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ABSTRACT

In this work, starting from the (G’/G) -expansion method and a variable separation method, a new non-traveling wave

general solutions of the (2+1)-dimensional breaking soliton system are derived. By selecting appropriately the arbitrary
functions in the solutions, special soliton-structure excitations and evolutions are studied.
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1. Introduction

Modern soliton theory is widely applied in many natural
sciences [1-4] such as chemistry, biology, mathematics,
communication, and particularly in almost all branches
of physics like fluid dynamics, plasma physics, field the-
ory, optics, and condensed matter physics, etc. [5-8]. In
order to find new exact solutions of nonlinear equations,
much methods have been proposed, such as the Lie
group method of infinitesimal transformations, the non-
classical Lie group method, the Clarkson and Kruskal
direct method (CK) [9,10], the conditional similarity re-
duction method [11-13] and the improved mapping ap-
proach, etc. [14-23].

Recently, the (G'/G) -expansion method was pro-
posed to obtain the new exact solutions of the nonlinear
evolution equations [24]. Subsequently the powerful
(G'/G) -expansion method has been widely used by
many differential such as in [25-30]. However, the pre-
vious works have mainly concentrated on obtaining new
exact traveling wave solutions for the nonlinear evolution
equations.

In this paper, by using the (G'/G)-expansion method,
we construct non-traveling wave solutions with arbitrary
functions in the (2+1)-dimensional breaking soliton sys-
tem

u, —bu,, +4b(uv) =0, 1)
v, —u, =0, 2

where b is an arbitrary constant, the system (1)-(2) was
used to describes the (2+1)-dimensional interaction of
Riemann wave propagated along the y -axis with long
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wave propagated along the x -axis and it seems to have
been investigated extensively where overlapping solu-
tions have been derived [31]. In the past, we have ob-
tained the Annihilation solitons and chaotic solitons by
the improved mapping approach [32]. Since the detailed
physical background of the breaking soliton system has
been given in [31], we neglect the corresponding de-
scription.

2. The (G'/G)-Expansion Method and
Non-Traveling Wave Solutions to the
(2+1)-Dimensional Breaking Soliton System

Before starting to apply the (G'/G)-expansion method,
we will give a simple description of the method. For do-
ing this, suppose that a (2+1)-dimensional nonlinear
equation, say in three independent variables x, y and t,
is given by
F (U, Uy Uy Uy U U U Uy U U o) = 0. (3)
The fundamental idea of the (G'/G)-expansion me-
thod is that the solutions of equation (3) can be expressed
by a polynomial in (G'/G) as follows [24,29,30]:

u=3a [%j +ag, 4

where G=G(&), £=ax+py+at is traveling wave
transformation, and o, 8,8 (i=1,2,---,m) are con-
stants to be determined later, G satisfies the second order
LODE as follow:

G"+ G+ uG =0. ()
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In order to construct the non-traveling wave solutions
with arbitrary function &(x,y,t) for the (2+1)-dimen-
sional breaking soliton system (1)-(2), we suppose its
solutions can be express as follow:

o=3a (%], ©)

_<$p (S
v_zbj[a) , ™

where a(i=0,1,2,---,m), b;(j=0,1,2,---,n) are the
functions of x,y,t to be determined later,
E=£(x,y,t) is the arbitrary function of x, y, t, and
G(&) satisfies the second order LODE (5).

Applying the homogenous balance principle, we ob-
tain m=n=2. Thus (6)-(7) can be converted into

N4
(Ej :—Gaiy’zny —54/1a27’277y +6a,y"n, +4a,b,, —164a,b,y' +12a,,y'n,

NI
v:b0+bl£%j+b2(%’j , )

For simplifying the computation, we seek for the vari-
able separation solutions of the breaking soliton system
(2) by taking &(x,y,t)=y(x)+n(y+ct).

Substituting (8)-(9) into the system (1)-(2), collecting
all terms with the same power of G'/G together. Then
setting each coefficient of the polynomials to zero, we
can derive a set of over-determined partial differential
equation for a,,a,,a,,b,,b,b,,» and 7.

G'Y
(Ej : 3)/'277y +2b,y"' =0, (10)

G (11)
~12ab,y" +4a,,b, +6a,,7'* —12a,by' = 0,
Gy
(E] :4bb,a,, +4ba,b, +4bab,, +2ba, y'"* —2ba,,n, + 2ba,y"n, — 28,7, —12blay*y,
—16bua,b,y’ —40b,u¢’:127/’277y —38b/12a27’277y —12bAab,y’ +20bAa,,y'n, —12bAa by’ (12)
—8ba,b,y’ —8baby’ —8ba,byy’ + 4ba1)(7/’77y +10b/1a2}/’277y - 4ba2xy7/’ +4ba,,b =0,
a,n, —b,y' =0, (13)

N2
(%j :4bayb,, — 248,77, —4baghy’ — 2028, 17, —52bAua,y ", ~12buahy’ +6bay,yn,

—a,, —8bAaby —12buab,y ~8buay’n, — A ay"*n, —8bA%a,y"*n, —8bAa,byy’ (14)
+4ba,,b, +16bua,,yn, —4babyy' —8bAagh,y’ +8bua,y"n, +3blayn, + 4b/12a2;/”77y
+4bay,b, +8bA%a,, 'y, + 4ba, b —ba,,.n, +4bagh,, +4bab,, =0,

24a,n, +by, —2Ab,y" +an, —by' =0,

G/

(15)

1
(Ej 112bApa,, ', —bAay,n, —16bu’a,y"*n, —bA’ay*n, —8bAua,y*n, —8buaby' + 2bA%a, ¥y,

—4bAab,y’ —8bua,byy’ —14b/”L2,u{:127/'277y —4bAaghy' —8buab,y’ +2buayyn, +6bAua,y'n, + b/tz]/”r]y (16)
+4ba0blx + 4ba0xbl + 4ba‘lb0x - 2b1ua2xx77y + ait - laiﬂt - 2:ua277t + 4b/ua1x7’77y + 4'ba'lxbo = 0’

2ua,n, =2,y + dan, +b, - Aby' =0,

G( 0 ! ’ 1 ! "
(E] :2bAp@,y'n, —6bAutayy P, + Abpa,y'n, —Abpaghyy' - pa, +bAuayn, —buayn,

(17)

(18)

+ay, +4bay, b, + 2bu’a,y"n, +bay, —4buab,y' +4basby, —2bu’ay'*n, —bA* uay*n, = 0,
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/ua:l_ny _aOy —/,lb17/,+ bOx =0. (19)
Solving the Equations (10)-(19) yields
B 3b/1}/']/”—b/?.2}/'3 _ 2blu7//3 —b]/m—C]/l
8 = ; ,
4by

3= %(7”—17’2), a, = —%7'2, (20)

_ 3 _ 3. _ 3.,
by = =Sy, B ==oAyny, b =2y,

Substituting (20) and the general solutions of Equation

(5) into (6)-(7), we can obtain the general non-traveling
wave solutions for the (2+1)-dimensional breaking soli-
ton system (1)-(2).

Case 1. When A°—4u>0, by the general solutions
of Equation (5) we can derive

C,cosh Al(y +17)+C,sinh Al(y +7)

G’ A
—=—_4+A .
" C,sinh AL(y +7)+C, cosh AL(y +7) 1)

G 2

Thus, the hyperbolic solutions of the system (1)-(2) are
expressed as follows:

! :2b7/'3Af—b7/'"—07/’+§ " C,coshA, (y+n)+C,sinh A (y+17)

! 4by’ 2" 'C;sinhA, (7 +7)+C,coshA, (7 +7)
_ 22)
3 242 C,coshA, (y+n)+C,sinh A, (y +7) ’
2" "t CsinhA, (7 +7)+Cycosh A, (y+7) |
. 2
y :EJ/'?] A2)1 ClcoshAl(}/+77)+C2SlnhAl(}/+77) 23)
ot C,sinh A, (7 +7)+C,cosh A, (y+7) | |

A A? —-4u
2

and b, ¢, C, and C, are arbitrary constants.
Case 2. When A?-4u<0, by the general solutions
of Equation (5) we can derive

where A, = , V=0, ", y" and p, exist,

—C,SinA2(y +1)+C,cosA2(y +7)

2 =2 4A2 (24
2+ C,cosA2(y+1)+C,sinA2(y+n) (24)

So the trigonometric solutions of the system (1)-(2) are
expressed as follows:

_2by'3A§+by"’+c;/’+§ " —C;sinA, (7 +n)+C,cosA,(y+1)

ve = 4by’ 2" 7 C,cosA, (y+n)+C,sinA, (y+1)
(25)
8 a2y —C,sinA, (y+1)+C,cosA, (7 +n) ’
2t S C,CoSA, (7 +17)+C,sinA, (y+7) |
3 C,SinA, (y+n)+C,cosA, (y+ ’
sz_EV,UyAg 1+ Cl 2(7 77) 2> 2(7 77) , (26)
1 C0SA, (7 +17)+C,sinA, (y+7)
4/'1_12 ’ ’ ” - 3 C
where A, =——, ¥'#0, ', »" and 7, exist, V,=—"pp | — 2 29
2 y 3 27/77y|:cl+cz(}/+77):| ( )

and b, ¢, C, and C, arearbitrary constants.
Case 3. When A°-4u=0, by the general solutions
of Equation (5) we can derive

G__A,_ €2 27)
G 2 C,+C,(r+n)
In this case, the rational solutions of the system (1)-(2)
are showed as:

7y_c N S

(28)
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where y'£0, y', y" and n, exist, and b, ¢, C,
and C, are arbitrary constants.

3. Soliton Structure Excitation of the System
(1)-(2)

Due to the arbitrary functions y(x) and n(y-+ct) in
the solutions (22)-(29), it is convenient to excite abun-
dant soliton structures. We take the solution (23) as an
example to study the soliton excitations for the (2+1)-
dimensional breaking soliton system (1)-(2). For instance,
if we choose y and 7 as
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7 =k, +k,xsech (k;x),
n=rn+1,(y+ct)sech[r,(y+ct)],

where ki, K, ks, 1,1, 1, are arbitrary constants, and all
are non-zero.

Substituting (30) into (23) leads to a soliton structure
for the system (1)-(2). Figures 1(a)-(d) are the evolution
plots of the solution (23) with time under the parameters
as

C,=1,C, =2k =0.15k, =0.1,k; =0.3,r, = 0.15,
r,=03,r,=03,c=1,4=1,=0.1.

(30)
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Figures 2(a)-(b) are the plots with t=0, and we
choose the following special values of the parameters
C..C, k., k, ks, 1, 1,,15,C, 4, 1. There are

C,=1C,=2k =0.15k,=0.1,k, =0.3,

(32)
r=015r,=03,,=03,c=1,4=1,4=0.1

C,=1,C, =2,k =0.15,k, =3,k, =0.3,1, = 0.15,

(33)
r,=3,r,=03,c=1,4=1,1=01

Above we show the excitation process of a special dro-
mion soliton structure of the solution (23) for the (2+1)-
dimensional breaking soliton system (1)-(2). It is clear
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Figure 2. (a) A plot of the soliton for the Equation (23) with condition (32) at t = 0; (b) A plot of the soliton for the Equation

(23) with condition (33) att =0.
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that other selections of the arbitrary y(x) and
n(y+ct) in (23) may generate rich localized soliton
structures. On the other hand, the solutions (22), (25)-
(26), (28)-(29) may also be used to excite abundant soli-
ton structures.

4. Summary and Discussion

In summary, via extending the (G'/G)-expansion me-
thod, more rich types explicit and exact non-traveling
wave solutions of the (2+1)-dimensional breaking soliton
system (1)-(2) are found out, and the traveling wave so-
lutions are included by these non-traveling wave solu-
tions. So the non-traveling wave solutions are more gen-
eral. Furthermore, by choosing appropriately the arbi-
trary function &£(x,y,t) included in its solutions, one

can study various interesting localized soliton excitations.

Since the wide applications of the soliton theory, to learn
more about the localized excitations and their applica-
tions in reality is worthy of study further.
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