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ABSTRACT

In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the
functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral formula are extended
to the locally convex space.
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1. Introduction

The properties of analytic functions have been given in
references [1,2]. The theory of analytic functions was
extended to vector valued function in reference [3].

In this paper, we extended the theory of vector valued
function to locally convex space.

Let E be a complete Hausdorff locally convex space
on the real or complex domain D, and P be the suffi-
cient directed set of semi norms which generates the to-
pology of E. We denote the ad joint space of E by
E’', i.e. E' is the set of linear bounded functions on
E.

Definition 1 Let f(z) be a vector function defined
on a domain D with values in E . If there is an ele-
ment f'(z)eE such that the difference quotient

f(z+h)-f(z)
h

h—0, wecall f'(z) the weakly (strongly) derivative
of f(z) at z. We also say that f(z) is weakly
(strongly) derivative at z in D . We call f (Z)
weakly (strongly) derivativein D .

Definition 2 A vector function f(z) is

1) weakly continuous at z=1z, if

}g{ﬂgo(f (z)-f (ZO))| =0 foreach peE'.

tends weakly(strongly) to f'(z) as

2) strongly continuous at z =1z, if
lim|go( f(z)-f (ZO))| =0 foreach peE'.
t-ty

Definition 3 A vector function f(z) is said to be
regularin D if go( f (Z)) is regular for every @eE',
where range of f(z) isin E. If a vector valued func-
tion f(z) is regular in C, then f(z) is called an
entire function or said to be entire.
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Theorem 1 [4] (Cauchy) If f(z) is a regular vec-
tor-valued function on the domain D with values in the
locally convex space E.Let y beaclosed pathin D,
and assume that y is homologous to zero in D, then

[ f(z)dz=0

where C is a circle.
Proof For any linear bounded functional ¢ E', we
have

o[, f(2)dz)=[ (1 (2))az=0.
Hence
[ f(z)dz=0

Theorem 2 [5] (Cauchy integral formula) Let f (z)
be a regular vector-valued function on the domain D
with values in the locally convex space E.Let y bea
closed path in D, and assume that y is homologous to
zeroin D ,andlet z bein D andnoton p.Then

2Lnijy%dtzn(;/,z) f(2) (M

where n(y,z) is the index of the point z with respect
to the curve y.

Proof For any linear bounded functional ¢peE’, we
have

2_1ri7t—z 2miYr t-z

=n(r.2)e(f(2))

( ! jwdt}i mdt

Then
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%nijygdt —n(7.2)f(2)

2. The Main Conclusions

Theorem 3 Given the power series

ian(z—zo)",an cE.

n=0

2

1

Set 1_ lim sup( p(an))ﬁ. Then the power series (2)
p n—oo

is absolutely convergent for |Z—ZO|< p and divergent
for |Z—ZO| > p . The power series (2) convergence to a
regular function on |Z—ZO| < p with values in E, the
convergence being uniform in every circle of radius less
than p.

Proof First, we will prove the power series (2) is ab-
solutely convergent for |z—zo|< p and divergent for
|z—2,|>p.

By Theorem 1, for any p e P, we have

s

where M, =max{p(f(Z)),ZeC,C:|Z—ZO|=r<p}.
Let r=p—¢,then

p(ian(z—zo)”

n=0

dz<Mr,,

J<Z Pl

n

IA

o |z—zo|
M ,
o

where |Z—ZO| < p—¢ . Thus the power series (2) is ab-
solutely convergence. But for |Z - ZO| > p, if we suppose
the power series (2) is convergence, it is contradict with
the radius is p . So the power series (2) is absolutely con-
vergent for |Z - ZO| < p and divergent for |Z - 20| >p.

Secondly, for any linear bounded functional @< E’,
we have

o(1(2)=30(a)(z-2) Je-2)<p.

The right side series convergence to a regular function
on |z-2z,|>p with values in E. So f(z) is regular
in the circle and the convergence being uniform.

Definition 4 Let f(z) have an isolated singularity at
z=1, andlet

f(z)= _Zan(z—zo) (3)
where
a :Lj LZ)dz 4)
" 2miYrz-z,
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be its Laurent Expansions about z =z,. The residue of
f(z) at z=z, is the coefficient a_,. Denote this by
Resf(a).

Theorem 4 Let f(z) be a regular vector-valued
function except for a finite number of points z,,2,,--+, 2,
in the domain D. Let y be a closed path in D, and
assume that y is homologous to zero in D, and let z
bein D andnoton y.Then

= Sn(rz et (2)

1
— 5
2TCi J‘;/ t—Z j=1 ( )

Proof For any linear bounded functional ¢peE’, we
have

of, T (2)z=[ o(f (2))e

Then

:Zk:n(y,zj)ReS(p( f (Z)) .

j=1 =zj

= | L0
2nirt—z
Theorem 5

1)If f(z) hasapole of order one at a point  z,
then

(6)

2) If f(z) has a pole of order n at a point z,
then

Res f (z,)=lim(z-2,) f(2)

Z—a

| I U n
hilalF(Z—Zo) f(z) ()

(n-1)!z

Proof Because f(z) has a pole of order n at a
point z,,then f(z) can be written in the form

N5
()=

where ¢(z) is regular and nonzero at 7.
So ¢#(z) hasa power series representation

© ¢(”)(ZO)(Z_ZO)n

n!
in some neighborhood of z,. It follows that

Res f(z,)=

Z=a

4(z)=

n=0

0 (5 i
f(z)= 3 ’ n(! 0)(2_2(’)
¢ (z-z,)"

in some neighborhood of z,. Then we have formula (7)

1 4!

—(2-2) 1(2)

ReSf(ZO):min;dzn—l

z=a

Obviously, when n=1, the formula (7) is formula (6).
Theorem 6 If
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(Z—Zo)m+1+---’

where z, €E for k=mm+1L,.:--, and if ar;l exists,
then f' (Z) exist and has a pole with order m at z,.
Proof Since

f(2)
(Z_Zo)m

For any linear bounded functional ¢ € E’, we have
f (Z) !
—a_ |<opla ,

gl)((z—zo)m mJ q)( m)

as 0<|z-7,|<5,
where ¢ is sufficiently small. Thus

o1 oo s e

It follows that

() ) et )
((Z_Zo)m mJ | ”Z‘;[I (Z_Zo)m m]

Therefore

f(z)=a,(z-z)" +a

m+1

=a, +am+1(z—zo)+am+2(z—zo)2 oo

a’ b b

f -1 7) = m + m-+1 ¥ m+2
( ) (Z—Zo)m (Z_Zo)m+1 (Z_Zo)m+2
where b

m+19bm+2’”' < E

Remark: a ' exist, this condition is important.

For example, in Z,, we define X-y=(XY,%Y,),
where X=(X,,X,),y=(Y,,Y,) and For any linear bou-
nded functional ¢ € E’

p(xy)= max{|xi Y, |} < max{|xi |} max{|yi |} =p(x)p(y).

e,

Thus Z, isaB-algebra,and x' = (i,ij We set
Xl X2

f (z):(z,z3): 2 +12%,,

where € =(1,0) and e, =(0,1). It follows that z=0
is zero with order one, but

With order three.

Theorem 7 If f(z) and g(z) are regular in D
with values in E and if f (Zn): g(Zn) , h=12--,
the points {Zn} having a limit point in D , then

f(z)=g(z) in D.

Proof For any linear bounded functional @< E', we

have

o(f(2))=0(9(z)).2¢D
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So
f(z)=9(z).zeD.

Theorem 8 Let f(z) be defined in a domain D of
the extended plane and on its boundary C, regular in
D and strongly continuous in DUC . If

{sup{p(f(z))}:ZeC}zM ,

then either p(f(z))=M or p(f(2)<M in D.
Proof For any linear bounded functional ¢peE’, we
have

o(f(z))<M,zeDUC.

But except ¢( f (2)) is constant, ¢(f(z))<M,zeD.
So either p( f (z)): M or p( f (Z))< M in D.

Remark: Unlike the classical case, p(f(z)) may
have a minimum other zero in D as the following ex-
ample shows.

For example, Let B be a Banach space of complex
pairs, z=(z,,2,), where ||Z||:(|Z1 22|).

B

Set
a,=(1,0),a,=(0,1),
Then
f(z)=a+a,z, ||f(z)||=1 for |7]<1
and

||f(z)||:|z| for |z|>1.

Theorem 9 If f(z) is regular in D, and if
p( f (z)) is bounded in D, then f(z)=constant ele-
ment.

Proof For any linear bounded functional ¢ E', we
have

o(f(2))<p(o)p(f(2)).

So ¢(f(z)) is bounded in D, then ¢(f(z)) is
constant.

Suppose f(z) is not constant, then exist two point
Z,,Z, such that

f(z)="1,f(z,)="f,f=f,.
Thus exist g e E' satisfy
o (f(2)=a(f(2)).

This is contradict with ¢(f(z)) is constant. So
f (z) =constant element.

Theorem 10 If f (Z) is regular in the unit circle, sat-
isfy the condition p(f(z))<M and f(0)=0. Then

p(f(z))<Mlz.|7<1.

Proof For any linear bounded functional ¢peE’, we
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have

o(1 ()= p(o) p(f (2))<Mp(f ()2 <1.

Since every point z, € E, their exist a bounded func-

tion ¢ such that

So
o(f(2))=p(f(2).p(e)=1
Then
p(f(Z))SM |z , z|<1,
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