to be
highly configurable to exploit the best characteristics of
both the problems and external solvers. This environment,

Table 1. Test problems.

Problem n m q p Initial point Ref.

9.2.05 1 1 0 3 (15.0; 20.0) [28]

9.2.06 1 2 0 3 (5.0; 6.0, 0.0) [28]

9.2.09 2 2 0 3 (1.0, 1.0; 1.0, 1.0) [28]

9.2.10 1 1 0 4 (2.0; 10.0) [28]

9.3.04 2 2 1 6 (5.0, 5.0; 0.0, 0.0) [28]

9.3.05 1 2 0 1 (1.0; 0.0, 0.0) [28]

9.3.06 1 1 0 3 (0.0; 0.0) [28]

9.3.07 2 2 0 4 (0.0, 0.0; 0.0, 0.0) [28]

9.3.08 1 1 0 3 (1.9; 2.0) [28]

9.3.09 1 1 0 1 (1.0; 1.0) [28]

9.3.10 1 2 0 1 (0.2; 1.0, 0.5) [28]

BIPA2 1 1 1 3 (2.1; 2.0) [24]

BIPA3 1 1 1 1 (1.0; 1.0) [24]

BIPA4 1 1 1 1 (1.0; 1.0) [24]

FalkLiu95 2 2 0 4 (0.0, 0.0; 0.0, 0.0) [29]

FloudasZlobec98 1 2 0 2 (1.5; 10.0, 15.0) [30]

ShimIshiBard97-1 1 1 0 4 (2.5; 5.0) [31]

ShimIshiBard97-2 1 1 1 1 (6.5; 11.0) [31]

E. A. PILOTTA, G. A. TORRES 1258

Table 2. Numerical experiments for test problems with the
default configuration.

Problem It. (x, y) (IR) F(x, y) (IR)

9.2.05 43 (19.0; 14.0) −37.00

9.2.06 10 (1.0; 0.0, 0.0) −1.00

9.2.09 8 (1.0, 0.0; 0.5, 1.0) −1.75

9.2.10 3 (0.889; 2.222) 3.11

9.3.04 20 (0.0, 0.0; −10.0, −10.0) 0.00

9.3.05 4 (3.0; 1.0, 2.0) 0.50

9.3.06 10 (1.0; 3.0) 5.00

9.3.07 2 (0.5, 0.5; 0.5, 0.5) −1.00

9.3.08 8 (1.0; 0.0) 17.00

9.3.09 6 (0.25; 0.0) 1.25

9.3.10 1 (2.0; 6.0, 0.0) 2.00

BIPA2 9 (1.0; 0.0) 17.00

BIPA3 2 (4.0; 0.0) 2.00

BIPA4 2 (0.0; 0.6) 88.79

FalkLiu95 3 (0.75, 0.75; 0.75, 0.75) −2.25

FloudasZlobec98 2 (1.0; 0.0, 1.0) 1.00

ShimIshiBard97-1 5 (2.0; 1.0) −2.00

ShimIshiBard97-2 6 (7.1; 12.898) 230.89

in the case of the default configuration, supplies all the
necessary tools to automatically set the auxiliary subrou-
tines and solvers. Therefore, it allows a cleaner and
shorter coding and avoids a lot of human errors.

The bilevel algorithm based on the inexact restoration
method has appealing theoretical properties, in the sense
that under certain hypotheses, convergence is assured [1].
This feature is a remarkably advantage over other pack-
ages that solve bilevel programming problems without
convergence results. To solve each phase of the inexact
restoration algorithm adapted to bilevel programming
problems, external solvers are needed. In our case we use
two packages (MINOS and ALGENCAN), however,
other solvers can be added with minor changes in the
source code. We decided not to mix different solvers for
the restoration and minimization phases, because they are
based on different philosophies. For instance, MINOS
uses factorizations and ALGENCAN exploits ma-
trix-vector products.

Finally, numerical results are promising since different
kinds of bilevel programming problems (linear, quadratic
and nonlinear) have been successfully solved. Several
tests have been carried out using different algorithmic
parameters and configurations with the same results, with
similar execution time.

The source code and the user manual can be obtained
from the authors’ electronic addresses.

REFERENCES
[1] H. V. Stackelberg, “Marktform and Gleichgewicht,”

Springer-Verlag, Berlin, 1934.

[2] J. F. Bard, “Practical Bilevel Optimization: Algorithms
and Applications,” Kluwer Academic Publishers, Dor-
drecht, 1998.

[3] L. N. Vicente, “Bilevel Programming: Introduction, His-
tory, and Overview,” In: Encyclopedia of Optimization,
Kluwer Academic Publishers, Dordrecht, 2001, pp. 24-31.
doi:10.1007/0-306-48332-7_38

[4] S. Dempe, “Foundations of Bilevel Programming,” Klu-
wer Academic Publishers, Dordrecht, 2002.

[5] S. Dempe, “A Necessary and a Sufficient Optimality
Condition for Bilevel Programming Problems,” Optimi-
zation, Vol. 25, No. 4, 1992, pp. 341-354.
doi:10.1080/02331939208843831

[6] R. Andreani, S. L. C. Castro, J. L. Chela, A. Friedlander
and S. A. Santos, “An Inexact-Restoration Method for
Nonlinear Bilevel Programming Problems,” Computa-
tional Optimization and Applications, Vol. 43, No. 3,
2009, pp. 307-328. doi:10.1007/s10589-007-9147-4

[7] S. Dempe, “Annottated Bibliography on Bilevel Pro-
gramming and Mathematical Problems with Equilibrium
Constraints,” Optimization, No. 52. No. 3, 2003, pp.
333-359. doi:10.1080/0233193031000149894

[8] S. Dempe, “A Simple Algorithm for the Linear Bilevel
Programming Problem,” Optimization, No. 18, No. 3,
1987, pp. 373-385. doi:10.1080/02331938708843247

[9] J. E. Falk and J. Liu, “Annotated Bibliography on Bilevel
Programming and Mathematical Programs with Equilib-
rium Constraints,” Central European Journal of Opera-
tions Research, Vol. 52, No. 2, 1993, pp. 101-117.

[10] L. Brotcorne, M. Labbè, P. Marcotte and G. Savard, “A
Bilevel Model and Solution Algorithm for a Freight Tar-
iff Setting Problem,” Transportation Science, Vol. 34, No.
3, 2000, pp. 289-302. doi:10.1287/trsc.34.3.289.12299

[11] M. G. Nicholls, “The Application of Nonlinear Bilevel
Programming to the Aluminium Industry,” Journal of
Global Optimization, Vol. 8, No. 3, 1996, pp. 245-261.
doi:10.1007/BF00121268

[12] J. Herskovits, A. Leontiev, G. Dias and G. Santos, “Con-
tact Shape Optimization: A Bilevel Programming Ap-
proach,” Structural and Multidisciplinary Optimization,
Vol. 20, No. 3, 2000, pp. 214-221.

[13] P. Marcotte and G. Savard, “Bilevel Programming: Ap-
plications,” In: Encyclopedia of Optimization, Kluwer
Academic Publishers, Dordrecht, 2001.
doi:10.1007/0-306-48332-7_33

[14] J. M. Martínez, “Two-Phase Model Algorithm with
Global Convergence for Nonlinear Programming,” Jour-
nal of Optimization Theory and Applications, Vol. 96, No.
2, 1998, pp. 397-436. doi:10.1023/A:1022626332710

[15] J. M. Martínez and E. A. Pilotta, “Inexact Restoration
Algorithm for Constrained Optimization,” Journal of Op-
timization Theory and Applications, Vol. 104, No. 1,
2000, pp. 135-163. doi:10.1023/A:1004632923654

[16] J. M. Martínez and E. A. Pilotta, “Inexact Restoration

Copyright © 2012 SciRes. AM

http://dx.doi.org/10.1007/0-306-48332-7_38
http://dx.doi.org/10.1080/02331939208843831
http://dx.doi.org/10.1007/s10589-007-9147-4
http://dx.doi.org/10.1080/0233193031000149894
http://dx.doi.org/10.1080/02331938708843247
http://dx.doi.org/10.1287/trsc.34.3.289.12299
http://dx.doi.org/10.1007/BF00121268
http://dx.doi.org/10.1007/0-306-48332-7_33
http://dx.doi.org/10.1023/A:1022626332710
http://dx.doi.org/10.1023/A:1004632923654

E. A. PILOTTA, G. A. TORRES

Copyright © 2012 SciRes. AM

1259

Methods for Nonlinear Programming: Advances and Per-
spectives,” In: L. Q. Qi, K. Teo and X. Q. Yang, Eds.,
Optimization and Control with Applications, Applied Op-
timization Series, Chapter 12, Springer, Netherlands,
2005, pp. 271-292.

[17] E. G. Birgin and J. M. Martínez, “Local Convergence of
an Inexact-Restoration Method and Numerical Experi-
ments,” Journal of Optimization Theory and Applications,
Vol. 127, No. 2, 2005, pp. 229-247.
doi:10.1007/s10957-005-6537-6

[18] B. A. Murtagh and M. A. Saunders, “Large-Scale Line-
arly Constrained Optimization,” Mathematical Program-
ming, Vol. 14, No. 1, 1978, pp. 41-72.
doi:10.1007/BF01588950

[19] W. Murray, P. E. Gill and M. A. Saunders, “SNOPT: An
SQP Algorithm for Large-Scale Constrained Optimiza-
tion,” SIAM Journal on Optimization, Vol. 12, No. 4,
2002, pp. 979-1006.

[20] E. G. Birgin and J. M. Martínez, “Large-Scale Active-Set
Box-Constrained Optimization Method with Spectral
Projected Gradients,” Computational Optimization and
Applications, Vol. 23, No. 1, 2002, pp. 101-125.
doi:10.1023/A:1019928808826

[21] S. R. Hejazi, A. Memariani, G. Jahanshahloo and M. M.
Sepehri, “Linear Bilevel Programming Solution by Ge-
netic Algorithm,” Computers & Operations Research,
Vol. 29, No. 13, 2002, pp. 1913-1925.
doi:10.1016/S0305-0548(01)00066-1

[22] GAMS, http://www.gams.com/

[23] V. Visweswaran, C. A. Floudas, M. G. Ierapetritou and E.
N. Pistikopoulos, “State of the Art in Global Optimization:
Computational Methods and Applications,” Kluwer Aca-
demic Publishers, Dordrecht, 1996.

[24] B. Colson, P. Marcotte and G. Savard, “A Trust-Region

Method for Nonlinear Bilevel Programming: Algorithm
and Computational Experience,” Computational Optimi-
zation and Applications, Vol. 30, No. 3, 2005, pp. 211-
227. doi:10.1007/s10589-005-4612-4

[25] CPLEX.
http://www-01.ibm.com/software/integration/optimizatio
n/cplex-optimizer/

[26] P. Spellucci, “An SQP Method for General Nonlinear
Programs Using Only Equality Constrained Subprob-
lems,” Mathematical Programming, Vol. 82, No. 3, 1998,
pp. 413-448. doi:10.1007/BF01580078

[27] E. Karas, E. Pilotta and A. Ribeiro, “Numerical Com-
parison of Merit Function with Filter Criterion in Inexact
Restoration Algorithms Using Hard-Spheres Problems,”
Computational Optimization and Applications, Vol. 44,
No. 3, 2009, pp. 427-441.
doi:10.1007/s10589-007-9162-5

[28] C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R.
Esposito, Z. Gumus, S. T. Harding, J. L. Klepeis, C. A.
Meyer and C. A. Schweiger, “Handbook of Test Prob-
lems for Local and Global Optimization,” Kluwer Aca-
demic Publishers, Dordrecht, 1999.
doi:10.1007/BF01585928

[29] J. E. Falk and J. Liu, “On Bilevel Programming, Part I:
General Nonlinear Cases,” Mathematical Programming,
Vol. 70, No. 1, 1995, pp. 47-72.

[30] Z. H. Gumus and C. A. Floudas, “Global Optimization of
Nonlinear Bilevel Programming Problems,” Journal of
Global Optimization, Vol. 20, No. 1, 2001, pp. 1-31.
doi:10.1023/A:1011268113791

[31] K. Shimizu, Y. Ishizuka and J. F. Bard, “Nondifferenti-
able and Two-Level Mathematical Programming,” Klu-
wer Academic Publishers, 1997.
doi:10.1007/978-1-4615-6305-1

http://dx.doi.org/10.1007/s10957-005-6537-6
http://dx.doi.org/10.1007/BF01588950
http://dx.doi.org/10.1023/A:1019928808826
http://dx.doi.org/10.1016/S0305-0548(01)00066-1
http://dx.doi.org/10.1007/s10589-005-4612-4
http://dx.doi.org/10.1007/BF01580078
http://dx.doi.org/10.1007/s10589-007-9162-5
http://dx.doi.org/10.1007/BF01585928
http://dx.doi.org/10.1023/A:1011268113791
http://dx.doi.org/10.1007/978-1-4615-6305-1

