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ABSTRACT 

In this paper, the authors study the blow-up of solution for a class of nonlinear Schrodinger equation for some initial 
boundary problem. On the other hand, the authors give out some analyses and that new conclusion by Eigen-function 
method. In last section, the authors check the nonlinear parameter for light rule power by using of parameter method to 
get ground state and excite state correspond case, and discuss the global attractor of some fraction order case, and com- 
bine numerical test. To illustrate this physics meaning in dimension d = 1, 2 case. So, by numerable solution to give out 
these wave expression. 
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1. Introduction 

The quantum mechanics theory and application in more 
field in nature science. The non-linear Schrodinger equa- 
tion is the basic equation in nonlinear science and widely 
applied in natural science such as the physics, chemistry, 
biology, communication and nonlinear optics etc. (See 
[1-9]) We study this equation to extend them are with 
important meaning (See[10-12]). 

As we all know, the nonlinear Schrodinger equation be 
description quantum state of microcosmic grain by wave, 
it is variable for dependent time, and that is most essen- 
tial equation, which position and action similarly Newton 
equation in position and action classics mechanics, it is 
apply to field as optics, plasma physics, laser gather, co- 
hesions etc, particular on that action of power and trap, 
search analytical solution for Schrodinger equation is also 
difficult, and more so difficult for complicated power. 

Now, we may extend some results in [4] by using Ei- 
gen-function method in through paper. 

As we all know the solution of initial problem for 
Schrodinger equation bellow  
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Assume that real part and imaginary part of  
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are real analytical function for ,nx R  then this solu-
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2. Several Theorems 

In this section, we consider the blow-up of solutions to 
the mixed problems for higher-order nonlinear Schrod- 
inger equation with as bellow. 

It is well known the higher order equation: 
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that with new results for higher-order case. Now, we 
consider the blow-up of solutions to the mixed problems 
for six-order general Schrodinger equation to extend 
some results [4] that as bellow form: 
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Assume that 
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f f c x H          x*Corresponding author. 
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not identical zero. 
Where f  holds complex value function with self- 

x. variable for comple  x  is also complex value  

Theorem 2.1. Suppose that nonlinear term 
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By the first Green’s formula, we have  
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Substituting it into (2.3), then 
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So, we complete the proof of this Theorem 2.1. 
(As positive integer 1,k  we get i  3.1 in 

[4

r equ

t is theorem
]) 

onsideRemark. Then we c r that important case is al-
ways for the Schrodinge ation may as bellow form  
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Now, we shall consider also in this similar case: 
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Therefore, we shall obtain the following theorem.  
Theorem 2.2. Suppose that non-linear term f  of 
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blem (2.5) satisfy  
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3. Main Results 
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   

  

2

4 3
1 2

4 3
1 2

Re , ,

Im d

x xa t f u D u D u

g u

u x



    

    


  

  

   



From A 0,

      
  

2 4 3
1 2

4 3
1 2

Re , ,

Im Re

x x

 0.

A f u D u D u g u

u CF u

    

    

   

   
 



Therefore, we have 

      
   

2 4 3
1 2

4 3
1 2

, ,

Im Re

xRe xf u D D u g u

u CF u

    

    

  

    

u
 (3.8) 

Combing (3.7)-(3.8), and Jensen’s inequality, we ob- 
tain 

        Rea t F u   Re dF u x F a t


   (3.9) 

Here,    d d .F a t a t  So,    
d ,

a t
t a F a


    

there exist    ,dT a F a



   , such that 

 lim .
t T

a t


               (3.10) 

From   Re d ,a t u x


   and Holder inequality, we 

get  1 1 ,q   1p

     Re d Re ,a uq pL L
t u x 

 
   

that is       

1

Re .q pL L
a t u



 
  

Therefore,  

      

1

lim lim Re .q pL Lt T t T
a t u



  
  

Hence,  

 lim Re , 1 .pLt T
u p


       

(II) step, whe 0, 0,A    taking that  n 

  1, ,u x t u x t    ,
then 1Re Re .u u   

, letTherefore    1Re d ,u x


 a t  we have 

0,       1 1 1, ,a t a t a t a t          

Combine (4.1)-  0, 1C   , (4.8) and we obtain 
that  

A

  1 1Re da t F u x


            (3.11) 

That is also    1 1Re da t F u x


   . From Jensen 

inequality and  F s  is even function, we have  

   1 1 1d d ,F a F a a t    

then 

 1 1dt         (3.12) da F a          

From (3.12) and similar (I)-step, we can get  
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 

       
lim Re lim Re ,

1 .

p

p p

L

L Lt T t T
u t u t

p



  
   

   

 

Combine (I)-(II) we comp
3.

1lim Re , 1 .
t T

u p


     

lete the proof of theorem 
1. 
Clearly, 0,1 2   that is theorem 2.1 in [5]. 
Theorem 3.2.  that problem (3.1)-(3.3) satisfy: Assume

   

   

 

3 2
1 2

3 2

1 ReG g u       

1 2

0 0,

1 Im ;

G
I G

n

u 




 



    

 
      

 
  

 

2 3 2
1 2Im , ,x x

3 2
1 2

Im

Re
,

Im

f u D u D u g u
II B

      


F u

u

F u

     


 

and  

0 ,1 0, Im d 0B u 


     x

where  F s  is continuous, convex and even function;  

       0, and d .III F s s s F s





     

 the classical solution for this problem (3.1)-(3.3) 
 in finite time. 

Proof. From 

Then
is blow-up

1 0,B    we discuss two case: 

     21 0, 0, , i , ,I B u x t u x t     

then 2Im Re .u u  
ing the imagTak inary part for both sides of (3.1), 

similar the method of proof for Theorem 3.1, we can 
easy have 

 2lim R , 1 .
t T

       e pL
u p



So, we get that  

   
lim Im , 1 .pLt T

u t p

       

(II) 1 0, 0,B     we may let    , , ,u x t u x t   
then 

3

So, 
3Im Im .u u  

   3lim Im , 1 .pLt T
u t p


        

ary part for both sides of (1), by (II) 
and similar the method of proof for theorem 3.1, we can 
easy have 

Taking the imagin

  , 1pL 
   

We

3lim Re .
t T

u p


   

 get that  

   
lim Im , 1 .  pL

u t p

     

 3.3. Clearly 

t T

Combine (I)-(II), we complete the proof of theorem 
3.2.  

Corollary 1 2 0,    
g it for some

that is theorem 
2.2 in [5]. By ([13] )lookin  applications. 

4. Some Higher-Order Case 

In the same way, we can consider the higher-order case 
(integer 0k  ): 

 4 4 1

   
,   2 , 0g u g u t

1 2

4 1

i

,

k k
t

k

k

u u u u

x

 



     

2 4
1, ,x xf u D u D u g u  

     

       (4.1) 



   0,0 ,u x u x x                   (4.2) 

0, , 0.u x t                     (4.3) 

Clearly, 1,k  that is problem of eight order case. 
Theorem 4.1. ssume that problem (4.1)A -(4.3) satisfy 

       
      Im ;u

4 4 1
2 1 2

4 4

0 0, ,

and Re

k k
k

k k

G
I G P

n

G P g u P

  




        



  
 



 
         

 

2Im , Re4 4
,

Im

x x k k,

II B

f u D u P g u P u  D u



 

and 

F u

01 0, Im d 0,B u 


x     

 F s  is continuous, convex and even function;  where 

     0,III F s s    and  d .s F s



   

Then the classical solution for this problem (4.1)-(4.3) 
w-up in finite time.(omit this similar proof ) 

Remark 4.2. Assume that (here )  
is blo

4 3k 

   4 4 1 4 2 4k k k k
kP                3

then we will obtain similar results of theorem 3.2 with 
more case. 

s in an 
al

4 1 2 3 4 ,

Remark 4.3. (See [6,14]) According to the direction 
of [6], we may consider that coupled nonlinear Schrod- 
inger equation as in the following iterative formula

gorithmic form by VIM: 

   

 2 2

0
i i d ,

t xx

t

n n n n nA A A B A

1 , ,n nA x t A x t

       
 

 
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   

 
1

2 2

0
i i d .

t xx

n n

t

n n n n nB B A B B

, ,x t B x tB

 



      
 

The solution procedure with initial approximations 
(omit the details ): 



      
      

0

0 0

,0 1 cos ,

,0 1 cos .

A A x f x a x

B B x g x b x

 

 

   

   
 

The other components can be obtained directly:  

   1 1, , , , , etc.A x t B x t   

Furthermore, the conserved quantities: 

   2 2

2
, d

s

s
E A A x t x


   

and 

   2 2

2
, d

s
E B B x t x


  , 

s

where 2π .s  This numerical results is with higher 
accuracy. 

5. The Global Attractor of the Fractional 
NSE 

ntly, they also showed that dynamic behavior of 
large time action to investigate for [15,16], they are deep- 
going study global attractor and dimen on estimate of 

rder non
or sea

linear Schrodinger equation in [17]. The au- 
 of 

[17] 
an sed on [16-18], and combine [19] obtained the 

Rece

si
integer o -linear Schrodinger equation in [16]. 

The auth rch the Cauchy problem for fractional 
order non-
thor search the global attractor problem for a class
fractional order non-linear Schrodinger equation in 

d we ba
condition of existence of solution for following fractional 
order non-linear Schrodinger equation:  

   i i
p

tu u F u u u
      


 

   
   

ma,  express 
the field of electricity [20], where  

is with standard perpendicular base, i is im
the function 

0

, , 0,

,0 , ,

, , , , 0.i

f x x t

u x u x x

u x Le t u x t x t

  

  


   

      (5.1) 

Physics background of (1) is arise the main part of 
nonlinear interaction for laser and plas u

   0, , 0, ,0,1,0, ,0 , 1, 2, ,
n

il e i n       

aginary unit, 
 F   is with one order derivative 

 2 , 0,n p 0,     where 0  with some con- 
sume effect, and as 0   express the integral system 
with soliton solution. 

As 3, , 1c       for (3.1), and (4. ) thirdly 

section case, we will obtain global attracto

1

r of initial 
value problem (5.1) that first give out Lemma as llows. 

Lemma 5.1. Let 
fo

         2 2
0 , , ,u x L f x L u x t     

 (5.1), an

 

is the solution of problem d 

     2 2 22

0, e .tu x t u f x        (5.2) x

Proof. Multiply u  for the both sides of (**) act as 
inner product, we have 

    
    

  ,

i ,tu u ,

, i ,
p

u u

F u u u u u 

 

            (**) 

and take real part, 

f x u



 2 212 d du t u

    

    22 11

Im ,

2 2 ,

 

f x u f x u

u f x  

 

 

        (5.3) 

From (5.3) and by use of Gronwall inequality, we ob-
tain 

     2
,u x t  

2 22

0 e ( ) .tu x f x    

Lemma 5.2. Let 

           ,u x t  2
0 , ,pu x H L f x H    

   2

2
, pL

u u


 
  is the solution of problem (1), then 

w
oof. To establish inner product for both sides of eq- 

uation (5.1) with for 

ith uniform bounded. 
Pr

tu , and take real part, we have that 

     

  

2212 u
   

 
d Im ,

Re , ,

p

t t
t

t

F u u u x u u

f x u

 



 



  

easy get that by (5.1), 

   

 
  

22

Re , ,t

Im ,

d

t

p

u u u

F u u u x





 

   

f x u







where 



         
  

,

Re , ,

p
Re , Imtf x u  f x u F u u

f x u

 



 


 

by use of Jensen’s inequality, we have 
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    

    
      

     

        
    

   
  

12

1

221
1

22

1

2 2

2 21 1

,

21 2 1

11 2

1

2 d

d

,

.2

d

2 d 2 d

2

2

P

P

p p

t
t

p p

p

P

t tLL L t

t t

p

t

P

L

t

u F u u u u u x

u F u u u u u x

f x u F u u

f x u

f x F u u u

u x

F u u x u x

F u

u







 



 



 

 















 
 



 

 






        

  

 

  

 

 









 

Im

Im ,
p p

F u u u F u u    

      1

2 2 2 12, 2 .P

P

t t Lt
u u F u   




   

 

So,  

   

   

221

221

2 d

2 2 d

p

t
t

p

u F u u u x

u F u u u x







 









        
    
 





 

C





by use of Gronwall inequality, we obtain 

   2
, d

p

tu F u u u



   x

uniform boundary. 
Lemma 5.3. Let  

,

is the solution of problem (5.1), then

         2 2
0 , ,u x H f x L u x t     

   u
  with 

uniform bounded. 
Proof. To derivative both sides of Equation (5.1) for 
and take inner product fort   tu , and taking also imagi-

nary part, we have 

    2 212 Im ,
p

t t
t

u F u u u 0t  
    u

Then  

 
  

   
     

2 21

21

2 t t
t

P

t L

u u













 

By Lemma 5.2 and Young inequality, the (5.4) with 
form 

 2 2 12

,

2

tL

P

t
t

u u

u u F u  

 






 

1 2

Im ,

2

p

tF u u u

F





 





 2 2 2
2t t t

t
u u u 

C    

by use of Gronwall inequality, we obtain 

  22 1
0 ,0 e ,t

tu u x      C

Because hold these inequality bellow 

      
 

   
  

2

0 0 0 0

0

0

1 2

,0

,

,

p

t

H

t

P

t L

u x C u F u u u

C u

u F u u u



  

 







   



  

p
u u F u u u

     
 

Hence  ,tu u
  are uniform boundary. Similar  

method of [19,20], we give out that condition of yield 
global attractor of problem (5.1). 

Theorem 5.4. Assume hat 

       
 

2 2
0 , ,

2 , 0, 0,

u x H f x L

n p



 

   

  
 

then the periodic global attractor of initial value problem 
(4.1-4.3): 

  0
0

,
s t s

A S t B
 

    

here  t  S or semi-group with needing de-
e in prov with the bounded attractor set in 

w for operat
fin e an for 

 using of similar proof 
m

Remark 5.5. Furthermore, we shall study global at-
tractor of fraction order non-linear Schrodinger type 
equation, and the estimate for its dimensions, and that 

6. Some Notes for Shake Power and Light 
Power 

omic transition, is one of the 

d 0B
following in prove processes.  

Proof. We omit the proof (by
ethod in [18,19]). 

blowing-up of solution for some fraction order non-linear 
Schrodinger type equation. 

We consider some meaning of physic and Energy for 
nonlinear Schrodinger equation.The numerical test for 
solution of nonlinear Schrodinger equation with ground 
state and excite state. 

Atoms absorb energy from the ground state transition 
to the excited state, learned through experiments in ex- 
treme case, the ground state solution is not controlled so- 
lution-Blow-up solution. 

Thus, strictly control the number and perturbation for 
impulsive velocity of the at

Copyright © 2012 SciRes.                                                                                  AM 



N. CHEN, J. Q. CHEN 

Copyright © 2012 SciRes.                                                                                  AM 

1928 

ict 
co e atomic transition to the first, second and 

    212 V         main methods to produce new material structure. Str
ntrol of th

  

ingly. 

       (6.3) 

third excited state is more practical significance, espe- 
cially the transition to the first excited state. As we all 
now, the ultra-low temperatures, the atomic gas in the 
magnetic potential well Boer-Einstein condensation ex- 
pe

So, by check parameter method in [23] we check 
nonlinear parameter for light rule power, then we get 
ground state and excite state correspond

riments [21], promotion of scholars study the macro- 
scopic quantum behavior of atoms and kinetic character- 
istics. 

By using of above stating method we consider calcu- 
lat

6.1. One Dimension Case (d = 1) 

( )a  We consider two class powers (shake power and 
light power) in (6.3), Setting shake power  

e to the ground state solution and excite state of d- 
dimension BECS (Bose-Einstein condensate) with mix 
harmonic potential and crystal lattice potential. 

The Gross-Pitaevskii equation: 

  2
12, 250, 2V x x b b    

taking initial wave  

 
21

2
0

2
e

π

b

,
x

x
  
             (6.4)  

     
2

22
0

,
i

, ,
2

r t
h

t

h
V r NU r t r t

m



 

 
  
  

         

  (6.1) 

where , 1,2,3. 0,dr R d t    m  expresses mass of 
at

to calculate ground state .g  For (6.4) we calculate first 
arouse state 1,  space field for  the time 
step for 

10 10,x  
0.2.t    

( )b  Similar above way, taking 

     2 2
12 25sin π 4 , 500, 2,V x x x b b  oms, h  be planck constant, N  be number of atoms 

in cohesion system,  V r  be outer power,  
  

 2
0 4πU h a m  describe interaction between the at- 

oms cohesion ( 0,sa   means repel; 0,sa   shows 
at appropriate im

and (6.3) for 

 
21

2
0

2
: e

π

b

,
x

g x x 
  
   tract each other). Thus, by pass 

e (6.1) may be 
measur- 

able process, then th written: 

       22, 1
i

2

r t
V r r t r t

t


  

       
, ,


 (6.2) 

The parameter 

and 10 10,x    and 0.2.t    
On the other hand, by the MATLAB search the solu-

tion of Equation (6.3) in case (1) and (2) as follow with 

0 1 2 3, , ,     (See Figures 1 and 2).   
tract corres

for positive, or negative, describe 
that repel or at ponding, out power  V r  be 

 by phys stem for us to s
a  c

defined tudy things. By using 
of the im ginary time method to alculate it in [22] that 
let it

ic sy 6.2. Two-Dimension Case (d = 2) 

Consider shake power in [14,24]    substitutin nto (6.2), we have g it i
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Figure 1. Ground state phi0. First excited state phi1. V = x2/2; b = 500, bi = 2.   
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 
0,0 ,0 ,

,
, other.

x a y
V x y

   
 

 
b

The grain energy:  

1 2

2 22 2
1 1

1 22 2

π
, , 1,2,3, ; 5, 2.

2n n

n nh
E n n a

m a b

 
    

 
  b 

We take initial wave function for  

 
1 2

1 2
0 1

π π4
, sin sin ,

n x n y
x y n n

ab a b
                

 2 1.

To calculate ground state g ; For 

 
1 2

1 2
10

π π4
, sin sin

n x n y
x y x

ab a b
         

    
 

 
1 2

1 2
01

π π4
, sin sin

n x n y
x y y

ab a b
 

    
     
     

 ,

and 

 
1 2

1 2
11 ,

π π4
, sin sin

n x n y
x y xy

ab a b
           

     
 

1 2where 2n n  . 

 10 ,x y  By calculating along the direction of axe 
,x  and  10 ,x y

cited of 
 in direction of axe y, and calculating 

first ex  11 ,x y  al
ld for 


, and space fie

ong direction for axe x and 
y 2,  time step:  axe 0 5,0x y   

0.05, 0.02.x yt t     

,




Combine these cases as Fig: (See Figures 3(a) and (b), 
Figures 4-6) 
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Phi0

Phi1
Phi2

Phi3

P
hi

X  
(a) 

Copyright © 2012 SciRes.                                                                                  AM 



N. CHEN, J. Q. CHEN 

Copyright © 2012 SciRes.                                                                                  AM 

1930 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y

P
hi

       

Phi0
Phi1
Phi2
Phi3

 
(b) 

Figure 3. (a) Ground state phi0. First excited state phi1. a = 5, b = 2. (b) Ground state phi0. First excited state phi1. a = 5, b = 
2. 
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Figure 4. Ground state phi0 a = 5, b = 2. 
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Figure 6. First excited state phi2-y a = 5, b = 2. 

 

0
1

2
3

4
5

0
0.5

1

1.5
2

-1.5

-1

-0.5

0

0.5

1

1.5

X

    

Y

P
hi

    
Figure 7. First excited state phi3-xy a = 5, b = 2. 

 
We consider three-dimension case, Figure 4 for ground 

state ( )0 ,x yϕ  corresponding case, the ( )10 ,x yϕ  as 
with express along direction of axe x (wave surface) in 
Figure 5, the ( )01 ,x yϕ  as with express along direction 
of axe y (wave surface) in Figure 6, the ( )11 ,x yϕ  as 
for express along direction of axe x and axe y (wave sur- 
face) in Figure 7. 

7. Concluding Remarks 
Recently, the higher-order Schrodinger differential equa- 
tions is also a very interesting topic, and that application 
of some physics and mechanics of for some more fields 
as nonlinear Schrodinger equations and some compute 
methods etc. In our future work, we may obtain some 
better results. 

The application of some physics and mechanics of for 
some more fields with some combine equations (look [7, 

13]). 
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