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ABSTRACT 

In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the 
functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral formula are extended 
to the locally convex space. 
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1. Introduction 

The properties of analytic functions have been given in 
references [1,2]. The theory of analytic functions was 
extended to vector valued function in reference [3]. 

In this paper, we extended the theory of vector valued 
function to locally convex space. 

Let  be a complete Hausdorff locally convex space 
on the real or complex domain , and  be the suffi-
cient directed set of semi norms which generates the to-
pology of . We denote the ad joint space of  by 

, i.e.  is the set of linear bounded functions on 
. 

E
D P

E
E

E
E
E

Definition 1 Let  f z  be a vector function defined 
on a domain  with values in . If there is an ele-
ment 

D E
 f z 

 
E


 such that the difference quotient  

f z h f  z

h
 tends weakly(strongly) to  f z  as  

0h  , we call  f z  the weakly (strongly) derivative 
of  f z  at . We also say that z  f z  is weakly 
(strongly) derivative at  in . We call z D  f z  
weakly (strongly) derivative in . D

Definition 2 A vector function  f z
z

 is  
1) weakly continuous at 0z   if 

    
0

0 0lim
t t

f z f z


   for each E  . 

2) strongly continuous at 0z z  if 

    
0

0 0lim
t t

f z f z


   for each E  . 

Definition 3 A vector function  f z  is said to be 
regular in  if D  

Theorem 1 [4] (Cauchy) If  f z
D

 is a regular vec-
tor-valued function on the domain  with values in the 
locally convex space . Let E   be a closed path in , 
and assume that 

D
  is homologous to zero in , then D

 d 0f z z


  

where c is a circle. 
Proof For any linear bounded functional E  , we 

have 

     d d
c c

f z z f z z  0   , 

Hence 

 d 0
c

f z z   

Theorem 2 [5] (Cauchy integral formula) Let  f z  
egular vector-valued function on the domain D  

th values in the locally convex space E . L
be a r
wi et   be  
closed path in D , and assume that 

 a
  is h mologous to 

zero in D , and z  be in  and n t on 
o

let  D o  . Then 

    1
d ,

2π

f t
t n z f z

i t z


         (1) 

where  ,n z  
urve 

is the index of the point  with respect z
to the c  . 

Proof For ny E  a  linear bounded functional , we 
have 

    

    

1 1
d d

2π 2π

,

f zf z
t t

i t z i t z

n z f z

 




 

 
   


 
. f z  is regular for every E  , 

where range of  f z  is in . If a vector valued func-
tion 

E
 f z  is regular in , then C  f z  is called an 

entire function or said to be entire. Then 
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    1
d ,

2π

f t
t n z f z

i t z


  

2. The Main Conclusions 

es 

           (2) 

Set 

Theorem 3 Given the power seri

 n


  0
0

,n n
n

a z z a E


.

  
11

lim sup n
n

n
a

 
 . Then the power series (2) 

is lutely convergent fo abso r 0z z    and divergent 
for 0z z   . The power se nvergence to a 
regul n on 

ries (2) co
ar functio 0z z    with values in E , the 

convergence being un very circle of radi  less 
than 

iform in e us
 . 

Proof First, we will prove the power series (2) is ab-
solutely convergent for 0z z    and divergent for 

0z z   . 
rem 1, for any  By Theo , we have p P

    
  1

0

d
2πn r nn

C

z
p a z M r

z z
 


 , 

where 

1 p f

   0max , , :rM p f z z C C z z r    .  
Let r    , then 

   

 

0 0
0 0

0

0

,

n n

n n
n n

n

n
n

p a z z p a z z

z z
M  

 

 

 






    
 






 


 

where 0z z     . Thus the power series (2) is ab-
 convergence.solutely  But for  0zz , if we suppose 

the power series (2) is converg n , i is contradict with 
the radius is 

e ce t 
 . So the power series (2) is absolutely con- 

vergent for 0z z    and divergent for 0z z   . 
Secondly, near bounded functi for any li onal E  , 

we have 

     0 0
0

,
n

n
n

f z a z z z z  




    . 

The right side series convergence to a regular function 
on 0z z    with values in E . So  f z  is regular 
in th d the convergence eing uni . 

Definition 4 Let  
e circle an  b form

f z  have an isolated singularity at 
z 0z  and let  

   0

n

n
n

f z a z z




              (3) 

where  

 
0

1
d

2πn

f z
a z

i z z


               (4) 

be its Laurent Expansions about 0 . The residue of z z
 f z  at 0z z  is the coefficient 1a . Denote this by 

)a .(Re sf  
Theorem 4 Let  f z  be a ar vector-valued 

on ex for a finite number of ints 1 2, , , kz z z  
m

regul
functi cept  po
in the do ain D . Let   be a closed path
as

 in D , and 
sume that   is ho ous to zero in D , and let z  

be in D  and not on 
molog
 . Then 

    
1

1
d , Res

2π

k

j
z zj

f t
t n z f

i t z





        ( ) 

j

z 5

Proof For any linear bounded functional E  , we 
have 

       d d , Resj
z z

 
1 j

k

j

f z z f z z n z
 

     . f z


Then 

     
1

1
d , Res

2π j

k

j
z zj

f t
t n z f z

i t z





   

Theorem 5 
1) If  f z  has a pole of order one at a point 

then  
0z  

     0 0Re lim
z az a

s f z z z f z


          (6) 

 2) If  f z  has a pole of order  at a point 
then 

n 0z  

       
d

1

0 01

1 d
Re lim

1 !

n
n

nz az a
s f z

z
7

Proof Because 

z z f z
n




 


   ( ) 

 f z  has a pole of order 
point , then 

n  at a 

0z  f z  can be written in the form  

   
 0

n

z

z z





 f z

where  z  is regular and nonzero at 
So 

0z . 
 z  has a power series repre on sentati

 
    0
n z

z z z





   n

in some neighborhood of . It follows that 

0
0 !n n

0z

 

     

 

0
0!

m
nf z



   
0 0

n
nz

z z

z z






in some neighborhood of . Then we hav  formula (7) 0z e

       
1

0 01
Re m

1 d naz a

1 d
li

!

n
n

z
s f z z z f z

n z  
 



 

Obviously, when 1n  , the formula (7) is formula (6). 
Theorem 6 If 
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      1
,

m

m mf z a z a z z


      0 1 0

m
z

w or , and if here kz E  f . 1,k m m   1
ma  exists, 

then  1f z  
 Since 

exist and with order  at 
 

has a pole m 0z . 
Proof

 
 

  1 0 2 0 .m m m

f z
a a z z a z z        2

m

For any linear bounded functional 

0z z

E  , we have 

 
 

  11

0

m
z z  

m m

f z
a a 


 
   , 

as 00 z z    , 
ere wh   is sufficiently small. Thus 

 
 

 
 

1 1

0

1m

f z f z
I a a a

z
  

    
       

  
. 

It follows that 

0

m mm m
z z z     

 
 

 
 

1

1

1

1

0

.m mm
n

f z f z
a I I a

z z




 



   
     

    
  

Therefore 

0

m
z z 

 
     

1
1 1 2

1 2

0 0 0

,m m m
m m m

a b b
f z

z z z z z z


  

    
  

  

where .
Rem exist, this condition is important. 
For exam in 

1 2, ,m mb b E    
ark: 1a  m

ple, 2Z , we define  1 1 2 2,x y x y x y  , 
where   1 2 1 2, , , x x x y  

nal 
y  y

nd
and For any linear bou- 

ed functio E   

           i i, max max maxi ix y x y x  . 

Thus 

y x y  

2Z  is a B-algebra, and 1

1 2

1 1
,x

x x
  
  
 

. We set 

   3 3
1 1 2,f z z z z e z e   , 

wh . It follows there    and   at 0z1 1,0e  2 0,1e    
is zer r ono with orde e, but  

 1
1 23 3

1 1 1 1
,f z e e

z zz z
  



With order three. 
Theorem 7 If 

  
 

 

 f z  and  g z  are r r in 
with values in if

egula D  
 E  and    n n f z g z , 1, 2,n   , 

hen th  ne points  nz  having a  point ilimit  D , t
   f z g z  in D
Proof For any near bounde l 

. 
li d functiona E  , we 

have 

      ,f z g z z   

So 

    ,f z g z z D  . 

Theorem 8 Let  f z  
e and on 
ntinuo

be defined in a omain  of 
th tended plan its boundary  reg n 

and strongly co us in If 

 d D
ular ie ex C ,

 D  D C . 

    sup :p f z z C M  , 

then either   p f z M  or Mzfp ))((  in D . 
Proof For any linear bounde tional d func E  , we 

have 

   ,f z M z D C    . 

But except   f z  is constant,    ,f z M D z  . 
So eith   p f z Mer  or

Rema clas
 p f
sical c

  z M  in D . 
ase, rk: Unlike the   p f z  may 

have a minimum other zero in as t ng ex-
am

mple, Let pac o lex 
pa

D  he followi
ple shows. 
For exa be a Banach s e of c mpB  
irs,  1 2,z z z , where  1 2,z z z . 
Set 

   1 2

Then

1,0 , 0,1a a  , 

  

  1 2f z a a z  ,   1f z   for 1z   

and  

 f z z  for 1z  . 

 Theorem 9 If  is regular in , and if Df z
    p f z is bound , then ed in D  f z  constant ele-

Proof For any linear bou functional 
ment. 

nded E  , we 
have 

       f z p p f  z . 

So   f z  is bounded in D , then   f z  is 
constant. 

 f z  
that 

Suppose is not constant, then exist two point 
 such 1 2,z z

   1 1 2 1 2, 2 ,f z f f z f f f   . 

Thus exis E

D

t    satisfy 

     0 1 0 2f z f z  . 

This is contradict with   f z  is constant. So 
 f z  constant element. 

 f z  Theorem 10 If is regular in the unit circle, sat-
isfy the condition   z Mp f  0 0f and . Then 

   , 1z zp f z M 

inear 

. 

Proof For any l bounded functional E  , we 
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have 

          , 1f z p p f z Mp f z z   . 

ded fSince every point 0z E , their exist a boun unc-
tion   such that  

     0 0 , 1z p z p  .  

So  

       , 1p f z p  . f z 

Then 

   , 1p f z M z z  . 
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