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ABSTRACT 

Lane-Emden differential equations of order fractional has been studied. Numerical solution of this type is considered by 
collocation method. Some of examples are illustrated. The comparison between numerical and analytic methods has 
been introduced. 
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1. Introduction 

Lane-Emden Differential Equation has the following 
form:  

       , = ,0 < 1, 0
k

y t y t f t y g t t k
t

        (1) 

with the initial condition  

   0 = , 0 = ,y A y B  

where ,A B  are constants,  ,f t y  is a continuous real 
valued function and    0,1Cg t   (see [1]). 

Lane-Emden differential equations are singular initial 
value problems relating to second order differential equa- 
tions (ODEs) which have been used to model several 
phenomena in mathematical physics and astrophysics. 

In this paper we generalize the definition of Lane- 
Emden equations up to fractional order as following: 

       , =

0 < 1, 0, 1 < 2, 0 < 1,

k
D y t D y t f t y g t

t
t k

 
 

 

 

   

,
      (2) 

with the initial condition  

   0 = , 0 = ,y A y B  

where ,A B  are constants,  , f t y
  

 is a continuous 
real-valued function and 0,1C .g t  The theory of 
singular boundary value problems has become an im- 
portant area of investigation in the past three decades 
[2-5]. One of the equations describing this type is the 
Lane-Emden equation. Lane-Emden type equations, first 
published by Jonathan Homer Lane in 1870 (see [6]), and 

further explored in detail by Emden [7], represents such 
phenomena and having significant applications, is a 
second-order ordinary differential equation with an arbi- 
trary index, known as the polytropic index, involved in 
one of its terms. The Lane-Emden equation describes a 
variety of phenomena in physics and astrophysics, in- 
cluding aspects of stellar structure, the thermal history of 
a spherical cloud of gas, isothermal gas spheres,and 
thermionic currents [8]. 

The solution of the Lane-Emden problem, as well as 
other various linear and nonlinear singular initial value 
problems in quantum mechanics and astrophysics, is 
numerically challenging because of the singularity be- 
havior at the origin. The approximate solutions to the 
Lane-Emden equation were given by homotopy pertur- 
bation method [9], variational iteration method [10], and 
Sinc-Collocation method [11], an implicit series solution 
[12]. Recently, Parand et al. [13] proposed an approxi- 
mation algorithm for the solution of the nonlinear Lane- 
Emden type equation using Hermite functions collo- 
cation method. Moreover, Adibi and Rismani [14] intro- 
duced a modified Legendre-spectral method. While, Bhr- 
awy and Alofi [15,16] imposed a Jacobi-Gauss collo- 
cation method for solving nonlinear Lane-Emden type 
equations. Finally, Yigider [1] introduced numerical study 
of Lane-Emaden Type using Pade Approximation. 

2. Fractional Calculus 

Fractional calculus and its applications (that is the theory 
of derivatives and integrals of any arbitrary real or com- 
plex order) has importance in several widely diverse 
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areas of mathematical physical and engineering sciences. 
It generalized the ideas of integer order differentiation 
and n-fold integration. Fractional derivatives introduce 
an excellent instrument for the description of general 
properties of various materials and processes. This is the 
main advantage of fractional derivatives in comparison 
with classical integer-order models, in which such effects 
are in fact neglected. The advantages of fractional de- 
rivatives become apparent in modeling mechanical and 
electrical properties of real materials, as well as in the 
description of properties of gases, liquids and rocks, and 
in many other fields (see [17]). 

The class of fractional differential equations of various 
types plays important roles and tools not only in ma- 
thematics but also in physics, control systems, dynamical 
systems and engineering to create the mathematical 
modeling of many physical phenomena. Naturally, such 
equations required to be solved. Many studies on 
fractional calculus and fractional differential equations, 
involving different operators such as Riemann-Liouville 
operators [18], Erdlyi-Kober operators [19], Weyl-Riesz 
operators [20], Caputo operators [21] and Grnwald- Let- 
nikov operators [22], have appeared during the past three 
decades. The existence of positive solution and multi- 
positive solutions for nonlinear fractional differential equ- 
ation are established and studied [23]. Moreover, by 
using the concepts of the subordination and superor- 
dination of analytic functions, the existence of analytic 
solutions for fractional differential equations in complex 
domain are suggested and posed in [24,25]. 

One of the most frequently used tools in the theory of 
fractional calculus is furnished by the Riemann-Liouville 
operators (see [22]). The Riemann-Liouville fractional 
derivative could hardly pose the physical interpretation 
of the initial conditions required for the initial value 
problems involving fractional differential equations. 
Moreover, this operator possesses advantages of fast con- 
vergence, higher stability and higher accuracy to derive 
different types of numerical algorithms [26]. 

Definition 2.1. The fractional (arbitrary) order integral 
of the function f  of order > 0  is defined by  

   
   

1

= d
t

a a

t
I f t f


 

. 



  

when  we write = 0,a ( ) = ( )* ( ),aI f t f t t
  where 

 denoted the convolution product (see [22]), (*)

   
1

= , >
t

t


 0t





 and   = 0, 0t t   and  t   

as 0   where  is the delta function.  t
Definition 2.2. The fractional (arbitrary) order deri- 

vative of the function f  of order 0 <

   
     1d d

= d =
d 1 d

t

a aa

t
D f t f I f t

t t


 

 





  .  

Remark 2.1. From Definition 2.1 and Definition 2.2, 
we have 

 
 

1
= , > 1; 0

1
D t t   

 
 

 


  
< < 1  

and 

 
 

1
= , > 1

1
I t t   

 
 

 


  
; > 0.  

In this note, we consider the fractional Lane-Emden 
equations of the in Equation (2). 

3. Analytic Solution 

Consider that we are given a power series representing 
the solution of fractional Lane-Enden differential equa- 
tions: 

 
=0

= n
n

n

y t a


t                     (3) 

hence 

   
 =0

1
=

1
n

n
n

n
D y t a t

n
 




 

          (4) 

Theorem: The analytic solution of the IVP(2) satisfied 
the following equation:  

 
 

 
 

 

 

11

=2

=0

2

1 1

1 1

, =

n
n

n

n
n

n

a
t

n n
a t

n n

f t a t g t







 








 

    
         

   
 





     (5) 

proof 
Substitute (3) and (4) into Equation (2), we obtain the 

desired equation. 
The method of power series depends to find the co- 

efficients n ka   as a function of n and .  na

3.1. Linear Lane-Emden Fractional Differential 
Equation 

Consider    2

1
, =f t y y t

t
 in Equation (2) thus 

       2

1
=

k
D y t D y t y t g t

t t
 

           (6) 

with the initial condition  
1  is defined 

by    0 = , 0 = ,y A y B  
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Equation (5) convert to the following equation  

 
 

 
 

 

 

1
2 3

0 1

=2

2
=2

1

1 1

1 1

=

n
n

n

n
n

n

t
a t a t

n n
a k

n n

a t g t


 

t 





 


 









 
     
    

         








      (7) 

In case  g t  = 0, we obtain  and in general 0 1= = 0a a

   
       2

1 1
=

1 1 1

for = 2,3,

n n

n n
a a

n n k n

n

 
  

     

        



 (8) 

Examples 
Example 3.1.1.1 

Let 
3

= , =
2 2

  1
, we pose the linear FDE  

       
3 1 1

2 2 2 =
k

D y t D y t t y t g t
t

   (9) 

with the initial condition  

   0 = , 0 = ,y A y B  

Consider the solution of FDE is    =0
= n

nn
y t a t


Consequently,we have 

   

1
1 32
2 2

0 1

3

2

=2

3

2
2

=2

1
2

1 1

1 1
2 2

= ( )

n

n
n

n

n
n

t
a t a t

n n
a k

n n

a t g t



 

 



 
 
  

      

    
  

                







t




      (10) 

Hence 

 
2

1 1

2 2
=

1 1
1

2 2

for = 2,3,

n n

n n
a a

n n k n

n



         
   
                  



     (11) 

Example 3.1.1.2  

Let 
3

= , = 1
2

  , we get the linear FDE 

       
3 1

2 2
1

2

=
k

D y t Dy t t y t g t

t

       (12) 

with the initial condition  

   0 = , 0 = ,y A y B  

Consider the solution of FDE is     =0
= n

nn
y t a t


Consequently,we have  

   
 

 

1 1 3

2 2 2
0 1

3

2

=2

3

2
2

=2

1 1

1
2

=

n

n
n

n

n
n

a t a t t

n n
a k

n
n

a t g t



 

 



 
   

 
 
    
  

       







t       (13) 

with 

 

   
2

1

2
=

1
1

2

for = 2,3,

n n

n n
a a

n n k n

n



    
 
           





n

     (14) 

4. Numerical Collocation Method 

Collocation method for solving differential equations is 
one of the most powerful approximate methods for 
solving fractional differential equations. This method has 
its basis upon approximate the solution of FDE by a 
series of complete sequence of functions, in which we 
mean by a complete sequence of functions, a sequence of 
linearly independent functions which has no non zero 
function perpendicular to this sequence of functions In 
general, y(t) is approximated by  

   
=0

=
n

i i
i

y t a t             (15) 

where i  for  are an arbitrary constants 
to be evaluated and 

a = 0,1, 2, ,i 
 i t

= 0,1,2 ,

 for  are 
given set of functions. Therefore, the problem in 
Equation (6) of evaluating y(t) is approximated by (16) 
then is reduced to the problem of evaluating the co- 
efficients  for . 

= 0,1, 2, ,i n

ia i n
Let  , , t0 1 2 nt, ,t t  is a partition to interval [0,1] and  

=jt jh  and 
1

=
n

h  and  = 0,1, 2, ,j n

Define 

2=
k

D D t
t

 
 


   



         (16) 

Hence 

   
=0 =0

=
n n

i i i i
i i

a t a t
     
 
         (17) 
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Consider the solution of Equation (6) as following 

 
=2

=
n

i
i

i

y x A Bx x            (18) 

operating by   we obtain 

        =2
= 1

n i
i

y x A B x x      

hence 

   
 

 
 

21 1
=

1 1
i i ii i

x x k x
i i

ix  
 

    


     
   

put = jx x  we get  

       =2
= 1

n i
i j ji

t g t A B x      

A linear system Ax = b of n – 1 equations in n – 1 
variables is obtained and   = i

ij ja x  =j jb g t  for 
. , = 2,3, , 1i j n 

Hence, from Equation (6) we obtain the linear system 
Ax = b which could be solved by using any numerical 
method for solving linear system of algebraic equations. 

Numerical Examples 

To implement our examples, we used Matlab R2009b on 
Intel(R)core TM2Duo processor with 3.00 GHZ and 3 
GB RAM.  

Example 4.1.1 

     

    
   

  
   

2

2

2
2

1

4 4
= 6

4 4 6

(3 ) 3
2

3 3 2

k
D y t D y t y t

t t

k t
t

k t
t

 
  



 
 

 
 

 



 

      
        

     
      



      (19) 

with the initial condition      0 = 0, 0 = 0y y
Hence 

   
 

 
 

21 1
= .

1 1
i i ii i

x x k x
i i

ix  
 

     
 

     

2

  

See Table 1 and Figure 1, where the exact solution is  

  3=y t t t  and 
3 1

= , =
2 2

  . 

Example 4.1.2 

     

    
   

    
   

2

2

2
2

1

3 3
= 2

3 3 2

4 4
6

4 4 6

k
D y t D y t y t

t t

k t

k t
t

 
  

with the initial condition    0 = 0, 0 = 0y y  
Hence  

   
 

 
 

21 1
=

1 1
i i ii i

x x k x
i i

ix  
 

      
 

     
 

See Table 2 and Figure 2, where the exact solution is 

  2 3=y t t t  and 
3

= , = 1
2

  . 

 
Table 1. Absolute error of numerical solution of Example 
4.1. 

\n t 0 0.25 0.5 0.75 1 

5 0 1.3345e−3 0.0015 5.0673e−3 3.6339e−3

10 0 1.3232e−5 2.6342e−5 1.5634e−6 4.1443e−5

50 0 2.3416e−7 1.6611e−7 5.1126e−7 2.1233e−7

100 0 4.9383e−8 3.4453e−8 5.0347e−8 6.4332e−7

 

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0 ≤ t ≤ 1

f(
t)

Graph of the function f(t)=t3−t2

 

Figure 1. Numerical and analytic graph of solution of Ex- 
ample 4.1. 

 

t 

 
 

 
 

 



 

      
        

     
      

 


     (20) 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 ≤ t ≤ 1

f(
t)

Graph of the function f(t)=t2−t3

 

Figure 2. Numerical and analytic graph of solution of Ex- 
ample 4.2. 
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Table 2. Absolute error of numerical solution of Example 
4.2. 

\n t  0 0.25 0.5 0.75 1 

5 0 1.3323e−3 0.0011 5.0953e−3 4.4409e−3

10 0 1.2731e−5 1.0667e−5 2.5165e−5 4.4409e−5

50 0 2.0256e−6 1.6667e−7 5.0926e−7 2.4573e−6

100 0 9.2963e−8 1.6667e−8 5.0927e−8 6.4482e−7

5. Conclusion 

From above, we imposed the Lane-Emden differential 
equation of fractional order. The generality of definition 
of Lane-Emden as a fractional order is more importance 
in applied mathematics, mathematical physics and astro- 
physics. The order appeared in two different fractional 
powers. An approximate solution is obtained by employ- 
ing the method of power series. Furthermore, a numerical 
solution is established by Collection method for these 
equations. 

REFERENCES 
[1] M. Yigider, “The Numerical Method for Solving Differ-

ential Equations of Lane-Emden Type by Pade Approxi-
mation,” Discrete Dynamics in Nature and Society, Vol. 
2011, 2011, Article ID: 479396.  
doi:10.1155/2011/479396 

[2] R. P. Agarwal D. O. Regan and V. Lakshmikanthamr, 
“Quadratic Forms and Nonlinear Non-Resonant Singular 
Second Order Boundary Value Problems of Limit Circle 
Type,” Zeitschrift fur Analysis und ihre Anwendungen, 
Vol. 20, 2001, pp. 727-737.  

[3] R. P. Agarwal and D. O. Regan, “Existence Theory for 
Single and Multiple Solutions to Singular Positone Boun- 
dary Value Problems,” Journal of Differential Equations, 
Vol. 175, No. 2, 2001, pp. 393-414.  
doi:10.1006/jdeq.2001.3975 

[4] R. P. Agarwal and D. O. Regan, “Existence Theory for 
Singular Initial and Boundary Value Problems: A Fixed 
Point Approach,” Applicable Analysis: An International 
Journal, Vol. 81, No. 2, 2002, pp. 391-434.  
doi:10.1080/0003681021000022023 

[5] M. M. Coclite and G. Palmieri, “On a Singular Nonlinear 
Dirichlet Problem,” Communications in Partial Differen-
tial Equations, Vol. 14, No. 10, 1989, pp. 1315-1327.  
doi:10.1080/03605308908820656 

[6] J. H. Lane, “On the Theoretical Temperature of the Sun 
under the Hypothesis of a Gaseous Mass Maintaining Its 
Volume by Its Internal Heat and Depending on the Laws 
of Gases Known to Terrestrial Experiment,” The Ameri-
can Journal of Science and Arts, Vol. 50, 1870, pp. 57- 
74. 

[7] R. Emden, “Gaskugeln,” Teubner, Leipzig and Berlin, 
1907. 

[8] S. Chandrasekharr, “Introduction to the Study of Stellar 
Structure,” Dover, New York, 1967. 

[9] M. Chowdhury and I. Hashim, “Solutions of Emden Fow- 
ler Equations by Homotopy-Perturbation Method,” Non- 
linear Analysis: Real World Applications, Vol. 10, No. 1, 
2009, pp. 104-115. doi:10.1016/j.nonrwa.2007.08.017 

[10] A. Yildirim and T. Öziş, “Solutions of Singular IVPs of 
Lane-Emden Type by the Variational Iteration Method,” 
Nonlinear Analysis: Theory, Methods & Applications, 
Vol. 70, No. 6, 2009, pp. 2480-2484. 
doi:10.1016/j.na.2008.03.012 

[11] K. Parand and A. Pirkhedri, “Sinc-Collocation Method 
for Solving Astrophysics Equations,” New Astronomy, 
Vol. 15, No. 6, 2010, pp. 533-537. 
doi:10.1016/j.newast.2010.01.001 

[12] E. Momoniat and C. Harley, “An Implicit Series Solution 
for a Boundary Value Problem Modelling a Thermal Ex-
plosion,” Mathematical and Computer Modelling, Vol. 53, 
No. 1-2, 2011, pp. 249-260. 
doi:10.1016/j.mcm.2010.08.013 

[13] K. Parand, M. Dehghan, A. Rezaeia and S. Ghaderi, “An 
Approximation Algorithm for the Solution of the Nonlin-
ear Lane-Emden Type Equations Arising in Astrophysics 
Using Hermite Functions Collocation Method,” Com-
puter Physics Communications, Vol. 181, No. 6, 2010, pp. 
1096-1108. doi:10.1016/j.cpc.2010.02.018 

[14] H. Adibi and A. Rismani, “On Using a Modified Legen-
dre-Spectral Method for Solving Singular IVPs of Lane- 
Emden Type,” Computers & Mathematics with Applica-
tions, Vol. 60, No. 7, 2010, pp. 2126-2130. 
doi:10.1016/j.camwa.2010.07.056 

[15] A. H. Bhrawy and A. S. Alofi, “A JacobiGauss Colloca-
tion Method for Solving Nonlinear LaneEmden Type 
Equations,” Communications in Nonlinear Science and 
Numerical Simulation, Vol. 17, No. 1, 2012, pp. 62-70.  

[16] R. P. Agarwal and D. O. Reganr, “Singular Boundary 
Value Problems for Superlinear Second Order Ordinary 
and Delay Differential Equations,” Journal of Differential 
Equations, Vol. 130, No. 2, 1996, pp. 333-335.  
doi:10.1006/jdeq.1996.0147 

[17] R. Lewandowski and B. Chorazyczewski, “Identification 
of the Parameters of the KelvinVoigt and the Maxwell 
Fractional Models, Used to Modeling of Viscoelastic 
Dampers,” Computers and Structures, Vol. 88, No. 1-2, 
2010, pp. 1-17. doi:10.1016/j.compstruc.2009.09.001  

[18] F. Yu, “Integrable Coupling System of Fractional Soliton 
Equation Hierarchy,” Physics Letters A, Vol. 373, No. 41, 
2009, pp. 3730-3733. doi:10.1016/j.physleta.2009.08.017 

[19] K. Diethelm and N. Ford, “Analysis of Fractional Differ-
ential Equations,” Journal of Mathematical Analysis and 
Applications, Vol. 265, No. 2, 2002, pp. 229-248. 
doi:10.1006/jmaa.2000.7194 

[20] R. W. Ibrahim and S. Momanir, “On the Existence and 
Uniqueness of Solutions of a Class of Fractional Differ-
ential Equations,” Journal of Mathematical Analysis and 
Applications, Vol. 334, No. 1, 2007, pp. 1-10. 
doi:10.1016/j.jmaa.2006.12.036 

[21] S. M. Momani and R. W. Ibrahim, “On a Fractional Inte-
gral Equation of Periodic Functions Involving Weyl-Ri- 
esz Operator in Banach Algebras,” Journal of Mathe-

Copyright © 2012 SciRes.                                                                                  AM 

http://dx.doi.org/10.1155/2011/479396
http://dx.doi.org/10.1006/jdeq.2001.3975
http://dx.doi.org/10.1080/0003681021000022023
http://dx.doi.org/10.1080/03605308908820656
http://dx.doi.org/10.1016/j.nonrwa.2007.08.017
http://dx.doi.org/10.1016/j.na.2008.03.012
http://dx.doi.org/10.1016/j.newast.2010.01.001
http://dx.doi.org/10.1016/j.mcm.2010.08.013
http://dx.doi.org/10.1016/j.cpc.2010.02.018
http://dx.doi.org/10.1016/j.camwa.2010.07.056
http://dx.doi.org/10.1006/jdeq.1996.0147
http://dx.doi.org/10.1016/j.compstruc.2009.09.001
http://dx.doi.org/10.1016/j.physleta.2009.08.017
http://dx.doi.org/10.1006/jmaa.2000.7194
http://dx.doi.org/10.1016/j.jmaa.2006.12.036


M. S. MECHEE, N. SENU  

Copyright © 2012 SciRes.                                                                                  AM 

856 

matical Analysis and Applications, Vol. 339, No. 2, 2008, 
pp. 1210-1219. doi:10.1016/j.jmaa.2007.08.001 

[22] B. Bonilla, M. Rivero and J. J. Trujillor, “On Systems of 
Linear Fractional Differential Equations with Constant 
Coefficients,” Applied Mathematics and Computation, Vol. 
187, No. 1, 2007, pp. 68-78. 
doi:10.1016/j.amc.2006.08.104 

[23] I. Podlubny, “Fractional Differential Equations,” Acade- 
mic Press, London, 1999. 

[24] S. Zhangr, “The Existence of a Positive Solution for a 
Nonlinear Fractional Differential Equation,” Journal of 
Mathematical Analysis and Applications, Vol. 252, No. 2, 

2000, pp. 804-812. doi:10.1006/jmaa.2000.7123 

[25] R. W. Ibrahim and M. Darusr, “Subordination and Su-
perordination for Analytic Functions Involving Fractional 
Integral Operator,” Complex Variables and Elliptic Equa-
tions, Vol. 53, No. 11, 2008, pp. 1021-1031. 
doi:10.1080/17476930802429131 

[26] R. W. Ibrahim and M. Darusr, “Subordination and Su-
perordination for Univalent Solutions for Fractional Dif-
ferential Equations,” Journal of Mathematical Analysis 
and Applications, Vol. 345, No. 2, 2008, pp. 871-879. 
doi:10.1016/j.jmaa.2008.05.017  

 

http://dx.doi.org/10.1016/j.amc.2006.08.104
http://dx.doi.org/10.1006/jmaa.2000.7123
http://dx.doi.org/10.1080/17476930802429131
http://dx.doi.org/10.1016/j.jmaa.2008.05.017

