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ABSTRACT

In this paper, we consider a Brownian motion risk model with stochastic return on investments. Using the strong
Markov property and exploiting the limitation idea, we derive the Laplace-Stieltjes Transform (LST) of the total duration
of negative surplus. In addition, two examples are also present.
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1. Introduction

Assume that the insurance business is described by the
risk process

U(t)=u+ct+oB(t), t=0. (1.1)

Here, u is the initial capital; c is the fixed rate of
premium income; {B, (x),t> 0} is a standard Brownian
motion; and o >0 1is a constant, representing the
diffusion volatility.

Suppose that the insurer is allowed to invest in an asset
or investment portfolio. Following Paulsen and Gjessing
[1], we model the stochastic return as a Brownian motion
with positive drift. Specifically, the return on the invest-
ment generating process is

R(t)=rt+6B,(t), t20, (1.2)

where r and 6 are positive constants. In (1.2), r is a
fixed interest rate; {82 (t),t >0} is another standard
Brownian motion independent of {B1 (x),t> O}, stand-
ing for the uncertainty associated with the return on
investments at time t.

Let the risk process {X (t),t>0} denote the surplus
of the insurer at time t under this investments assump-
tion. Thus, X (t) associated with (1.1) and (1.2) is then
the solution of the following linear stochastic integral
equation:

X (£)=U (t)+ [ X (s)dR(s). (13)
By Paulsen [2] the solution of (1.3) is given by

X(0)=R (Ou+[(R () aU(s)). (14

where
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R*(t)= e[

Note that {X (t),t> O} is a homogeneous strong
Markov process, see e.g. Paulsen and Gjessing [1].
The risk process (1.4) can be rewritten as

X (t)=u-+[5X (s)dB, (s)
+J’;adB1 (s)+J';(rX (s)+c)ds.
Because the quadratic variational processes of

[6X (s)dB, (s)+ [cdB, (s)

[(Jo> X2 (s)+o>dB(s)

are the same, where {B(t),t > 0} is a standard Brow-
nian motion, by Tkeda and Watanabe [3, p. 185] they have
the same distribution. Thus, in distribution, we have

X (t)=u+[ 8> X*(s)+ o dB(s)

+.[;(rx (s)+c)ds.

and

(1.5)

There are many papers concerning occupation times
for different risk models. For example, for the classical
surplus process with positive safety loading, Egdio dos
Reis [4] derived the moment generating function of the
total duration of the negative surplus by martingale me-
thods, which was extended in Zhang and Wu [5] to the
classical surplus process perturbed by diffusion. Chiu
and Yin [6] derived explicit formula for the double
Laplace-Stieltjes Transform (LST) of the occupation time
in the exponential case for the compound Poisson model
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with a constant interest. He et al. [7] gived the LST of
the total duration of negative surplus for the classical risk
model with debit interest. More recently, Wang and He
[8] considered the Brownian motion risk model with
interest and derived the LST of total duration of negative
surplus. In this paper, we consider a Brownian motion
risk model with stochastic return on investments. We will
use the limitation idea to obtain the LST of total duration
of negative surplus.

The remainder of the paper is organized as follows. In
Section 2, we give some preliminary results. In Section 3,
by exploiting the limitation idea together with the results
obtained in Section 2, we obtain the LST of the total
duration of negative surplus. In the last section, we pre-
sent two examples.

2. Preliminary Results

Given ue(-b,a), where ey , define
r

T, :inf{t >0,X(t)= a} and if the set is empty
Ta =0,
T, =inf {t >0,X(t)= O} and if the set is empty
Ty =,
T, =inf{t>0,X(t)= —b} and if the set is empty
T,=00,
2(u,=b)=P(T, <o X(0)=u)=PR, (T, <x»).
Lemma 2.1 The risk process (1.5) has the strong

Markov property: for any finite stopping time T the re-
gular conditional expectation of X (T +t) given F, is

E[ X (T+t)|X(T)], thatis
E[X(T+t)|F |=E[X(T+t)X(T)], t>0, as.

where F; is the information about the process up to
time T, and the equality holds almost surely.

Lemma 2.2 For A >r, the following ordinary diffe-
rential equation

o’ +6°x°
2

has two independent solutions

f(x)+(c+rx) f'(x)=2f(x) (2.1)

. (x)=[" (x=t)"" K(t)dt (2.2)
and
o (x)=["(t=x)"" K(t)dt, 2.3)
where
K(t)= (02 + 522 )-[1+§] exp {—;—Carctan (ﬁj},
o o
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Proof. From Example 2.2 of Paulsen and Gjessing [1],
we get the result.

Lemma23For A>r>0, —E<u<a and
r

J =[—%,a}, r(J)=T, AT ., define

r

where @, and ¢ are given by (2.2) and (2.3).

Proof. The result can be found in Chapter 16 of
Breiman [9].

Lemma 2.4 For any ue(-b,a), then

o1, 1) SW-S(@)

S(-b)-s(a)’

2.4)

e
where S(x)= J.Oe ‘o%+o’ "4z is a solution of the equ-
ation
ol +5°%°
2
Proof. By Dynkin’s formula,
E,[S(X(EAT,AT)) ][ LS (X (5)))ds

=S(u),
where L is the generator of diffusion (1.5). It follows
that

f"(x)+(c+rx) f'(x)=0.

Ls(x(s)):w

+(c+rX(s))S'(X(s))=0.

s"(X(s))
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Therefore
E,[S(X(tAT, AT,))]=S(u).

Since T, AT, is finite, it takes values T, with pro-
bability P, (T, <T,) and T, with the complimentary
probability. Letting t — oo, we can assert, by dominated
convergence, that

E[S(X(T,AT,))]
=E,[S(X(0))]=5(u).

Expanding the expectation on the left, we have
B[ S@) 1y [FE[S 01
=S(u).

This, together with P {T, <T,}+P{T, <T,}=1,
gives the result (2.4).

Lemma 2.5 For u>0, the ruin probability for the
risk model (1.5) is given by

["n(z)dz

¥(u)=P, (T0<oo):m.

2.5)

The probability that the surplus process {X (t),t> 0}
hit the level —b is given by

_[wh(z)dz
x(u,-b)=P, (T, <o0)==t—"—-\ (2.6
“h(z)dz
where
_z 2rs+2¢
0625+02

h(z)=e

Proof. By Lemma 2.4, one can derive (2.5) and (2.6).

3. Total Duration of Negative Surplus

In this section, we will derive the main result of this
paper. We assume that the risk process (1.5) does not

. .. —C .
attain the critical level — . For convenience, we assume
r

that the initial surplus U is positive.
Let the total duration of negative surplus be

{_—rc<x (t)<0}

C . .
For 0<e&<—, define two sequences of stopping
r

times of the process (1.5):

= jo”l dt.
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y, =inf {t >0,X(t)= —g} (7, = o if the set is empty),
o :inf{t>y1,x(t):0,_—c< X (s)<0.7, <s<t}
r
(o0, = if the set is empty),

in general, for k =2,3,---, recursively define
Ve =inf{t>o,_ X (t)==¢} (y, = if the set is

empty),
o, :inf{t>7/k,x(t):0,_TC< X (s)< 0.7, <s<t}

(o, = if the set is empty).

Let A, =0, -7,.Kk=123,---. Given o, <o for
some k>1, from the strong Markov property of the
surplus process, we obtain that the periods
A;,i=1,2,3,---,k are mutually independent and have a
common distribution. Let N denote the number of A;.

Set T"=3"A, .

theorem, we have

limE, (¢ ) =E, (). 3.1

£0,

By the monotone convergence

First we give the expression for E, (e_ﬂ*) in the

following Theorem 3.1.
Theorem 3.1 For u>0 and A>r >0, the LST of
T" isgiven by

E, (e’ﬂ* ) =1-y(u,—¢)

1(u,—g)(1—1(0,—5))®+[0,—?,1,—8) (3.2)

+ :
1- 7(0,-£)®, (0,—‘;,/1,—4

where ©, (0,—2,/1,—6‘} and y(u,—¢) are given by
r

Lemmas 2.3 and 2.5.
Proof. From Lemma 2.1, we can get

E“ (e_Mk ) - E‘g (e_ﬂo I{T°<T,c/r }J

-0, [o,—f,x,—gj
r

e (e)ee (e

:®+(o,—3,/1,—5)
r

From strong Markov property of the surplus process,
we get

(3.3)

and

(3.4)
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" —/1zk:A, E“ (e—/ll'l)
£ (e ) =R (N=0)+3E e T 1, — imE, ()
k=1 >0
= lim(1-7(u,~2))
=1-y(u,—¢) ” c
ij x(u=¢)(1-2(0,-¢))0, (o,-r,/z,—g
“AQ N +lim
= i= 0 C (36)
+EEU € 1 I{al<oc‘c72—al<oo,~-‘ak—o-k,1<oo‘)((o-k+t)>—£‘120} 1—/'{(0,—8)®+ (Oa_rala_gj
=1-¥(u)
=1- _
7(v.-¢) (1- 7(0,-£))®. (0,—0,/1,—5j
+(1-2(0.-¢)) +% (u)lim cr
@ k-1 01— x(0,- @(0—1—}
S (v, () 2(0-8)Ey ()] 7(0.7)0, 0.7 A~
K o From Lemma 2.5, it follows that
1 ) 1o gl LT (1-2(0.-2)0. (04 2~¢)
I_Z(O’_g)E(J(e—lA]) i + > rﬂ s
This, together with (3.3) and (3.4), gives (3.2). 04 (0,-5)0, (O,_C, ,1,_5j
Theorem 3.2 For u>0 and A>r >0, the LST of r
total duration of negative surplus is given by I:h(z)dz .
R A e
v [ h(z)dz
¥(u)® (o €2 oj ~ lim _;h 1 37
+ s s/ 35 e Z)az
. r , (3-) 1—J<; (2) ®+( :,z,—gj
1+0) ( ,A,ojj:h [h(z)dz
®+(o,—c,/1,—g) ’h(z)dz
where O, (0,—5,/1,—5j, ¥(u) and h(z) are given =lim r
r ' ["h(z)dz-© (0 ,;L,—gjj”h(z)dz
by Lemmas 2.3 and 2.5. r 0
Proof. It follows from (3.1) and (3.2) that By L' Hospital’s rule, we get
o, (O,—C,/l,—gjjogh(z)dz ey (o £ gjj h(z)dz+© (o ,A,—g)h(—g)
lim =1_im
[ h(z)dz- @( =2, gj_[h o h(-¢ )+®'( =2, gjj'hz
®+(o,—c,z,oj
_ r
/ c ©
1+®+(0,—r,/1,0)j0h(z)dz
This, together with (3.6) and (3.7), gives (3.5). solutions of the differential equation
2
4. Examples %f"(x)+(rx+c)f’(x):/1f(x)
In this section we consider two examples. are
Example 4.1. Letting 6 =0 in (1.5), we get the risk 0. (x)
model +
X(t)= u+j (c+rX( d5+jadB . @D =(C+rX)eXp{_(C+§X)2}M[1+i,§,(c+r§)zJ(4'2)
From Cai et al. [10], we know that the two independent fo 22 ro
Copyright © 2012 SciRes. AM
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and

- —(c+rx)2 1 211 (c+rx)2
@(X)—CXP{T U E+E,E,T ,(43)

where M and U are called the confluent hypergeometric
functions of the first and second kind respectively. More
detail on confluent hypergeometric functions can be
found in Abramowitz and Stegun [11].

By Lemmas 2.3 and 2.5, we get

—C ~A(ToAT g ) }
0,.10—,4,—-¢|=E |
* ( ’ r o gj - I:e {TO <T—C/r}

o (_g) 4.4)

T (0)”

o) juwh(z)dz
r(v )_'[ih(z)dz’ #

h
¥ (u) = (4.6)
h
where

h(z)= e
According to Theorems 3.1 and 3.2, we get
Eu( - )—1 z(u,—¢)

L Zu )1

2(0.-¢))p, (-e) 47D
,(0)-x ’

(0»—«9)% (-¢)
0
+(p+ I h
where ¢, , y(u,—¢) and ‘I’(u) are given by (4.2),
(4.5) and (4.6).
Remark 4.1 The results (4.7) and (4.8) coincide with
the main results in Wang and He [7].

Example 4.2. Letting §=0 and r=0 in (1.5), we
get the risk model

E,(e7")=1-¥(u

X (t)=u+ct+oB(t). 4.9)

It is easy to obtain that the two independent solutions
of the ordinary differential equation

2

%f"(x)+cf'(x):/lf(x)

0 (x) _ e(—c+\lc2+2021jx

and
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" (X) _ e(—c—«/cz+2021jx.

By Lemmas 2.3 and 2.5, we get
©. (0,~0,4,—2)=E_,[e ™I |
(—cw/c +20° lj(—s)

=¢C .

and

z(u,—g)=e°
According to Theorems 3.1 and 3.2, we have

-2c
—2(u+s)

E, (e*”*):l—eo

izc(ws) —2c€ g[c—\/c2+2021)
[ 1-e e
+ -2c
— ¢ g(c—\/c +20 i)
l1-e? e
and
-2c
2, e?u
Eu(e"m)—l—e‘72 + >
1—(C—\/Cz+2022)2—
C
5. Conclusion

In this paper, we have studied the diffusion model in-
corporating stochastic return on investments. We find the
LST of the total duration of negative surplus of this pro-
cess. However, if the risk model (1.1) is extended to a
compound Poisson surplus process perturbed by a diffu-
sion, it is difficult to make out. We leave this problem for
further research.
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