

Inverse Shadowing and Weak Inverse Shadowing Property

B. Honary, Alireza Zamani Bahabadi

Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran Email: honary@math.um.ac.ir, zamany@um.ac.ir

Received February 25, 2012; revised April 5, 2012; accepted April 12, 2012

ABSTRACT

In this paper we show that an Ω -stable diffeomorphism f has the weak inverse shadowing property with respect to classes of continuous method θ_s and θ_c and some of the Ω -stable diffeomorphisms have weak inverse shadowing property with respect to classes \mathcal{T}_0 . In addition we study relation between minimality and weak inverse shadowing property with respect to class \mathcal{T}_0 and relation between expansivity and inverse shadowing property with respect to class \mathcal{T}_0 .

Keywords: Inverse Shadowing Property; Minimal Homeomorphism; δ -Method; Positive Expansive

1. Introduction

Inverse shadowing was introduced by Corless and Pilyugin [1] and also as a part of the concept of bishadowing by Diamond et al. [2]. Kloeden, Ombach and Pokroskii [3] defined this property using the concept of δ -method. One can also see [4-7] for more information about the concept of δ -method. Authors in [8] studied on locally genericity of weak inverse shadowing with respect to class T_0 . For flows, there are lots of existing work on finding the minimal sets in a systems with shadowing property. See for example [9-12]. In this paper we study diffeomorphisms with weak inverse shadowing property with respect to class as θ_s , θ_c and T_0 . First we show that an Ω -stable diffeomorphism f has weak inverse shadowing property with respect to classes of continuous method θ_s and θ_c (Theorem 1) and some Ω -stable diffeomorphisms have weak inverse shadowing property with respect to classes \mathcal{T}_0 (Theorem 2). In addition we study relation between minimality and weak inverse shadowing property with respect to class T_0 and show that a chain transitive homeomorphism f on compact metric space X is minimal if and only if it has weak inverse shadowing property with respect to class T_0 (Theorem 3). Finally we study relation between positively expansive and inverse shadowing property with respect to class \mathcal{T}_0 and show that if f has inverse shadowing property with respect to class \mathcal{T}_0 , then f is not positive expansive (Theorem

Let (X,d) be a compact metric space and let $f:X\to X$ be a homeomorphism (a discrete dynamical system on X). A sequence $\{x_n\}_{n\in\mathbb{Z}}$ is called an orbit of f, denote by o(x,f), if for each $n\in\mathbb{Z}$, $x_{n+1}=f(x_n)$ and is called a δ -pseudo-orbit of f if

$$d(f(x_n), x_{n+1}) \le \delta, \forall n \in \mathbb{Z}.$$

Denote the set of all homeomorphisms of X by Z(X). In Z(X) consider the complete metric

$$d_0(f,g) = \max \left\{ \max_{x \in X} d(f(x), g(x)), \right.$$

$$\max_{x \in X} d(f^{-1}(x), g^{-1}(x)) \right\},$$

which generates the C^0 -topology.

Let $X^{\mathbb{Z}}$ be the space of all two sided sequence $\xi = \{x_n : n \in \mathbb{Z}\}$ with elements $x_n \in X$, endowed with the product topology. For $\delta > 0$ let $\Phi_f(\delta)$ denote the set of all δ -pseudo orbits of f.

A mapping $\varphi: X \to \Phi_f(\delta) \subset X^\mathbb{Z}$ is said to be a δ -method for f if $\varphi(x)_0 = x$, where $\varphi(x)_0$ is the 0-component of $\varphi(x)$. If φ is a δ -method which is continuous then it is called a continuous δ -method. The set of all δ -methods (resp. continuous δ -methods) for f will be denoted by $\mathcal{T}_0(f,\delta)$ (resp. $\mathcal{T}_c(f,\delta)$). If $g: X \to X$ is a homeomorphism with $d_0(f,g) < \delta$, then g induces a continuous δ -method φ_g for f defined by

$$\varphi_g(x) = \{g^n(x) : n \in \mathbb{Z}\}.$$

Let $\mathcal{T}_{h}(f,\delta)$ denote the set of all continuous δ -

Copyright © 2012 SciRes.

methods φ_g for f which are induced by $g \in Z(M)$ with $d_0(f,g) < \delta$.

Let $A \subseteq M$ and $A \neq \emptyset$, a homeomorphism f is said to have the inverse shadowing property with respect to the class \mathcal{T}_{α} , $\alpha = 0$, c, h, in A if for any $\varepsilon > 0$ there is $\delta > 0$ such that for any δ -method φ in $\mathcal{T}_{\alpha}(f,\delta)$ and any point $x \in A$ there exists a point $y \in M$ for which

$$d(f^n(x), \varphi(y)_n) < \varepsilon, n \in \mathbb{Z}.$$

A homeomorphiosm f is said to have weak inverse shadowing property with respect to the class \mathcal{T}_{α} , $\alpha=0$, c, h, in A if for any $\varepsilon>0$ there is $\delta>0$ such that for any δ -method φ in $\mathcal{T}_{\alpha}(f,\delta)$ and any point $x\in A$ there exists a point $y\in M$ for which

$$\varphi(y) \subset N_{\varepsilon}(o(x,f)).$$

Fix $\delta > 0$. A continuous δ -method of class θ_s for the diffeomorphism f is a sequence $\Psi = \{ \psi_k : k \in Z \}$, where any ψ_k is a continuous mapping $\psi_k : M \to M$ such that

$$\max_{x \in M} d(\psi_k(x), f(x)) < d, k \in Z.$$

A sequence $\xi = \{x_k \in M : k \in Z\}$ is a pseudo-orbit generated by a continuous d-method $\Psi = \{\psi_k\}$ of a class θ_s if

$$x_{k+1} = \psi_k(x_k), k \in \mathbb{Z}.$$

Fix $\delta > 0$. A continuous δ -method of class θ_c for the diffeomorhism f is a sequence $\Psi = \{\psi_k : k \in Z\}$, with $\psi_0(x) = x$ for $x \in M$ and such that any ψ_k is a continuous mapping $\psi_k : M \to M$ with the property

$$\max_{x \in M} d\left(f\left(\psi_{k}(x)\right), \psi_{k+1}(x)\right) < \delta, k \in \mathbb{Z}.$$

A sequence $\xi = \{x_k \in M : k \in Z\}$ is a pseudo-orbit generated by a continuous δ -method $\Psi = \{\psi_k\}$ of class θ_c if

$$x_k = \psi_k(x_0), k \in \mathbb{Z}.$$

If a sequence is generated by θ_c or θ_s we briefly write $\xi \in G\Psi$.

A diffeomorphism f is said to have (weak) inverse shadowing property if for any $x \in M$ and $\varepsilon > 0$ there exists $\delta > 0$ such that, for any continuous δ -method Ψ , we can find a pseudo-orbit $\xi \in G\Psi$ satisfying the inequalities

$$d(f^{k}(x), x_{k}) < \varepsilon, k \in \mathbb{Z}.$$

$$(\{x_{k}\} \subset N_{\varepsilon}(O(x, f)).)$$

Pilyugin [5] showed that a structurally stable diffeomoriphism has the inverse shadowing property with respect to classes of continuous method, θ_c and θ_s . He

also showed that any diffeomorphism belonging to the C^1 -interior of the set of diffeomorphisms having the inverse shadowing property with respect to classes of continuous method, θ_c and θ_s is structurally stable.

2. Diffeomorphisms with Weak Inverse Shadowing Property with Respect to Class θ_s , θ_c and \mathcal{T}_0

In this section we show that an Ω -stable diffeomorphism f has the weak inverse shadowing property with respect to classes of continuous methods θ_s and θ_c and if we impose some condition on an Ω -stable diffeomorphism, then it has weak inverse shadowing property with respect to classes \mathcal{T}_0 .

Theorem 1 If a diffeomorphism f is Ω -stable, then it has the weak inverse shadowing property with respect to both classes θ_c and θ_s .

Before proving this main result, let us briefly recall some definitions. A diffeomorphism $f: M \to M$ is called Ω -stable if there is a C^1 -neighborhood U of f such that for any $g \in U$, $g|_{\Omega(g)}$ is topologically conjugate to $f|_{\Omega(f)}$.

A diffeomorphism f is called an Axiom A system if $\Omega(f)$ is hyperbolic and if $\Omega(f) = \overline{pref}$. Axiom A and no-cycle systems are Ω -stable [13].

Let f be an Axiom A diffeomorphism of M. By the Smale spectral Decomposition Theorem, the non-wandering set $\Omega(f)$ an e represented as a finite union of basic sets Λ_i .

$$\Omega(f) = \Lambda_1 \cup \cdots \cup \Lambda_k$$
.

In the proof of theorem 1 in [5], Pilyugin has used the following statement.

If a C^1 -diffeomorphism f satisfies Axiom A and the strong transversality condition, then there exist constants C > 0 and $\lambda \in (0,1)$ and linear subspace S(p), U(p) of T_nM for $p \in M$ such that

$$T_{p}M = S(p) \oplus U(p),$$

$$Df(p)S(p) \subset S(f(p)),$$

$$Df^{-1}(p)U(p) \subset U(f^{-1}(p)),$$

and

$$|Df^{k}(p)V| \le C\lambda^{k}|V| \text{ for } k \ge 0 \text{ and } V \in S(p),$$
 (1)

$$|Df^{k}(p)V| \le C\lambda^{k}|V| \text{ for } k \ge 0 \text{ and } V \in U(p),$$
 (2)

if P(p) and Q(p) are the projectors in T_pM onto S(p) parallel to U(p) and onto U(p) parallel to S(p), respectively, then

$$||P(p)|| \le C \text{ and } ||Q(p)|| \le C$$
 (3)

(here ||.|| is the operator norm).

Conditions (1), (2) and (3) play a basic role in the proof of theorem 1 in [5]. If Λ_i is a basic set then we can see for every $x \in \Lambda_i$, conditions (1), (2) hold. Since ||f(x)||| is bounded for $x \in \Lambda_i$, standard reasening shows (see, for example, Lemma 12.1 in [14]) that there exists a constant C for which inequalities (3) hold. Hence similar to the proof of theorem 1 in [5], f has the inverse shadowing property with respect to classes θ_s and θ_c on Λ_i . The following two propositions are well known (proposition 1 is the classical Birkhoff theorem [13], for proofs of statements similar to proposition 2, see [15], for example).

proposition 1 Let f be a homeomorphism of a compact topological space X and U be a neighborhood of its nonwandering set. Then there exists a positive integer N such that

$$\operatorname{Card}(k:f^{k}(x)\notin U)\leq N$$

for every $x \in X$, where $Card\ A$ is the cardinality of a set A.

In the following proposition, we assume that f is an Ω -stable diffeomorphism of a closed smooth manifold.

proposition 2 If Λ_i is a basic set, then for any neighborhood U of Λ_i there exists neighborhood V with the following property: if for some $x \in V$ and m > 0, $f^m(x) \notin U$, then $f^{m+k}(x) \notin V$ for $k \ge 0$.

Lemma 1 Let f be an Ω -stable diffeomorphism and $\Omega(f) = \Lambda_1 \cup \cdots \cup \Lambda_k$ be the Smale Spectral Decomposition. Let U_i be a neighborhood of Λ_i for $i=1,\cdots,k$. Then for any $x\in M$ there exists $N_0\in N$ and U_i for some $1\leq i\leq k$, such that

$$\left\{f^{N_0+k}\left(x\right)\right\}_{k>0}\subset U_i,$$

and similarly there exists U_i

$$\left\{f^{-N_0+k}\left(x\right)\right\}_{k>0}\subset U_j,$$

Proof. Suppose that the lemma is not true for some $x \in M$. Let V_i be a neighborhood of Λ_i as in proposition 2. Proposition 1 shows that there exists $n_i \in N$ such that $f^{n_i}(x) \in V_i$ for some $1 \le i \le k$. By assumption there exists $m_i \in N, m_i > n_i$ such that $f^{m_i}(x) \notin U_i$. By proposition 2, $f^{m_i+n}(x) \notin V_i$ for $n \ge 0$. Thus using proposition 1, there exists $n_j \in N, n_j > m_i$ such that $f^{n_j}(x) \in V_j$ for some $1 \le j \le k$ $j \ne i$ and there exists $m_j \in N, m_j > n_j$ such that $f^{m_j}(x) \notin U_j$. By proposition 2, $f^{m_j+n}(x) \notin V_j$ for $n \ge 0$. This process show that

Card
$$\left\{ n: f^{n}(x) \notin U := \bigcup_{i=1}^{k} V_{i} \right\} = \infty$$

contradicting proposition 1. Proof of

$$\left\{ f^{-N_0+k}\left(x\right)\right\}_{k\geq 0}\subset U_j,$$

is similar.

Proof of theorem 1. Let $x \in M$ and $\varepsilon > 0$ be arbitrary. Let U_i be a neighborhood of Λ_i for $i = 1, \dots, k$, such that shadowing property hold for them. By lemma 1 there exists a positive number N_0 , such that $\{f^n(x)\}$ $\subset U_i$ for some $1 \le i \le k$. Since M is com-

 $\{f^n(x)\}_{n\geq N_0} \subset U_i$ for some $1\leq i\leq k$. Since M is compact, there exist $l_2>l_1\geq N_0$, such that

$$d(f^{l_2}(x), f^{l_1}(x)) < \frac{\delta'}{2},$$

where $\delta' = \delta\left(\frac{\varepsilon}{2}\right)$ is as in the shadowing theorem for

hyperbolic set. So $\overline{\xi} = \left\{ f^{l_1}(x), f^{l_1+1}(x), \cdots, f^{l_2-1}(x) \right\}$ is a periodic δ' -pseudo-orbit of f in U_i . By shadowing theorem for hyperbolic sets, there is $z \in \Lambda_i$, which $\frac{\mathcal{E}}{2}$ -shadows $\overline{\xi}$. This shows that

$$o(z,f) \subset N_{\frac{\varepsilon}{2}}(o(x,f)).$$
 (*)

But Λ_i has the inverse shadowing property with respect to classes θ_s and θ_c . Thus there exists $\delta > 0$ such that for any continuous δ -method φ , we can find a pseudo-orbit $\xi = \left\{ x_k \right\}_{k \in \mathbb{Z}} \in G\Psi$ satisfying

$$d(f^k(z),x_k) < \frac{\varepsilon}{2}, k \in \mathbb{Z}. \ (**)$$

Inequalities (*) and (**) show that $\xi \subset N_{\varepsilon}(o(x, f))$. This complete the proof of theorem 1.

Theorem 2 Let f be an Ω -stable diffeomorphism and $\Omega(f) = \Lambda_1 \cup \Lambda_2 \cup \cdots \cup \Lambda_k$ be the Smale Spectral Decomposition such that $\{\Lambda_i, i=1,\cdots,k\}$ be fix point sources or sinks. Then f has the weak inverse shadowing property with respect to class T_0 in M - Fix(f), where Fix(f) is set of fix points of f.

Proof. Let $\varepsilon > 0$ and $x \in M$ be arbitrary that is not fix point and $\{U_i, i = 1, \cdots, k\}$ be open neighborhoods of $\{\Lambda_i, i = 1, \cdots, k\}$ respectively with diameter less than ε . Lemma 1 shows that there exists $N_0' \in N$ and U_i and U_i for some $1 \le i, j \le k$, such that

$$\left\{f^{N_{0'}+k}\left(x\right)\right\}_{k\geq 0}\subset U_{i},$$

and

$$\left\{f^{-N_{0'}+k}\left(x\right)\right\}_{k\geq 0}\subset U_{j},$$

Note that U_i is a neighborhood of fix point sink and U_i is a neighborhood of fix point source. Choose

$$0 < \mathcal{S}_0 < \frac{\min\left\{\dim\left(N_{\varepsilon'}\left(\Lambda_i\right) - f\left(N_{\varepsilon'}\left(\Lambda_i\right)\right)\right) \ \text{ and } \ \dim\left(N_{\varepsilon'}\left(\Lambda_j\right) - f^{-1}\left(N_{\varepsilon'}\left(\Lambda_j\right)\right)\right)\right\}}{2}$$

such that

$$d(f(x), f(z)) < \frac{\varepsilon'}{4}$$

for every $x, z \in M$ with $d(x, z) < \delta$, where

$$0 < \varepsilon' < \min \left\{ \left\{ \operatorname{diam}(U_i), i = 1, \dots, k \right\}, \frac{\varepsilon}{2} \right\}$$
and $f\left(N_{\varepsilon'}(\Lambda_i)\right) \subset \left(N_{\varepsilon'}(\Lambda_i)\right)$
and $f^{-1}\left(N_{\varepsilon'}(\Lambda_i)\right) \subset N_{\varepsilon'}(\Lambda_i)$.

This shows that if $\xi = \{x_k\} \subset M$ is a δ_0 -pseudo orbit and $x_l \in N_{\varepsilon'}(\Lambda_i)(x_l \in N_{\varepsilon'}(\Lambda_j))$ then $\{x_n\}_{n\geqslant l}\subset N_{\varepsilon'}(\Lambda_i)(\{x_n\}_{n\leqslant l}\subset N_{\varepsilon'}(\Lambda_j))$. there exists $N_0\in N$ such that

$$\left\{f^{N_0+k}\left(x\right)\right\}_{k>0} \subset N_{\varepsilon'}\left(\Lambda_i\right) \tag{1}$$

and

$$\left\{ f^{-N_0-k}\left(x\right)\right\}_{k\geq 0}\subset N_{\varepsilon'}\left(\Lambda_j\right). \tag{2}$$

Choose $\delta_{N_0+1} < \delta_{N_0} < \dots < \delta_1 < \delta_0$ such that if $d(x, y) < \delta_i$ for $i = N_0 + 1, N_0, \dots, 1$ then

$$d(f(x), f(y)) < \frac{\delta_{i-1}}{N_0 + 1}$$
and
$$d(f^{-1}(x), f^{-1}(y)) < \frac{\delta_{i-1}}{N_0 + 1}$$

And also
$$\frac{\delta_i}{N_0 + 1} + \delta_{N_0 + 1} < \delta_i$$
 for $i = N_0 + 1, N_0, \dots, 1$.

So for any δ_{N_0+1} -pseudo orbit

$$\left\{x_{-N_0-1}, x_{-N_0}, \cdots, x, x_1, \cdots, x_{N_0+1}\right\}$$

we have

$$d(f^{i}(x), x_{i}) < \frac{\varepsilon'}{2}, \quad i = -N_{0} - 1, \dots, N_{0} + 1.$$
 (3)

Now for any (δ_{N_0+1}) -method φ , by regarding the process of choosing δ_{N_0+1} and (4), (5), (6) we have $\varphi(x) \subset N_{\varepsilon}(o(x,f))$, and this completes the proof of theorem 2.

The following example shows that an Ω -stable maybe has not the weak inverse shadowing property with

respect to class \mathcal{T}_0 in its fix point. **Example.** Represent \mathbb{T}^2 as the squre $[-2,2] \times [-2,2]$, with identified opposite sides. Let $g: \mathbb{T}^2 \to \mathbb{T}^2$ be a diffeomorphism with the following properties:

The nonwandering set $\Omega(g)$ of g is the union of 4

hyperbolic fixed points, that is, $\Omega(g) = \{p_1, p_2, p_3, p_4\}$, where p_1 is a source, p_2 is a sink, and p_3 , p_4 are

$$W^{u} \{ p_{4} \} \cup \{ p_{3} \} = W^{s} (p_{3}) \cup \{ p_{4} \}$$

$$= [-2,2] \times \{0\}, W^{s} (p_{4})$$

$$= \{1\} \times (-2,2), W^{u} (p_{3}) = \{-1\} \times (-2,2),$$

where $W^{s}(p_{i})$ and $W^{u}(p_{i})$ are the stable and unstable manifolds, respectively.

There exist neighborhoods U_3, U_4 of p_3, p_4 such

that $g(x) = p_i + D_{p_i}g(x - p_i)$ for $x \in U_i$. The eigenvalues of $D_{p_3}g$ are $-\mu, \nu$ with $0 < \nu < 1 < \mu$, and the eigenvalues of $D_{p_A}g$ are $-\lambda, \kappa$ with $0 < \lambda < 1 < \kappa$.

Plamenevskaya [16] showed that g has the weak shadowing property if and only if the number

irrational. Note that g does not have the shadowing property. We can see that g does not have the weak inverse shadowing property with respect to class T_0 as well (Note that the number $\frac{\log \lambda}{\log \mu}$ is not necessary

irrational). For any $0 < \varepsilon < \frac{1}{4}$, let $0 < \delta < \varepsilon$ be the number of the weak inverse shadowing property of g. Construct a δ -method as following:

$$\varphi(p_4) = \{ \cdots, f^{-2}(p_4), f^{-1}(p_4), p_4, x_0, f(x_0), f^2(x_0), \cdots \},$$

where $x_0 \in (-1,1) \times \{0\} \subset W^u(p_4)$ and $d(p_4,x_0) < \delta$. For every $x \neq p_4$, define

$$\varphi(x) = \{\dots, f^{-2}(x), f^{-1}(x), x, f(x), f^{2}(x), \dots\},\$$

3. Relation between Minimality and Weak **Inverse Shadowing Property with Respect** to Class \mathcal{T}_0

A homeomorphism $f: X \to X$ is called minimal if f(A) = A, A closed, implies either A = M or $A = \phi$. It is easy to see that f is minimal if and only if o(x, f) = X for every $x \in X$.

A homeomorphism f is said to be chain transitive if for every $x, y \in X$ and $\delta > 0$ there are δ -pseudoorbits from x to y and from y to x.

The following example shows that there exists homeomorphiosms f with inverse shadowing property with respect to class T_0 which is not minimal.

Example. Let $X := \left\{ x = \left\{ x_n \right\}_{-\infty}^{\infty} : x_n \in \left\{ 0, 1 \right\} \right\}$ with metric

$$d(x,y) = \begin{cases} 2 & \text{if } x_0 \neq y_0 \\ \frac{1}{\min\{|k| : x_k \neq y_k\}} & \text{if } x_0 = y_0 \end{cases}$$

Let $\pi: \{-n, -n+1, \dots, n\} \to \{-n, -n+1, \dots, n\}$ be a permutation of the set $\{-n, -n+1, \dots, n\}$ for some $n \in \mathbb{N}$. Let $f_n(x) = x_{\pi(i)}$ if $-n \le i \le n$, and x_i otherwise.

 f_n is a homeomorphism and every point of X is a periodic point for f_n . We claim f_n has weak inverse shadowing property with respect to class \mathcal{T}_0 .

Proof of claim. Given $\varepsilon>0$ choose $N_0>n$ such that $\frac{1}{N_0}<\frac{\varepsilon}{2}$. $d(x,y)<\frac{1}{N_0}$ if and only if $x_i=y_i$ where $-N_0\leq i\leq N_0$. Let $\delta=\frac{1}{N_0}$ and φ be a δ -method. Let $x,y,z\in X$, then $d\left(f_n(x),y\right)<\delta$ implies $f_n(x)_i=y_i$ for $-N_0\leq i\leq N_0$ and hence by definition of f_n , $f_n^2(x)_i=f_n(y)_i$ for $-N_0\leq i\leq N_0$. Also $d\left(f_n(y),z\right)<\delta$ implies $f_n(y)_i=z_i$ for $-N_0\leq i\leq N_0$. Hence if $d\left(f_n(x),y\right)<\delta$ and $d\left(f_n(y),z\right)<\delta$ then $f_n^2(x)_i=z_i$ for $-N_0\leq i\leq N_0$, and so $d\left(f_n^2(x),z\right)<\delta$. Using this procedure we will get $d\left(f_n^i(x),\varphi(x)_i\right)<\delta$ for $i\geq 0$. A similar reasoning with having in mind that f_n is a homeomorphism proves that $d\left(f_n^i(x),\varphi(x)_i\right)<\delta$ for $i\leq 0$. Hence $d\left(f_n^i(x),\varphi(x)_i\right)<\delta$ for $i\leq 0$. Hence $d\left(f_n^i(x),\varphi(x)_i\right)<\delta$ for $i\in \mathbb{Z}$ and f_n has inverse shadowing property with respect to T_0 . It is easy to see that f_n is not minimal.

Theorem 3 Let f be a chain transitive homeomorphism on compact metric space X. Then f is minimal if and only if f has weak inverse shadowing property with respect to class T_0 .

Proof. Suppose that f has weak inverse shadowing property with respect to class \mathcal{T}_0 and $z \in X$. Let U be an open set in X. Choose $x_0 \in U$ and $\varepsilon > 0$ such that $N_\varepsilon \left(x_0 \right) \subset U$. There is $\delta > 0$ such that for each δ -method φ , there is $y \in X$ such that

$$\varphi(y) \subset N_{\frac{\varepsilon}{2}}(o(x,f))$$

For every $x \in X$, there is a δ -chain, $\left(x, x, \dots, x_{l_n}, x_0\right)$ from x to x_0 . Consider $\delta =$

$$\left\{\cdots, f^{-2}(x), f^{-1}(x), x, x_1, x_2, \cdots, x_{l_n}, x_0, f(x_0), \cdots\right\}$$

as a δ -pseudo-orbit, such that it's 0-component be X. Construct a δ -method φ_{x_0} such that $\varphi_{x_0}(x) = \delta_x$. Hence there is $y \in X$ such that $\varphi_{x_0}(y) \subset N_{\frac{\varepsilon}{2}}(o(z,f))$,

and so $d\left(x_0,f^l\left(z\right)\right) < \frac{\mathcal{E}}{2}$ for some $l \in \mathbb{Z}$. Therefore $o\left(z,f\right) \cap U \neq \emptyset$. This shows that each orbit of X is dense in X and so f is minimal. The converse i.e. to see that each minimal homeomorphism has weak inverse shadowing property with respect to class \mathcal{T}_0 , is obvious.

4. Relation between Expansivity and Inverse Shadowing Property with Respect to Class \mathcal{T}_0

A homeomorphism f on metric space (X,d) is said expansive if there exists constant e>0 such that for every $x,y\in X, (x\neq y)$ there exists integer number N_0 such that $d(f^{N_0}(x),f^{N_0}(y))>e$.

Theorem 4 If homeomorphism f on metric space (X,d) has the inverse shadowing property with respect to class \mathcal{T}_0 , then f is not expansive.

Proof. Suppose that f is expansive and has the inverse shadowing property with respect to class \mathcal{T}_0 . Let e>0 be as in definition of expansivity and $0<\delta< e$ be such that for any δ -method φ in \mathcal{T}_0 and any point $x\in X$ there exists a point $y\in X$ for which $d\left(f^n(x), \varphi(y)_n\right) < e, n\in \mathbb{Z}$.

Let $x_0 \in X$ be arbitrary. Choose $y_0 \neq x_0$ such that $d(x_0, y_0) < \delta$ and $d(f(x_0), f(y_0)) < \delta$. Construct a δ -method φ as following.

For any $x \neq x_0$ define

$$\varphi(x)$$
=\{\cdots, f^{-2}(x), f^{-1}(x), x, f(x), f^{2}(x), \cdots\}

and

$$\varphi(x_0)
= \{\dots, f^{-2}(y_0), f^{-1}(y_0), x, f(y_0), f^2(y_0), \dots\}$$

Since f has the inverse shadowing property with respect to class \mathcal{T}_0 , for x_0 there exists $y \in X$ such that

$$d(f^n(x_0), \varphi(y)_n) \le e, n \in \mathbb{Z}.$$

By regarding to choose of δ -method φ , we have

$$d(f^n(x_0), f^n(y)) \le e \text{ for } n \in \mathbb{Z}$$

for some $y \neq x_0$, that contradicts the expansivity of f. This completes the proof of theorem.

5. Conclusion

In this paper we showed that an Ω -stable diffeomorphism f has the weak inverse shadowing property with respect to classes of continuous method θ_s and θ_c

and some of the Ω -stable diffeomorphisms have weak inverse shadowing property with respect to classes \mathcal{T}_0 . In addition we studied relation between minimality and weak inverse shadowing property with respect to class \mathcal{T}_0 and relation between expansivity and inverse shadowing property with respect to class \mathcal{T}_0 .

REFERENCES

- [1] R. Corless and S. Plyugin, "Approximate and Real Trajectories for Generic Dynamical Systems," *Journal of Mathematical Analysis and Applications*, Vol. 189, No. 2, 1995, pp. 409-423. doi:10.1006/jmaa.1995.1027
- [2] P. Diamond, P. Kloeden, V. Korzyakin and A. Pokrovskii, "Computer Robustness of Semihypebolic Mappings," *Random and computational Dynamics*, Vol. 3, 1995, pp. 53-70.
- [3] P. Kloeden, J. Ombach and A. Pokroskii, "Continuous and Inverse Shadowing," *Functional Differential Equa*tions, Vol. 6, 1999, pp. 137-153.
- [4] K. Lee, "Continuous Inverse Shadowing and Hyperbolic," *Bulletin of the Australian Mathematical Society*, Vol. 67, No. 1, 2003, pp. 15-26. doi:10.1017/S0004972700033487
- [5] S. Yu. Pilyugin, "Inverse Shadowing by Continuous Methods," *Discrete and Continuous Dynamical Systems*, Vol. 8, No. 1, 2002, pp. 29-28. doi:10.3934/dcds.2002.8.29
- [6] P. Diamond, Y. Han and K. Lee, "Bishadowing and Hyperbolicity," *International Journal of Bifuractions and Chaos*, Vol. 12, 2002, pp. 1779-1788.

- [7] T. Choi, S. Kim and K. Lee, "Weak Inverse Shadowing and Genericity," *Bulletin of the Korean Mathematical Society*, Vol. 43, No. 1, 2006, pp. 43-52.
- [8] B. Honary and A. Zamani Bahabadi, "Weak Strictly Persistence Homeomorphisms and Weak Inverse Shadowing Property and Genericity," *Kyungpook Mathematical Journal*, Vol. 49, 2009, pp. 411-418.
- [9] R. Gu, Y. Sheng and Z. Xia, "The Average-Shadowing Property and Transitivity for Continuous Flows," *Chaos*, *Solitons*, Fractals, Vol. 23, No. 3, 2005, pp. 989-995.
- [10] L.-F. He and Z.-H. Wang, "Distal Flows with the Pseudo Orbit Tracing Property," *Chinese Science Bulletin*, Vol. 39, 1994, pp. 1936-1938.
- [11] K. Kato, "Pseudo-Orbits and Stabilities Flows," Memoirs of the Faculty of Science Kochi University Series A Mathematics, Vol. 5, 1984, pp. 45-62.
- [12] M. Komouro, "One-Parameter Flows with the Pseudo-Orbit Tracing Property," *Mathematics and Statistics*, Vol. 98, No. 3, 1984, pp. 219-253. doi:10.1007/BF01507750
- [13] C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics, and Chaos," CRC Press, Boca Raton, 1998.
- [14] S. Yu. Pilyugin, "Introduction to Structurally Stable Systems of Differential Equations," Birkhauser Verlag, Boston, 1992. doi:10.1007/978-3-0348-8643-7
- [15] I. P. Malta, "Hyperbolic Birkhoff Centers," Transactions of the American Mathematical Society, Vol. 262, 1980, pp. 181-193. doi:10.1090/S0002-9947-1980-0583851-4
- [16] O. B. Plaenevskaya, "Weak Shadowing for Two-Dimensional Diffeomorphism," *Vestnik St. Petersburg University: Mathematics*, Vol. 31, 1998, pp. 49-56.