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ABSTRACT 

A study of magnetic hydrodynamic free convective flow past an infinite vertical porous plate in an incompressible 
electrically conducting fluid is considered. The investigation of the effect of viscous dissipation on the velocity profiles 
and temperature distribution of the fluid in the presence of a transverse magnetic field subject to a constant suction 
velocity is conducted. The ordinary differential equations governing the flows are analyzed using an explicit finite- 
difference scheme and computer generated programs. The results are presented in graphical form showing the effects of 
the various parameters arising in the flow. The numerical results of the study show that an increase in the viscous 
dissipation causes an increase in the velocity profiles and temperature distribution of the fluid. 
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1. Introduction the various parameters entering into the problem is also 
extensively discussed signifying the importance of re- 
taining the viscous dissipation term in the energy equation. 
A laminar flow, sometimes known as streamline flow, 
occurs when a fluid flows in parallel layers, with no dis- 
ruption between the layers. 

Magnetic hydrodynamics is the study of the interaction 
of electrically conducting fluids with magnetic fields. 
Viscous dissipation is the process by which the moving 
layers of an electrically conducting fluid produce internal 
fluid friction which offers resistance to the fluid flow. At 
low velocities the fluid tends to flow without lateral 
mixing, and adjacent layers slide past one another. As the 
velocity increases, the kinetic energy of the particles also 
increases leading to increase in temperature at a distance 
away from the plate. 

In laminar flow the motion of the particles of the fluid is 
very orderly with all particles moving in straight lines 
parallel to the fluid flow. In fluid dynamics, laminar flow 
is a flow regime characterized by high momentum diffu- 
sion and low momentum convection. When a viscous 
electrically conducting fluid flows in the presence of a 
transverse magnetic field, electromagnetic forces act on 
the fluid flowing. The momentum equation describing the 
motion of the fluid in the magnetic hydrodynamic flow 
includes body forces acting on the fluid particles from a 
distance. The applied magnetic field acts on the polarized 
fluid particles to produce the dynamic effect. As a result, 
when a viscous conducting fluid flows in the presence of a 
transverse magnetic field, the electromagnetic forces 
acting alter the geometry of their motion. This motion of 
the particles creates viscous dissipation in the fluid which 
affects the overall motion of the fluid. 

The effect of applied variable magnetic field on un- 
steady free convection flow along a vertical plate has 
been given special interest because of its applications in 
the cooling of nuclear reactors or in the study of stru- 
ctures of stars and planets. Important engineering appli- 
cations in which the study of MHD flows with variable 
magnetic fields includes power generators, heat ex- 
changers, reactors and MHD accelerators among other 
devices. 

The effect of retaining the viscous dissipation term in 
the energy equation in this work is analyzed. For the so- 
lution of the problem considered, the free-stream velocity, 
temperature and the induced magnetic field are oscillating 
in the time about constant mean values. The flow is sub- 
jected to a constant suction velocity, through the porous 
surface, and a magnetic field of uniform strength applied 
transversely to the direction of the flow. The influence of  

Most engineering practical applications involve elec- 
trically conducting fluids with viscous dissipation. Vis- 
cous dissipation is of interest to many engineers for many 
applications: significant temperature rises are observed in 
polymer processing flows such as injection molding or  
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1.1.3. Viscous Dissipation extrusion at high rates. Aerodynamic heating in the thin 
boundary layer around high speed aircraft raises the tem- 
perature of the skin. In a completely different application, 
the dissipation function is used to define the viscosity of 
dilute suspensions. Geothermal gases are electrically con- 
ducting and are affected by the presence of a magnetic 
field.  

Viscous dissipation is the process by which the moving 
layers of an electrically conducting fluid produce internal 
fluid friction which offers resistance to the fluid flow. At 
low velocities the fluid tends to flow without lateral 
mixing, and adjacent layers slide past one another. As the 
velocity increases, the kinetic energy of the particles also 
increases leading to increase in temperature at a distance 
away from the plate. 

The first research in magneto hydrodynamics was done 
by M. Faraday in 1931, [1] where he observed that a 
voltage was induced in a direction perpendicular to both 
the direction of the flow and the magnetic field, in his 
experiments on the behaviour or currents in circuits placed 
in time varying magnetic fields. Hartmann discussed both 
experimentally and theoretically the hydrodynamic mag- 
netic flow. He discovered that applied magnetic field acts 
on both electronic and ionized atoms to produce the dy- 
namic effect. H. M. Duwairi and A. Rabhi [2] analyzed 
viscous and joule heating effect on forced convection flow, 
where they observed that heat transfer rate is decreased 
due to viscous dissipation effect in both cases of suction or 
injection velocity in the fluid.  

Viscosity also refers to the property of a fluid which 
determines its resistance to shearing stresses between the 
layers of a fluid. It is a measure of the internal fluid fric- 
tion which causes resistance to the fluid flow. It is express 
mathematically as: 

q   

where  is the velocity of the fluid, q   is the coefficient 
of viscosity and   is the shear stress. Fluids which obeys 
this relation are referred to as Newtonian fluids. 

When an electrically conducting fluid flows, an in- 
crease in temperature leads to an increase in its kin-fric- 
tion or viscosity. This viscosity increase could be along 
the x-axis, the y-axis or along the z-axis. This phenome- 
non is called viscous dissipation. For a three-dimensional 
fluid the viscous dissipation term is expressed as: 

J. Z. Jordan [3] analyzed the effect of thermal radiation 
on MHD free convection flow over a semi-infinite vertical 
porous plate and he found that an increase in viscous 
dissipation leads to an increase in both velocity and tem- 
perature profiles. Ferdows et al. [4] analyses the dufor, 
soret and viscous dissipation effects on Heat and Mass 
Transfer in porous media with high porosities, while 
Kinyanjui et al. [5] studied MHD free convection heat and 
mass transfer of a heat generating fluid past an impul-
sively started infinite vertical porous plate with Hall cur-
rent and radiation absorption. 

2 22 2
u v w u v w

x y z y z x


                 


                    
 (1.1) 

this can be reduced into two dimensions to give: 
2 22

u v u v

x y y


 

x

                          
     (1.2) 

Palani et al. [6] gave extensive analysis on MHD flow 
past a semi-infinite vertical plate with mass transfer, 
whereas, Tania et al. [7] studied the effect of radiation, 
heat generation and viscous dissipation on MHD free con- 
vection flow along a stretching sheet. In spite of all these 
contributions, the area of viscous dissipation past an infi- 
nite porous plate has received little attention from re- 
searchers. 

When this term is simplified, the final form of the vis-
cous dissipation term is: 

22 2

3 2 3
u u v

x x y y


                   
       (1.3) 

2. Geometry of the Problem 

1.1. Definition of Terms In this case, we investigated the effect of viscous dissi- 
pation on a magnetic hydrodynamic free convective flow 
past an infinite vertical porous plate. The plate is parallel 
to the y-axis which is vertically placed normal to the 
x-axis which is horizontal. A uniform magnetic field is 
applied in a direction normal to the porous plate. The flow 
configuration is illustrated in Figure 1. 

1.1.1. Mass Transfer 
Convection mass transfer involves the transport of ma- 
terials between boundary surface and moving fluid. Mass 
transport always plays an important role in many indus-
trial processes for example, removal of pollutants from 
plant discharge.  

3. Specific Governing Equations 
1.1.2. Free Convection 

In this work the unsteady two-dimensional free convec- 
tive magnetic flow has been considered. The physical 
variables are functions of x, y and t. The velocity com-  

In Free convections, the fluid motion is as a result of 
density gradients created by temperature or concentration 
gradients existing in fluid. 

Copyright © 2012 SciRes.                                                                                  AM 



N. STEVEN  ET  AL. 1189

2 2

2 2

22 2

1

Pr

3 2 3

u
t t x y

u u u
Ec

x x y y

       
       
               

Y 

X 

Z 

Magnetic field 
Direction of fluid flow

 


   

      (3.3) 

and 
2 2
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       (3.4) 

Figure 1. Geometry of the problem. 
 
ponents in the x and y directions, are represented by u and 
v respectively. 

The two equations can be combined into one by intro- 
ducing the viscous dissipation term, i.e., 

The non-dimensionalized momentum equations in x 
and y directions respectively are: 
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    (3.5) 

These equations take the following form for their solu-
tions: 





  (3.1) 

and 
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With initial conditions taken as: 
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for , and all , the boundary conditions take the 
form; 
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   

0
,0 ,00, 1, 0.n

i iy u v =    

The computations are performed using small values of 
, In this work, we set  t 0.00125t 

And  We fixed , that is 0.1t y    4.1x  41i  , 
as corresponding to x  

0,
. Hence, we set  

 41, j  because    41, 41,
n n n

j ju v   , ,u u   tend to zero 
around . The procedure is repeated until 4.1x  400n  , 
that is  for , 0.5t  i 1 x 0.1 . The non-dimensiona- 
lized energy equation for the flow is, (3.7) 
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or  
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where  Ec   is the viscous dissipation term. 
The initial and boundary conditions in non-dimensional 

form are: 
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The initial conditions take the forms shown below: 
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The computations are performed using small values of 
. In our computations, the Prandtl number is taken as 

0.71 which corresponds to air, magnetic parameter 
, which signifies a strong magnetic field. We 

considered one case, that is when the , i.e. (+0.4) 
corresponding to convective cooling of the plate.To en- 
sure stability and convergence of the finite difference 
method, a computer program is run using smaller values 
of  for instance,  

t

2M 5.

t

0Gr >

5,0.0010.0007,0.000 5.t 

4. Method of Solution 

The equations governing the free convective fluid flow in 
this study are non-linear, hence the finite difference 
method which is fast, consistent and stable has been used. 
This method is convergent since as more grid points were 
taken or step size decreased, the numerical solution con- 
verged to the exact solution. It is also stable, since the 
effect of any single fixed round off error was bounded. 
The finite difference method satisfies these basic require- 
ments, hence was used. 

In order to approximate the specific equations above by 
the explicit finite difference method, a suitable mesh with 
grid points well defined is applied. The mesh point was 
put on the x-y plane with the horizontal axis representing 

Δx and the vertical axis Δy. The forward finite difference 
method for the first order time derivative and central finite 
difference for the first and second spatial derivatives, has 
been applied where the final set of the governing equation 
in the x and y directions are: 
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The energy equation is represented by: 
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  (4.2) 

In these equations, 0.1x y   

 and the computa- 

tions were done for small values of . In our case, we 
set 

t
0.00125.t   

In our computation again, the Prandtl number (ratio of 
viscous force to thermal forces) is taken as 0.71. We 
considered one case, when the Gr > 0 (ratio of buoyancy 
forces to viscous forces) corresponding to convective 
cooling of the plate. 

5. Results 

The system of finite difference equations has been solved 
iteratively by use of a computer generated program. 
From the energy equation, it was observed that the vis- 
cous dissipation term comprised of the Eckert number. 
Since the Eckert number is a constant scalar multiple of 
the viscous dissipation, its increase leads to the increase 
in the viscous dissipation term. 
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To plot the graphs for the velocity, and temperature 
with values of Eckert number varying from 0 - 1 the ite- 
rations have been performed for  where 
n is the number of iterations performed as shown in Ta- 
ble 1. As the Eckert number varied, the viscous dissipa-
tion term also changed. The results have been presented 
in Tables 1 and 2, Figures 2 and 3.  

0,1, 2 ,200,n  

In Figure 2, the velocity profiles remained constant 
for some given distance × (50 units) away from the plate 
before increasing. For each Eckert number, the graphs 
increased to a maximum and then remained constant. 

Table 2 represents part of our computer generated 
temperature results. We noted that for each value of the 
Eckert number or viscous dissipation parameter, the re- 
sults obtained in the table were similar for the first 50 
iterations. 

In Figure 3, the temperature profile remained constant 
from the plate up to a distance × (50 units) before in- 
creasing. It was noted that for each Eckert number, the 
graphs increased to a maximum and then remained con- 
stant.  

6. Discussion 

An analysis of the effect of viscous dissipation on a mag- 
netic hydrodynamic free convective flow past an infinite 
vertical porous plate has been carried out. In all the cases 
considered, the velocity was resolved in two components 
and the work was restricted to the laminar boundary layer. 
In this case the Grash of number, Gr > 0, implying that 
the temperature of the plate was greater than that of the 
fluid in the free stream region hence heat was transferred 
from the plate to the fluid which led to the convective 
cooling of the plate by free convection currents. 

However, the heat was not sufficient enough for the 
fluid particles to acquire a high velocity at the region 
near the plate. Thus, the velocity of the moving fluid 
particles remained constant for some time as shown in 
Figure 2, before gaining enough kinetic energy, from the 
collisions of the fluid particles. Once the particles had 
gained maximum kinetic energy, we found out that the 
graph remained constant, for each value of the viscous 
dissipation parameter, or Eckert number. This explained 
the shapes of the velocity graphs obtained. 

For each value of the viscous dissipation parameter, we 
noted that as the fluid flowed, the particles gained kinetic 
energy, leading to the increased collisions of the fluid 
particles which led to a rise in temperature. This rise 
continued until a point was reached where the increase in 
the collisions did not result in any temperature change, 
thus the graphs remained constant as shown in Figure 3. 

7. Conclusion 

In conclusion, this study has therefore asserted that anin- 

Table 1. Velocity profiles. 

VELOCITY, U 

 I II III IV 

0 0 0 0 0 

1 3.82E−101 3.82E−101 3.82E−101 3.82E−101 

2 1.31E−99 1.31E−99 1.31E−99 1.31E−99 

3 2.24E−98 2.24E−98 2.24E−98 2.24E−98 

4 2.54E−97 2.54E−97 2.54E−97 2.54E−97 

5 2.16E−96 2.16E−96 2.16E−96 2.16E−96 

6 1.47E−95 1.47E−95 1.47E−95 1.47E−95 

7 8.36E−95 8.36E−95 8.36E−95 8.36E−95 

8 4.09E−94 4.09E−94 4.09E−94 4.09E−94 

9 1.76E−93 1.76E−93 1.76E−93 1.76E−93 

10 6.74E−93 6.74E−93 6.74E−93 6.74E−93 

11 2.34E−92 2.34E−92 2.34E−92 2.34E−92 

12 7.47E−92 7.47E−92 7.47E−92 7.47E−92 

13 2.20E−91 2.20E−91 2.20E−91 2.20E−91 

14 6.04E−91 6.04E−91 6.04E−91 6.04E−91 

15 1.56E−90 1.56E−90 1.56E−90 1.56E−90 

16 3.79E−90 3.79E−90 3.79E−90 3.79E−90 

17 8.75E−90 8.75E−90 8.75E−90 8.75E−90 

18 1.92E−89 1.92E−89 1.92E−89 1.92E−89 

19 4.05E−89 4.05E−89 4.05E−89 4.05E−89 

20 8.19E−89 8.19E−89 8.19E−89 8.19E−89 

 
Table 2. Temperature distributions. 

TEMPERATURE, T 

 I II III IV 

0 0 0 0 0 

1 3.82E−101 3.81E−101 3.81E−101 3.81E−101 

2 1.30E−99 1.30E−99 1.30E−99 1.30E−99 

3 2.22E−98 2.22E−98 2.22E−98 2.22E−98 

4 2.52E−97 2.52E−97 2.52E−97 2.51E−97 

5 2.13E−96 2.13E−96 2.13E−96 2.13E−96 

6 1.45E−95 1.45E−95 1.45E−95 1.45E−95 

7 8.19E−95 8.19E−95 8.19E−95 8.19E−95 

8 3.99E−94 3.99E−94 3.99E−94 3.99E−94 

9 1.71E−93 1.71E−93 1.71E−93 1.71E−93 

10 6.52E−93 6.52E−93 6.52E−93 6.52E−93 

11 2.26E−92 2.26E−92 2.26E−92 2.26E−92 

12 7.16E−92 7.16E−92 7.16E−92 7.16E−92 

13 2.10E−91 2.10E−91 2.10E−91 2.10E−91 

14 5.74E−91 5.74E−91 5.74E−91 5.74E−91 

15 1.47E−90 1.47E−90 1.47E−90 1.47E−90 

16 3.57E−90 3.57E−90 3.57E−90 3.57E−90 

17 8.19E−90 8.19E−90 8.19E−90 8.19E−90 

18 1.79E−89 1.79E−89 1.79E−89 1.79E−89 

19 3.76E−89 3.76E−89 3.75E−89 3.75E−89 

20 7.55E−89 7.55E−89 7.55E−89 7.55E−89 
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