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ABSTRACT 

In this work, starting from the  G G -expansion method and a variable separation method, a new non-traveling wave 

general solutions of the (2+1)-dimensional breaking soliton system are derived. By selecting appropriately the arbitrary 
functions in the solutions, special soliton-structure excitations and evolutions are studied. 
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1. Introduction 

Modern soliton theory is widely applied in many natural 
sciences [1-4] such as chemistry, biology, mathematics, 
communication, and particularly in almost all branches 
of physics like fluid dynamics, plasma physics, field the-
ory, optics, and condensed matter physics, etc. [5-8]. In 
order to find new exact solutions of nonlinear equations, 
much methods have been proposed, such as the Lie 
group method of infinitesimal transformations, the non-
classical Lie group method, the Clarkson and Kruskal 
direct method (CK) [9,10], the conditional similarity re-
duction method [11-13] and the improved mapping ap-
proach, etc. [14-23]. 
  Recently, the  G G -expansion method was pro-
posed to obtain the new exact solutions of the nonlinear 
evolution equations [24]. Subsequently the powerful 
G G  -expansion method has been widely used by 
many differential such as in [25-30]. However, the pre-
vious works have mainly concentrated on obtaining new 
exact traveling wave solutions for the nonlinear evolution 
equations. 
  In this paper, by using the  G G -expansion method, 
we construct non-traveling wave solutions with arbitrary 
functions in the (2+1)-dimensional breaking soliton sys-
tem  

 4 =t xxy x
u bu b uv  0,           (1) 

= 0,x yv u                     (2) 

where  is an arbitrary constant, the system (1)-(2) was 
used to describes the (2+1)-dimensional interaction of 
Riemann wave propagated along the -axis with long 

wave propagated along the 

b

y

x -axis and it seems to have 
been investigated extensively where overlapping solu-
tions have been derived [31]. In the past, we have ob-
tained the Annihilation solitons and chaotic solitons by 
the improved mapping approach [32]. Since the detailed 
physical background of the breaking soliton system has 
been given in [31], we neglect the corresponding de-
scription. 

2. The (G'/G)-Expansion Method and 
Non-Traveling Wave Solutions to the  
(2+1)-Dimensional Breaking Soliton System 

Before starting to apply the G G  -expansion method, 
we will give a simple description of the method. For do- 
ing this, suppose that a (2+1)-dimensional nonlinear 
equation, say in three independent variables x , y and t, 
is given by 

 , , , , , , , , , = 0t x y tt xt t xy xx yyF u u u u u u u u u , yu .    (3) 

The fundamental idea of the G G  -expansion me- 
thod is that the solutions of equation (3) can be expressed 
by a polynomial in  G G  as follows [24,29,30]: 
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where  =G G  , = x y t    
, , = 1a i 

 is traveling wave 
transformation, and  are con- 
stants to be determined later, G satisfies the second order 
LODE as follow: 

 , 2, ,m, i

= 0.G G G                (5) 
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In order to construct the non-traveling wave solutions 
with arbitrary function  , , x y t  for the (2+1)-dimen- 
sional breaking soliton system (1)-(2), we suppose its 
solutions can be express as follow:  
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where ,  are the 
functions of 

 = 0,1,2, ,ia i m
, ,

 = 0,1,2, ,jb j n 
x y t  to be determined later, 

= , , x y t 
 G

 is the arbitrary function of x, y, t, and 
  satisfies the second order LODE (5). 

Applying the homogenous balance principle, we ob-
tain . Thus (6)-(7) can be converted into = = 2m n

2

0 1 2= ,
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G G
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2

0 1 2= ,
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v b b b
G G
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For simplifying the computation, we seek for the vari-
able separation solutions of the breaking soliton system 
(2) by taking     , , = x y t x y ct    . 

Substituting (8)-(9) into the system (1)-(2), collecting 
all terms with the same power of G G  together. Then 
setting each coefficient of the polynomials to zero, we 
can derive a set of over-determined partial differential 
equation for 0 1 2 0 1 2, , , , , ,a a a b b b   and  . 
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1 0 1 0 = 0.y y xa a b b                   (19) 

Solving the Equations (10)-(19) yields 
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Substituting (20) and the general solutions of Equation  

(5) into (6)-(7), we can obtain the general non-traveling 
wave solutions for the (2+1)-dimensional breaking soli-
ton system (1)-(2). 

Case 1. When , by the general solutions 
of Equation (5) we can derive 

2 4 > 0 

  
  




1 2
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= 1
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C CG

G C C
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Thus, the hyperbolic solutions of the system (1)-(2) are 
expressed as follows: 

   
   

 
   

3 2
1 1 2 11

1 1
1 1 2 1

2

1 1 2 12 2
1

1 1 2 1

cosh sinh2 3
=

4 2 sinh cosh

cosh sinh ( )3
,

2 sinh cosh

C Cb b c
u

b C C

C C

C C

    



    

   


   

          
     

     
   

      

                 (22) 

   
   

2

1 1 2 12
1 1

1 1 2 1

cosh sinh3
= 1

2 sinh coshy

C C
v

C C

   
 

   

                    
,                         (23) 

where 
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and , ,  and  are arbitrary constants. b c 1C 2C
 Case 2. When , by the general solutions 

of Equation (5) we can derive 
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So the trigonometric solutions of the system (1)-(2) are 
expressed as follows: 
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In this case, the rational solutions of the system (1)-(2) 
are showed as: 
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where 0   ,   ,    and y  exist, and b , ,  

and  are arbitrary constants. 

c 1C

2C

3. Soliton Structure Excitation of the System 
(1)-(2) 




 


  

  

 
    

     (28) 

Due to the arbitrary functions  x  and  y ct   in 
the solutions (22)-(29), it is convenient to excite abun-
dant soliton structures. We take the solution (23) as an 
example to study the soliton excitations for the (2+1)- 
dimensional breaking soliton system (1)-(2). For instance, 
if we choose   and   as 
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1 2 3

1 2 3

= sech ,
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     ,
     (30) 

where 1 2  are arbitrary constants, and all 
are non-zero.  

3 1 2 3, , , , ,k k k r r r

Substituting (30) into (23) leads to a soliton structure 
for the system (1)-(2). Figures 1(a)-(d) are the evolution 
plots of the solution (23) with time under the parameters 
as 

1 2 1 2 3 1

2 3

= 1, = 2, = 0.15, = 0.1, = 0.3, = 0.15,

= 0.3, = 0.3, = 1, = 1, = 0.1.

C C k k k r

r r c  
 (31) 

Figures 2(a)-(b) are the plots with , and we 
choose the following special values of the parameters 

= 0t

1 2 1 2 3 1 2 3, , , , , , , , , ,C C k k k r r r c   . There are 

1 2 1 2 3

1 2 3

= 1, = 2, = 0.15, = 0.1, = 0.3,

= 0.15, = 0.3, = 0.3, = 1, = 1, = 0.1.

C C k k k

r r r c  
    (32) 

1 2 1 2 3 1

2 3

= 1, = 2, = 0.15, = 3, = 0.3, = 0.15,

= 3, = 0.3, = 1, = 1, = 0.1.

C C k k k r

r r c  
  (33) 

Above we show the excitation process of a special dro- 
mion soliton structure of the solution (23) for the (2+1)- 
dimensional breaking soliton system (1)-(2). It is clear 

 

    
(a)                                                                      (b) 

    
(c)                                                                      (d) 

Figure 1. The evolution plots of the solution (23) under the parameters (31) with time: (a) t = 0; (b) t = 5; (c) t = 10; and (d) t = 
20. 
 

    
(a)                                                                      (b) 

Figure 2. (a) A plot of the soliton for the Equation (23) with condition (32) at t = 0; (b) A plot of the soliton for the Equation 
(23) with condition (33) at t = 0.  
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that other selections of the arbitrary  x  and  
 y ct   in (23) may generate rich localized soliton 

structures. On the other hand, the solutions (22), (25)- 
(26), (28)-(29) may also be used to excite abundant soli-
ton structures. 

4. Summary and Discussion 

In summary, via extending the G G 



-expansion me- 
thod, more rich types explicit and exact non-traveling 
wave solutions of the (2+1)-dimensional breaking soliton 
system (1)-(2) are found out, and the traveling wave so-
lutions are included by these non-traveling wave solu-
tions. So the non-traveling wave solutions are more gen-
eral. Furthermore, by choosing appropriately the arbi-
trary function  , ,x y t  included in its solutions, one 
can study various interesting localized soliton excitations. 
Since the wide applications of the soliton theory, to learn 
more about the localized excitations and their applica-
tions in reality is worthy of study further. 
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