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ABSTRACT 

In this paper, we presented a sufficient condition on the frequency domain for the absolutely stable analysis of the 
Takagi-Sugeno (T-S)fuzzy control system, based on the Popov’s criterion. we use some numerical examples to illustrate 
the efficiency of frequency domain-based condition. 
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1. Introduction 

Among various fuzzy modeling themes, the Takagi-Su- 
geno (T-S) model [1] has been one of the most popular 
modeling frameworks. T-S fuzzy models can be as uni- 
versal approximator then any smooth nonlinear control 
systems cab be approximated by T-S fuzzy models and 
also any smooth nonlinear state feedback controller can 
be approximated by the parallel distributed compen- 
sation (PDC) controller [2]. The predictive controller and 
T-S model-based linearization controller are, respectively, 
studied in [3,4]. However,most of these results are in the 
time domain instead of frequency domain. 

On the other hand, the frequency response methods 
have been well developed and widely used in industrial 
applications with many advantages. for instance, the 
effect of noise in a control system can be evaluated in a 
straightforward way by its frequency response. In addi- 
tion, Bode and Nyquist plots, which are often used in the 
frequency response methods, can also provide a graphic 
insight into the control system under investigation. 

Stability is one of the most important nocepts con- 
cerning the design of control strategies. In [5] the sta- 
bility of the Mamdani fuzzy control system is explored 
based on the Popov’s criterion, which is a frequency 
domain-based sufficient condition, so as to guarantee the 
stability of nonlinear feedback systems. Popov’s criterion 
is a frequency response method and it evaluate absolutely 
stable for a system that the forward path is a linear time- 
invariant system, and the feedback part is a memoryless 
nonlinearity. In this paper, Popov’s criterion is utilized to 
drive the frequency domain-based sufficient condition, 
which provide a graphical interpretation for the stability 
analysis of the T-S fuzzy control systems. 

2. Absolute Stability 

The systems considered in this work have the interesting 
structure shown in Figure 1. The forward path is a linear 
time-invariant system, and the feedback part is a me- 
moryless nonlinearity, i.e., a nonlinear static mapping. 

The equations of such systems can be written as:  

=x Ax bu               (1) 

=y cx                   (2) 

 =u  y                (3) 

where m nA  , ,  and n mx b 1 nc 
=

. G(p) 
is transfer function for linear system of x Ax bu . 
The nonlinear system (1)-(3) has various physical appli- 
cations. The nonlinear system in Figure 1 has a special 
structure. If the feedback path simply contains a constant 
gain, i.e.,   =y y 

T

, then the stability of the whole 
system, a linear feedback system, can be simply deter- 
mined by examining the eigenvalues of the closed-loop 
system matrix A bc . However, the stability analysis 
of the whole system with an arbitrary nonlinear feedback 
function   is much more difficult. for using Popov’s 
criterion we usually require the nonlinearity to satisfy a 
so-called sector condition, whose definition is given 
below [6,7]. 

Definition 1. A continuous function   is said to 
belong to the sector  1 2,k k

2k
, if there exists two non- 

negative numbers  and  such that  1k

 1 20y yk y yk          (4) 

Geometricaly, condition (4) implies that the nonlinear 
function always lies between the two straight lines 1  
and . Two properties are implied by Equation (4).  

k y

2k y
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Figure 1. System structure in absolute stability problems. 
 
First, it implies that . Secondly, it implies that 

, such that the graph of 
 0 = 0

  0y y   y  lies in the first 
and third quadrants. Assume that both the nonlinearity 
 y  is a function belonging to the sector  1 2,k k  and 

that the A  matrix of the linear subsystem in the forward 
path is stable (Hurwitz matrix). What additional con- 
straints are needed to guarantee the stability of the whole 
system?  

Definition 2. If the piont 0 (origin) is globally asy- 
mptotically stable for all nonlinearitys that belong to the 
sector  1 2,k k , Then system in Figure 1 by equations of 
(1), (2) and (3) will be absolute stability.  

We will see that Popov’s criterion creat conditions for 
asymptotic stability.  

Popov’s Criterion 

Many researchers attempted to seek conditions that gua- 
rantee the stability of the nonlinear system in Figure 1. 
Popov’s criterion imposes additional conditions on the 
linear subsystem, leading to a sufficient condition for 
asymptotic stability reminiscent of Nyquist’s criterion(a 
necessary and sufficient condition) in linear system 
analysis. 

A number of versions have been developed for Popov’s 
criterion [7]. The following basic version is fairly simple 
and useful. 

Theorem 1. If the system described by (1), (2) and (3) 
satisfies the conditions:   
 The matrix A  is Hurwitz (i.e., has all its eigenvalus 

strictly in the left half-plan)and the pair  ,A b  is 
controllable.  

 The nonlinearity   belongs to the sector  0,k .  
  is equivalent:    Re 1 1 >0,G j        j k

   1
Re Im > 0,G j G j

k
                   

   (Popov’s inequality)          (5) 
then the point 0 is globally asymptotically stable.  

Proof. see [7].  
Remark 1. If      =G j Re G j jIm G j           

and      = = Re Imjy G j j G jW j x            

then inequality (5) is equivalent that the polar plot of 
 W j  be below the line  1 = 0x y k  . 

3. The T-S Fuzzy Control System 

Let us consider  in Figure 2 which can be des- 

cribed by the following state model:  

 G s

  0= , 0 =

=

,x Ax Bu x x

y Cx Du





           (6) 

where n nA  , , and . D is a scalar. 
We assume that the pair 

, nB x 1 nC 
,A B



 is controllable, i.e., 

 , and that the pair 1 =nA B nRank B BA   ,A C  is 
observable, i.e.,  

  1
Rank =

nT T T T TC A C A C n
 

  
 . 

The T-S fuzzy controller consists of the following two 
rules (Figure 2): 

1 1

2 2

If , then = ,

If , then = ,
a

b

y S u k e

y S u k e




 

where both  and  are controller inputs, and i , 
, are the outputs of the two local proportional 

controllers. Then by using the center-of-gravity method 
for defuzzification, We can represent the  vector con- 
troller as:  

y e u
= 1,2i

u

   
        1 2

= =
S Sa b

S Sa b

y u y u
u e

y y

 


 




,t y t    (7) 

We use the triangular membership functions  and 
 of the following form (Figure 3): 

aS

b

where both  and  are given by the following 
equations:  

S

aS bS

 

 

0, <

, <
=

( )
0 < ,

0, .

1, <

, <
=

0 < ,

1, .

Sa

Sb

y a

y a
a y

ay
y a

y a
a

y a

y a

y
a y

ay
y

y a
a

y a






   

  

 


  


 

 

0,

0,

         (8) 

We assume that ik ,  which are the propor- 
tional gains of the local controllers, are positive and 

1 2 . If both 1  and 2  to be negative then we can 
recast the nonlinear system by an equivalent system 
according to Theorem 2. In this case the local pro- 
portional gains can be made positive with the plant 
multiplied by 

= 1,2i

k<k k k

1 . 
Theorem 2. Two Systems in Figures 2 and 4 are equi- 

valent. 
Proof. We first observe that from (7) and (8) we have 
   , = ,e y e y   . For example, when <y a , we 

have: 
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Figure 2. Structure of T-S system. 
 

 

Figure 3. The membership functions of Sa and . Sb

 

 

Figuew 4. Equivalent system of Figure 1. 
 

   
   

   
   

1 2

1 2

2

( , ) =

= =

S Sa b

S Sa b

S Sa b

S Sa b

y u y u
e y

y y

y k e y k e
k e

y y

 


 

 

 









 

It is clear that: 

.

from Figure 2, we observe that: 

   2, = = ,e y k e e y  

       = ,    
     

= ,

= ,

,y t G u t u t e t y t

e t r t y t




   (9) 

equations in (9) are equivalent the following equations: 

           = , = , .y t G u t u t y t y t   (10) 

from  , we get: 

,     (11) 

  , = ,e y e y  

    = , =u t y t w w     =y t v

 u t  in (11) is equivalent  u t
ncti

 in Figure 3

Then Two Systems in Figures 2 and 3 are equi- 
va

 if the functional mapping achieved by the 
T-

 and 
y

ved by
  ,t y t  represents the fu onal mapping achi- 

owing fuzzy rules:  

If , then =y S u


 the foll

1 1

2 2

,

If , then = ,
a

b

k y

y S u k y
 

lent.  
Therefore,
S fuzzy controller belongs to some sector, then 

Popov’s criterion can be employed directly.  
Theorem 3. Let  y  denote the mapping of the T-S 

fuzzy control syste Figure 3, i.e., m in     ,y t y t . 
Then  y  belong to the sector  1 2,k k .

Pro m relation 

 

of. fro  ,y y  w :  e have

 
 
   

 

   
   

1 2

1

=

= .

a b

a b

a b

b

S S

S S

S S

S Sa

y u

2

y
y y

y k y k

y u

y
y y


 

 
 





 
 
  

     (12) 

We know, 

 

  0
aS y 

mption
 and . Conse- 

qu
  0

bS y 
1 20 < <k k , wently, with the assu  that e have: 

   
   

1 2
1 2

a b

a b

S S

S S

y k   y k
k k

y y 


    

 

If multiply to the last inequality then we have 2y  
 2 2

2y y y y  .  1k
Theorem 4. 

k
Let  y  

m in 
denote the mapping of the T-S 

fuzzy control syste Figure 3, i.e.,     ,y t y t . 
Then  y  belong to the sector  0,k  w

1=k k
here  

2k .
Proof. 

 
clearly we have:   

   
     1 2

0 =a b

a b

S S

S S

y k y  y k y
y

y y




 



 

and also it is obvious that:  

 
   

   
 

   
 

   
 

   

1 2

1 2

1 2 1 2

2 2
1 2

=

=

=

0 =

a b

a b

a b

a b a b

S S

S S

S S

S S S S

y k y  y k y
y

y y

y y
k y k y

y y y y

k y k y k k y

y y k k y ky


 

 
   






 

  

   

 

Then  belongs to the sector  0,k y  where 

1 2= kk k .  

Numerical Applications 

a stable plant As an example we consider  G s  is des- 



cribed by: 

     
1

=
0.2 1 0.1 1 0.05 1

G s
s s s 

 


  (13) 

We obtain proportional gains  and , based on 
th

1k  2k
e Bode plot of  G s . The Bo e plot f d  o  G s  is 

given in the Figure hen the phase magnitudes are 
90   and 130  , the corresponding log magnitudes are 

dB

 5. W

4.76  a 10 dBnd  , respectively. Then 1k  and 2k  
are: 

4.76 10

20 20
1 2= 10 1.73, = 10 3.16k k   

Phase margins of open loop for gains  and  are, 
re

1k
 T

2k
spectively 89.4  and 50.7 . Next, the -S fuzzy con-  
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Figure 5. The bode plot of G(s). 
 

 

Figure 6. Popov’s plot and line of: y = 10(x + 1/4.89). 
 

oller rules are:  

Hear, 

tr

1

2

, then = 1.73 ,

If , then = 3.16 ,
a

b

y S u e

y S u e




 
If

π
=

8
a . We shall point out that this is chosen 

on

system is stable

Popov’s plot is below line of 

closed-loop stability. Popov’s plot are shown in Figure 6, 
this figure reveals that the  because  

1
= 10

4.89 
 

plot is obtained for 

y x
  . Popov’s  

0   0. but for   , 
because functions o

 is the same
f   G iRe   and   Im G j   

are even functions. 

zy control system in the Figure 2 is absolute 
stable. 

15, 

 

4. Conclusion 

In this paper, we presented a condition on the frequency 
domain for the global stability analysis of the T-S fuzzy 
control system based on the Popov’s criterion and it’s 
graphical interpretation. We said T-S fuzzy control sys- 
tem can be like to system of Figure 1, Then Popov’s 
criterion imposes conditions for stability. We conclude 
T-S fuz
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