Applied Mathematics, 2012, 3, 1862-1867
http://dx.doi.org/10.4236/am.2012.312253 Published Online December 2012 (http://www.SciRP.org/journal/am)

+53 Scientific
#3% Research

Iterative Solution Methods for a Class of State and Control
Constrained Optimal Control Problems

Erkki Laitinen', Alexander Lapin?
'University of Oulu, Oulu, Finland
Kazan Federal University, Kazan, Russia
Email: erkki.laitinen@oulu.fi

Received September 1, 2012; revised October 11, 2012; accepted October 18, 2012

ABSTRACT

Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete prob-
lems arise when approximating by finite difference method or by finite element method the optimal control problems
which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation
or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the
constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of
the methods is executed.
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1. Sample Examples of the State and Control
Constrained Optimal Control Problems

We give two sample examples of the elliptic optimal
control problems. The corresponding existence theory,
methods of the approximation and more examples can be
found, e.g., in [1,2] (see also the bibliography therein).

Consider the homogeneous Dirichlet boundary value
problem for Poisson equation which plays a role of the
state problem in first sample example:

—Ay = f + z,u in Q,y(x) =0o0n oQ. (1)

Above Qc R? is a bounded domain with piecewise
smooth boundary 0Q, x, =y, Iis the characteristic
function of a subdomain Q,cQ, f is a fixed func-
tion, while U is a variable control function. For all
f,uel,(Q) there exists a unique weak solution y of
the boundary value problem (1) from Sobolev space
H, (Q). We impose the point-wise constraints for both
state function y and control function u:

v ={yeHi(@y<y(<yinel.

_ @
U ={uel(Q,):u<u(x)<UinQ,}
with —0<y<y<+00 and —oo<U < U < +oo.
Suppose that (1) and (2) are not contradictory in the
sense that

the set K = {(y,u) evy

_ (©))
xU ;t',f satisfy state Equation (1)} is not empty.
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Let the objective functional be defined by the equality
19 (y.u) =% [ (y= o )} o [ulax
2 3 2 %

with a given function y, €L, (€),Q, Q. The opti-
mal control problem
in 1" (y,u). 4
an ! (-0) @
has a unique solution (y,u) if assumption (3) is ful-
filled.
In the second sample example we take as the state
problem mixed boundary value problem for Poisson
equation

. oy
-Ay=finQ,y(x)=0onT,,—~=uonl,
y y(x) > 2 v s
where 0Q =T, UT', and meas T #0,

and the objective functional of the form

i 1 oy
Idlf - Yy r - 2 1—~.
2 (nu)=3 rob(an qd] RN
Here n is the unit vector of outward normal,

I, el and q4(x)el,(I,,). Let the constraints
for y and u be

YA ={yeH)(Q)y<y(x)<yinQ),
w i :{UG LZ(FN):ggu(x)sﬁonFN}.

Suppose again that the set
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M = {( y,u)eYy xWS' satisfy state Equation (5)}
is not empty. Then the optimal control problem

. Idif
[min I2 (y,u) (6)

has a unique solution (y,u).

2. Finite Element Approximation of the
Optimal Control Problems

We briefly describe the approximation of the problems (4)
and (6) by a finite element method (cf. [3]). Suppose that
the domains Q, Q, and €, are polygons and con-
struct a conforming triangulation of Q into triangle
and/or rectangle finite elements ¢, . Let the triangulation
be consistent with the subdomains €, and €, and the
partition of the boundary into the parts I'y, I'y and
I', in the following sense: every subdomain consists of
the integer number of the elements e, and every part of
the boundary consists of the integer number of the sides
of e . Construct the finite element spaces which consist
of the continuous functions, piecewise linear on the
triangles ( P, -elements) and piecewise bilinear on the
rectangles (Q, -elements), and satisfy Dirichlet boundary
conditions. The integrals over domains and curves we
approximate by the composed quadrature formulaes
using the simplest 3-points quadrature formulaes for the
triangle elements €, and 4-points formulaes for the rec-
tangle elements e, . Note, that such kind of the approxi-
mation of a 2nd order elliptic equation in the case of
rectangular € and rectangular elements € coincides
with a finite difference approximation of this equation.

We apply the described above approximation proce-
dure for the sample optimal control problems and obtain
the mesh optimal control problems which are the finite
dimensional problems for the vectors of nodal values' of
the corresponding mesh functions. Namely, the approxi-
mations of the state problems (1) and (5) are the discrete
state equations of the form

Ly = Mf + Su,

Ny xN . " . . .

where LeR ™ is a positive definite stiffness matrix,

Nnyy . . .
M eR is a diagonal mass matrix, and

Ny, xN . . . .
SeR™™ is a rectangular matrix. The discrete objec-
tive function approximating 1™ or 19" is a quadra-
tical function

J (y,u)=%(Myy,y)+%(Muu,u)—(g,y)

with a symmetric and positive definite matrix
M, € R"™ | symmetric and positive semidefinite ma-

'Hereafter we use the same notations y, u for the vectors and for the
functions in the differential problems. This doesn’t lead to a confuse
because later we consider only finite-dimensional problems.
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trix M, e RN , and given vector Q€ R™ . Finally,
the sets of constraints for the vectors y and u are

Further we denote by 0:RY —>R=RU{+00} and
¢:R™ >R the indicator functions of the sets Y,
and U, , respectively. Resulting mesh optimal control
problem which approximates (4) or (6) can be written in
the following form:

min J(y,u),where J(y,u)

Ly=Mf +Su

7)
1 1 (
:E(Myy, y)+E(Muu,u)—(g, y)+0(y)+4(u).

Below we list the main properties of the matrices and
functions in problem (7) which are used for its theoretical
investigation and proving the convergence of the corre-
sponding iterative methods:

L and M, are positive definite matrices;

M, is apositive semi-definite matrix;

matrix S has full row rank; ®)
6 and ¢ are conex, lower semicontinuous

and properfunctions.

Minimization problem (7) with the matrices and the
functions which satisfy assumptions (8) arise when ap-
proximating by finite difference method or by simplest
finite element methods with quadrature formulaes the
wide class of the optimal control problems which contain
a linear boundary value problem as a state equation, con-
trol in the right-hand side of the equation or in the
boundary conditions, and point-wise constraints for both

state and control functions.
Introduce Lagrange function for problem (7):

L(y,u,A)=J(y,u)+(Ly—f -Su,1).
Its saddle point (y,u,A) satisfies the saddle point
problem
M,y—-L"2+060(y)>9,Mu+S"1+0¢p(u)>0,
Ly —Su = Mf,

where 06(y) and Og(u) are the subdifferentials of
the corresponding functions.
Theorem 1 Let the assumptions (8) be valid and

3(Y,.U, ) € (domd,dome) : Ly = Su + Mf .

)

Then problem (7) has a unique solution (y,u). If
more strict assumption

3(Y,.U, ) € (intdoms,intdome) : Ly = Su + Mf
is fulfilled then saddle point problem (9) has a nonempty
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set of solutions (y,u,4).

3. Transformations of the Primal Saddle
Point Problem and Preconditioned Uzawa
Method

M

Matrix A, :[ Oy M

(y,u) in system (9) is only positive semidefinite. This
prevents the usage of the dual iterative methods (such as
Uzawa method) for solving (9). We transform this saddle
point problem to an equivalent one with a positive defi-
nite matrix by using the last equation in system (9). Con-
sider two equivalent to (9) saddle point problems:

(M, +rM)y-rML'sSu-L"2+86(y)> g

] which multiplies by the vector

u

(10)
+rML'Mf, M u+S"2+0¢p(u)>0,Ly —Su=Mf.
(My+rL)y—rSu—LT/1+69(y)3g+er, a1
M u+S"2+0¢(u)>0.Ly—Su=Mf.

_ -1
Lemma 1 Matrices [MVHM rI;\/IAL SJ and

M, +rL —rS
0

0<r<r,i=1,2, where constants r, don’t depend on
the dimension of the finite element space (or, on the mesh
step).

Now, we can apply the preconditioned Uzawa meth-
ods for solving problem (10) and problem (11):

(My +rM)yk*1 +a¢9(yk”)a g + rML'Mf

) are positive definite for

u

+rML'Su* + LT A%,
Muuk+]+a(o(uk+])3_81—/1k’ (12)
lk+1 _lk

AL

T

LM'L" Ly —Su*! = Mf.

(My + rL)yk+l +86’(yk”)—rSu" >g+rf+ L7125,
MU +ap(u!) > =87 2%, (13)

)ﬂ,kﬂ—ﬂk .

(L"+sm,'sT
T

Lyk+l _Suk+l — .I:

The choice of the preconditioners is based on the prop-
erties of the matrices in problems (10) and (11) (see the
corresponding theory in [4]).

Lemma 2 The iterative methods (12) and (13)
converge if 7e(0,7,),i=1,2, where 7, don’t depend
on mesh step.

The implementation of every step of (12) includes so-
lution of two systems of linear equations with matrices

L and L and solution of two inclusions with mul-
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tivalued operators M, +rM +06 and M, +0¢ . The
matrices in the discrete model problems are diagonal
while the functions are separable:

=z

y u

0(y)=30. (%) 0(1) =S (1)

i=1 1

Due to these properties M, +rM +06 and M, +0¢
are diagonal operators, and the solution of the inclusions
with these operators reduce to an easy problem of the
orthogonal projection on the corresponding sets Y,, and
U,

The implementation of every step of (13) includes so-
lution of the system of linear equations with matrix
L' +SM_'S" and solution of the inclusion with operator
M, +rL+06, which corresponds to a mesh variational
inequality of second order. This is more time consuming
problem than solution of a linear system, but the nu-
merical tests demonstrates the preference of method (13)
in some particular cases. The methods of solving the
variational inequalities can be found in the books [5-7].

4. Block SOR-Method for the Problem with
Penalization of the State Equation

Let D be a symmetric and positive matrix while & >0
be a regularization parameter. Consider the following
regularization of problem (7):

1 1
mlun(E(Myyg’ yg)+E(Muu£’u£)_(g’y)
. (14)

2
p! |

1
0 —|Ly,—f =S
+0(y.)+ (1) +5 Ly, - 1 =S,

Theorem 2 Let the assumptions (8) be valid. Then
problem (14) has a unique solution (y,,u, ). If
(y,u,4) is a solution of saddle point problem (9), then
the following estimate holds:

u, — u||2 < Cg||/1||é (15)

2
y. -y +
with a constant ¢ independenton ¢ and on mesh size.

Problem (14) is equivalent to the following system of the
inclusions:

(My +1 LTDley—l L'D'Su
& &
+06(y)> 9 1 L'D™'f,
&

(16)
(Mu +lSTDISju —lSTD’lLy
£ £
1
+0p(u)>—D'f
£
with a positive definite and symmetric matrix. Different

iterative methods can be used for solving problem (14) or
equivalent problem (16) (see, e.g., [5,6] and the bibliog-
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raphy therein). We solve system (16) by block SOR-

method:
1
o

l(Mu +lsTDlsjuk*1 +0p(u)> RS,
o &

(My +1LTD-‘L) y*+00(y)> B,
‘ (17)

where o € (0, 2) is a relaxation parameter and
F“=F (uk’ YK )’ F = F, (uk’ ye )

Theorem 3 ([8]) Method (17) converges for any
oe(0,2).

The implementation of (17) depends on the choice of
the matrix D . Below we consider two variants of the
choice.

a) Let D=LM'L". In this case the implementation
of every iterative step of (17) consists of the solving the
following system

1
Myy+;My+89(y)aG1,
X (18)
— T —
Muu+;(L'S) M (L'S)u+0p(u)>G,
with known G, =oF*. For the model problems under

. . 1
consideration the operator M, +—M +06 of the first
£

inclusion has diagonal form, so, its solution reduces the
projection on the set Y, . Further, the matrix in the sec-
ond inclusion is spectrally equivalent to matrix M, :

M, <M, +—(L's) M (L-ls)g(ucﬂjlwu.
& &£

Here cg, is a constant in the stability estimate for a
solution of the state equation and it is independent on
mesh step. The stationary one-step iterative method with
preconditioner M, converges with the rate of conver-
gence proportional to ¢ (and doesn’t depend on mesh
step), and its implementation reduces to the projection on
the set U, .

In the particular case when S is the unit matrix
(which corresponds to the distributed in the domain con-
trol) the second inclusion in (18) can be transformed to a
system of nonlinear equations and an inclusion with di-
agonal operator. Namely, let u=(M, +6(p)fl (w). Then
the auxiliary vector w is a solution of the system of
nonlinear algebraic equations

: 1 - ;
LM L'w+—(M, +2) (w)=LM,'L’G,

with the symmetric and positive definite matrix
LM_'L" and monotone, diagonal and Lipshitz-con-

. 1 _
tinuous operator —(M, +0¢) .
&
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b) In the case of a symmetric matrix L and the unit
matrix S the promising choice is D=L . Then on
every iterative step of (17) we solve the system

1
(My +Z Ljy+8¢9(y)aGl,

Lw+ (M, +0p)" (W)=LG,,
&
-1
u=(M,+0p) (w).
First inclusion of this system corresponds to a mesh
approximation of a second order variational inequality,

while the equation for vector W contains the symmetric
and positive matrix L and monotone, diagonal and

. . 1 -
Lipshitz-continuous operator —(M, +0¢) L
&

5. Numerical Example

We solved the optimal control problem with the follow-
ing state problem and constraints:

Ay = f+u,xeQ,y(x)=0,xe0Q,
Y ={y(X)=0,xeQ},
U, ={|U(X)|S3,XGQ},

and the objective functional

J(y,u) =%jﬂly2 (x)dx+%jﬂu2 (x)dx,

where Q=(0,1)x(0,1) and ©Q, =(0,0.7)x(0,1).

Finite difference approximation of this optimal control
problem on the uniform grid leads to a minimization
problem of the form (7) and the following saddle point
problem (particular case of (9)):

M,y +36(y)+L1>0,
u+0p(u)-A>0,Ly—-u=f.

Here symmetric and positive definite matrix L cor-
responds to the mesh Laplacian with Dirichlet boundary
conditions, M, is a diagonal and positive semidefinite
matrix (its positive entries correspond to the grid points
in the subdomain Q).

To apply Uzawa method we used the equivalent trans-
formation similar to (11) with parameter r =1 (satisfy-
ing the assumptions of theorem 1):

(My+L)y+69(y)—u+L/13 f,
U+0p(u)-430,Ly—-u=f.

This system was solved by Uzawa method with pre-
conditioner L which is now spectrally equivalent to
L' +SM,'s".

We also solved the mesh optimal control problem by

AM



1866 E. LAITINEN, A. LAPIN

applying SOR-method to the problem with penalized
state equation and the choice D =L . Corresponding
system for y, U and auxiliary vector W reads as:

(eMy+L)y+89(y)—ua—f,
elw+u—-L'y=L"f,u+op(u)>w.

We used block SOR-method with relaxation parameter

o =1.97 (found numerically to be close to optimal one).

We also used the iterative regularization as follows: cal-
culate the residual vector r* on the current iteration k

and set £~ 10"'e when "rk becomes less than 1.

L

Here the norm ||||L2 is the mesh analogue of the Lesbe-

gue space norm L,(Q). The smallest value &=10"
was reached started from £=1.

In the tables below (Tables 1 and 2) k is the number
of an iteration, F is the value of the objective function
on the current iteration, Sy* = " y—y* " and

L
Suk = "u —uX Lo the calculation results fzor the 100x100
2

are presented. We constructed the exact solution (y,u)
of the discrete optimal control problem, so, we knew the
exact minimum of the cost function F*=14.5293.

We can conclude that block SOR method had a big
advantage in comparison with preconditioned Uzawa
method in the accuracy of the calculated state y and con-
trol U.

A number of calculations were made for the different
state and control constrained optimal control problems on
the different meshes. All of them demonstrated the pref-

Table 1. Uzawa method.

k F % Su*
1 8.9435 0.29742 2.967
2 9.6234 0.13092 3.0983
3 9.619 0.13231 3.095
4 9.6496 0.12467 3.0927
5 9.6509 0.12416 3.0845
6 9.6527 0.12349 3.0761
7 9.6535 0.12308 3.0675
8 9.6543 0.12271 3.0589
9 9.6551 0.12237 3.0503
10 9.656 0.12203 3.0417
1000 12.6414 0.026754 1.1804
10000 13.9096 0.0031814 0.73538
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Table 2. Block SOR method.

k F oy* ouk
1 41.9339 4.5763 0.077971
2 3.9872 4.439 5.8003
3 36.4713 3.8831 0.51251
4 4.227 3.7676 5.7309
5 31.6414 3.2552 1.0026
6 4.79 3.1618 5.6581
7 27.5472 2.6887 1.3318
8 5.6163 2.6164 5.5933
9 24.0385 2.1819 1.6349
10 6.5528 2.1301 5.5033
1000 14.4687 6.9224e—005 0.15564
3695 14.525 2.3759e—006 0.0098418

erence of the iterative methods based on the penalty of
the state equation in the comparison with the precondi-
tioned Uzawa methods, while that were faster convergent
than the gradient methods applied for the problems with
the penalization of the state constraints (see [9,10]).
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