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ABSTRACT 

In the present work, we studied a nonsimilar solution of steady forced convection boundary layer flow and heat transfer 
of a nanofluid past a stretching horizontal plate. One-phase model has been used for this study. The nonsimilarity equa-
tions are solved numerically. We considered a nanofluid consists of  as a nanoparticles and water as a base fluid. 

The volume fraction of nanoparticles is considered in the range 
2 3Al O

0 0.2  . with prandtl number  for the 

water working as a regular fluid. The parameters which governing the solution are volume fraction of nanoparticles 

6.2pr 
 , 

stretching plate parameter   and power law index N. We investigated the effect of these parameters on the skin fric-

tion coefficient, Nusselt number, velocity and temperature profiles. We found that heat transfer rate and skin fraction 
increased when   increased. On the other hand, we concluded that the increase in   and N made heat transfer rate 

increases and skin fraction decreases. 
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1. Introduction 

Various industries such as power, manufacturing, trans- 
portation, and electronics demand an efficient heat ex- 
changer devices. Classical heat transfer fluids such as 
water, ethylene glycol, and engine oil have a serious li- 
mitation in heat transfer efficiency. In contrast, metals 
are a very good conductivities. To overcome this dis- 
advantage of fluids, it would be desired to combine 
metals and fluids to produce a heat transfer medium that 
behaves like a fluid, but has the thermal conductivity of a 
metal. The idea of putting small metal particles in fluid to 
enhance the fluid’s heat transfer properties is nothing 
new, as it was documented by Maxwell in 1904 [1]. 

Nanofluids are a new class of advanced heat-transfer 
fluids, which are liquids containing a dispersion of sub- 
micronic solid particles (nanoparticles). Typical dimen- 
sion of the nanoparticles is in the range of a few to about 
100 nm. Various types of powders such as metal or metal 
oxide nanoparticles, can be combined with a conductive 
base fluid, such as water or ethylene glycol to produce a 
nanofluid. Thermal conductivity of nanofluid has been 
measured with several nanoparticles volume fraction, 
material and dimension in several base fluids and all 
findings show that thermal conductivity of nanofluid is 
higher than the base fluids. Nanofluids commonly con- 

tain up to a 5% volume fraction of nanoparticles to see 
effective heat transfer enhancements. Lee et al. [2] have 
demonstrated that oxide ceramic nanofluids consisting of 

 or 2 3Al  nanoparticles in water or ethylene gly- 
col exhibit enhanced thermal conductivity. Estman et al. 
[3] observed that the effective thermal conductivity of 
metallic nanofluid increase by up to 40% for the nano- 
fluid consisting of ethylene glycol containing approxi- 
mately 0.3% volume  nanoparticles of mean diame- 
ter less than 10 nm. This capabilities suggests the possi- 
bility of using nanofluids in air conditioning systems [4]. 
Buongiorno [5] made a comprehensive survey of convec- 
tive transport in nanofluids. Who says that a satisfactory 
explanation for the abnormal increase of the thermal con- 
ductivity and viscosity is yet to be found. He has shown 
that in the absence of turbulent effects, it is the Brownian 
diffusion and the thermophoresis that are important and 
he has written down conservation equations based on 
these two effects. Mahdy and Hady [6] studied the effect 
of thermophoresis and Brownian diffusion in non-New- 
tonian free convection flow over a vertical plate with 
magnetic field effect. Nield and Kuznetsov [7] studied 
the Cheng-Minkowycz problem for natural convective 
boundary-layer flow in a porous medium saturated by a 
nanofluid. Kuznetsov and Nield [8] studied the natural 

CuO O

Cu
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convective boundary-layer flow of a nanofluid past a 
vertical plate. They made a correlation for the reduced 
Nusselt number and investigated the effect of buoyancy 
ratio, Brownian motion parameter and thermophoresis 
parameter. They used a model for the nanofluid incor- 
porates the effects of Brownian motion and thermo- 
phoresis as proposed by Buongiorno [5]. Very recently, 
Syakila et al. [9] studied Blasius and Sakiadis problems 
in nanofluids for various values of volume fraction.  

The aim of present work is therefore, to study the phy- 
sical properties of a nanofluid ( 2 3 -water) flow past a 
power law stretching horizontal plate. We presented a 
nonsimilarity solution for the problem. We used two nu- 
merical methods to solve the resulting ordinary diffe- 
rential equations and compared their results. The parame- 
ters of this problem are volume-fraction of nanoparticles 

Al O

  and stretching plate parameter  . We presented the 
non-dimensional form of reduced Nusselt number  

1 2
xRe Nu  and reduced skin fraction 1 2

x fRe C  which are 
discussed for various values of the proceeding para- 
meters. The variables of motion are investigated and pre- 
sented in graphical forms.  

2. Analysis 

We consider the steady two-dimensional boundary layer 
flow past a stretching horizontal flat plate in a water- 
based nanofluid and 2 3  as a nanoparticles. The na- 
nofluid is assumed incompressible, the flow is assumed 
to be laminar, and the viscous dissipation and radiation 
effects are neglected. It is also assumed that the base 
fluid and the nanoparticles are in thermal equilibrium and 
no slip occurs between them. The thermophysical pro- 
perties of the nanofluids are given in Table 1 (see [10]). 
Under these assumptions and following the model equ- 
ations of a nanofluid proposed by Ref. [11], the basic 
continuity, momentum, and energy equations in the ve- 
ctorial form for the steady-state flow are  

Al O

0 V                   (1) 

  21 nf

nf nf


 

    V V p V            (2) 

  2
nfT   V  T



            (3) 

The boundary conditions are taken to be 

, t0, a 0N
wu cx T T y             (4) 

, asu U T T y            (5) 

where  is the velocity vector,  and v  are the ve- 
locity components along the axes x and y, U is the 
constant velocity of the free stream,  is a constant and 

 is a power law index. Further,  is the temperature 
of the nanofluid,  is the pressure of the nanofluid, 

nf

V u

T
c

N
p

  is the dynamic viscosity of the nanofluid, nf  is 
the density of the nanofluid, and nf  is the thermal  

Table 1. Thermophysical properties of the fluid phase (wa-
ter) and nanoparticles [10]. 

Physical properties Fluid phase (water) 2 3Al O  

 J kgKpC  4179 765 

 3kg m  997.1 3970 

 W mKk  0.613 40 

 
diffusivity of the nanofluid, which are given by  

 
 

 
  
  




2.5
,

1

1
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s f fnf
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
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






  



  


  

     (6) 

here, nf  is the thermal conductivity of the nanofluid, k
  is the solid volume fraction parameter of the nano- 
fluid, f  is the reference density of the fluid fraction, 

s  is the reference density of the solid fraction, f  
isthe viscosity of the fluid fraction, fk  is the thermal 
conductivity of the fluid fraction, and sk  is the thermal 
conductivity of the solid volume fraction. Further,  
 p nf

 is the heat capacitance of the nanofluid, where C
pC  is the specific heat at constant pressure.  
It is worth mentioning that the viscosity nf  of the 

nanofluid can be approximated as viscosity of the base 
fluid f  containing dilute suspension of fine spherical 
particles and is given by Brinkman [12]. The effective 
thermal conductivity of the nanofluid nf  is approxi- 
mated by the Maxwell-Garnetts model, which is found to 
be appropriatefor studying heat transfer enhancement using 
nanofluids (Maiga et al. [13] and Abu-Nada [14]).  

k

We consider a Cartesian coordinate system  ,x y , 
where x  and  are the coordinates measured along 
the plate and normal to it, respectively, and assume that 
the flow takes place at 

y

0y  . It is also assumed that the 
constant temperature of the flat plate is w  and that of 
the ambient nanofluid is 

T
T . Under the boundary layer 

approximations and the fact that this flow is one of zero 
pressure gradient, the basic Equations (1)-(3) can be 
written in the Cartesian coordinates x and y as follows: 

0
u v

x y

 
 

 
               (7) 

2

2

nf

nf

u u
u v

x y

u

y




  
 

  
         (8) 
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2

2nf

T T
u v

y y y
  

 
  

T



          (9) 

The boundary conditions becomes  

0, , at 0N
wu cx T T y           (10) 

, asu U T T y           (11) 

We introduce a stream function  defined by  ψ

,u
y x

  
  
 

           (12) 

so that Equation (7) is satisfied identically. We are then 
left with the following two equations  

2 2

2

nf

nfy x y x y y

 3

3

    


    
 

     
      (13) 

2

2nf

T T

y x x y y

      
 

    
T

       (14) 

We look for a nonsimilar solution of Equations (8) and 
(9) with the boundary conditions (10) and (11) of the 
following form  

 

 

,

,

,

N

f

f

w

U c
y

x

x U

U x f

T T

T T




 


   

  

 








         (15) 

where f  is the kinematic viscosity of the fluid fraction 
and   is the stretching plate parameter.  

On substituting Equation (15) into Equations (8) and 
(9), we obtain the following uncoupled ordinary diffe- 
rential equations: 

1

2
f nf

nf f

f f
f ff N f f

 


  
          


    (16) 

 
 

1 1

2

pnf f

f p nf

ck f
f N f

pr k c

    
 

          
 (17) 

the boundary conditions (10) and (11) becomes  

at 0 : 0, , 1f f             (18) 

as : 1, 0f             (19) 

where primes denote differentiation with respect to the  

variable  , and Pr f

f




  is the Prandtl number. It is  

worth mentioning that Equation (16) reduces to that de- 
rived by Blasius [15] when 0    (regular fluid 
flowing over a non-stretching stationary plate).  

Quantities of practical interest in this study are the skin 

friction coefficient fC  and the local Nusselt number 
, which are defined as  Nu

 f w

q x
Nu

k T T





             (20) 

2
w

f
f

C
U




                (21) 

where w  is the skin friction or the shear stress and  
is the heat flux from the plate which are given by  

wq

0

w nf

y

u

y
 



 




 




             (22) 

0

nf

y

T
q k

y 

  


 
 
 

            (23) 

Substituting Equations (15) into (20) and (21), we 
obtain  

1/2 0,nf
x

f

k
Re Nu

k
  

         (24) 

 
1/2

2.5

1
0,

1
x fRe C f 





      (25) 

x
f

Ux
Re


                (26) 

where xRe  is the local Reynolds number.  

3. Numerical Methods 

To solve the Equations (16) and (17) with the boundary 
conditions (18) and (19), the first step is to write the 
ODEs as a system of first order ODEs. The basic idea is 
to introduce new variables, one for each variable in the 
original problem plus one for each of its derivatives up to 
one less than the highest derivative appearing.  

We implemented a collocation method for the solution 
of boundary value problem of the form  

 , ,y f x y a x b          (27) 

subject to general nonlinear, two-point boundary condi-
tions  

    ,g y a y b  0           (28) 

The approximate solution  is a continuous func- 
tion that is a cubic polynomial on each subinterval  

 S x

 1,n nx x   of a mesh 0 1 Na x x bx     . It satis-
fies the boundary conditions  

    ,g S a S b  0             (29) 

and it satisfies the differential equations (collocates) at 
both ends and the mid-point of each subinterval  
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    ,n nS x f x S x  n         (30) 

  
     

1

1 1

2

2, 2

n n

n n n n

S x x

f x x S x x



 

 

  
   (31) 

    1 1,n n nS x f x S x   1        (32) 

These conditions result in a system of nonlinear alge-
braic equations for the coefficients defining  S x . The 
nonlinear algebraic equations are solved iteratively by 
linearization.  is a fourth order approximation to 
an isolated solution 

 S x
 y x , i.e.,     4y x Ch



S x . 
Here h is the maximum of the step sizes 1n n n  
and  is a constant. For such an approximation, the 
residual  in the ODEs is defined by  

h x x 
C

r x
      ,r x S x f x S x           (33) 

It is worth noting that the relative error tolerance on 
the residuals is  and the absolute error tolerance is 

. The calculations are done using MATLAB package 
(bvp4c). This code give an excellent guess for the mesh 
to minimize the number of mesh points to get an optimal 
convergent speed for the solution. 

310

610

We solved the problem again using Finite-difference 
method (we used NAG library for this purpose). As dis- 
cussed above we write the ODEs as a system of first or- 
der ODEs, see Equation (27). Finite-difference equations 
are set up on a mesh of points and estimatedvalues for 
the solution at the grid points are chosen. Using these 
estimated values as starting values a Newton iteration is 
used to solve the Finite-difference equations. The accu- 
racy of the solution is then improved by deferred correc- 
tions or the addition of points to the mesh or a combina- 
tion of both. The technique used is described fully in [16]. 
The absolute error tolerance for this method is 410 . 

4. Results and Discussion 

Equations (16) and (17) with the boundary conditions (18) 
and (19) are solved numerically for some values of the 
solid volume fraction of nanofluid   and the stretching 
plate parameter  . In order to test the accuracy of the 
present results, we have compared these results with 
those of Syakila et al. [9] when we neglect the effect of 
stretching plate parameter  . We used two numerical 
methods to solve the governing equations (Collocation 
method and Finite-difference method) to ensure the ac- 
curacy of the calculations, as presented in Table 2. We 
noticed that the comparison shows an excellent agree- 
ment and the two methods almost give identical results. 
The range of nanoparticles volume fraction is 0 0

Table 2. Comparison of results for 1 2
x fRe C  or pr = 6.2, 

0  and various values of  . 

  Ref. [9] Collocation 
Finite 

difference 

0.0 0.3321 0.332058 0.332057 

0.002 0.3339 0.333881 0.33388 

0.004 0.3357 0.33571 0.335709 

0.008 0.3394 0.339385 0.339385 

0.01 0.3412 0.341232 0.341231 

0.012 0.3431 0.343084 0.343084 

0.014 0.3449 0.344943 0.344943 

0.016 0.3468 0.346808 0.346808 

0.018 0.3487 0.348679 0.348679 

0.02 0.3506 0.350557 0.350556 

0.1 0.4316 0.431593 0.431592 

0.2 0.5545 0.554511 0.55451 

 
size of  = 0.05 and  = 0.1 and  = 8. 

The effects of stretching plate parameter and volume 
fraction of nanoparticles   on the temperature profile 
are shown in Figure 1. It is obvious that for a constant 
value of stretching plate parameter the thickness of ther-
mal boundary layer increased when the volume fraction 
of nanoparticles increased.  

Figure 2 shows the temperature and velocity profiles 
for various values of stretching plate parameter. The fig- 
ure reveals an increasing in velocity profile in the mo- 
mentum boundary layer by increasing the stretching plate 
parameter, whereas the thickness of thermal boundary 
layer decreases which implies to increasing in heat gra- 
dient and then enhancing heat transfer rate through bound- 
ary layer.  

.2  . 
The Prandtl number of the base fluid (water) is kept con- 
stant at 6.2. One type of nanoparticles is studied which is 

. It is worth noting that for our calculations step  2 3Al O

Figures 3 and 4 show the variation of the skin friction 
and the local Nusselt number versus the stretching plate 
parameter  . It is obvious that the skin friction de- 
creased when   increased, whereas the local Nusselt 
number (heat transfer rate) increased for the increasing in 
 , as we expected from Figure 2. So, from Figure 4 we 
concluded that the thickness of thermal boundary layer of 
nanofluid ( 2 3 -water) is greater than it in water (when Al O

0  ). Thus, in the case of forced convection the heat 
transfer rate of water is better than the heat transfer rate 
of the nanofluid 2 3 -water. Further, Figure 3 depict 
the effect of the power law index  for a regular fluid 
(

Al O
N

0  ) and 2 3 -water (Al O 0.05 

0N 

) as working fluid. 
It is seen that the skin friction decreased with the in-
crease of , but when  and N 1  , the skin 
friction closed to zero and then reversed its direction and 
began to increase in the new direction. This is in agree-
ment with the physical discussion that when the fast 
stretching plate is provided, the fluid slip velocity with  
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Figure 1. Temperature profiles for various values of   when 

  = 0, 0.4 and pr = 6.2. 

 

 

Figure 2. Temperature and velocity profiles for various val-
ues of   when pr = 6.2. 
 

 

Figure 3. Variation of skin fraction for various values of   
when   = 0, 0.5 and pr = 6.2. 

 
the plate will be inverse. On the other hand, the influence 
of the power law index N on the local Nusselt number  

 

Figure 4. Variation of reduced Nusselt number for various 
values of   when   = 0, 0.5 and pr = 6.2. 

 
in the case of water ( 0  ) and 2 3 -water (Al O 0.05  ) 
as working fluid is shown in Figure 4. It is obvious that 
the local Nusselt number or heat transfer rate increases 
with the increase of  in both the cases water and 

2 3 -water. However, we noticed that the value of 
local Nusselt number in 2 3 -water is greater than in 
the case of water for various values of , but this result 
is not expected because we concluded from Figure 1 the 
heat gradient in water case is greater than in nanofluid 

2 3 -water. This contradiction was observed experi- 
mentally by Pak and Cho [17] even though the Nusselt 
number increases, the heat transfer coefficient actually 
decreases by 3% - 12%. However, this may be due to the 
large increase in viscosity they observed.  

N

Al
Al O

Al O

O
N

5. Conclusions 

We have examined the influence of nanoparticles on 
steady forced convection boundary layer flow and heat 
transfer past a stretching horizontal plate, using a one- 
phase model. In this study we have assumed the simplest 
possible boundary conditions, namely those in which 
both the temperature and the nanoparticle fraction are 
constant along the wall. This permits a nonsimilarity so- 
lution which depends on three dimensionless parameters, 
namely volume fraction of nanoparticles  , a stretching 
plate parameter   and the power law index . Results 
for various parametric conditions are presented and dis- 
cussed. We found some important points in the obtained 
results, such as:  

N

 the inclusion of 2 3Al O -nanoparticles into the base 
water fluid has produced an increase in the thickness 
of thermal boundary layer, skin fraction and Nusselt 
number;  

 in the case of stretching plats the temperature profile 
in boundary layer decreased whereas the velocity pro- 
file increased;  
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 the skin fraction and Nusselt number are affected se-
riously with stretching plat parameter;  

 the skin friction decreased with the increase of N , 
but it reverse its direction for values of 0N   and 
large values of  ;  

 the heat gradient in 2 3Al O -water is greater than in 
the case of water for various values of N ;  

 There is a gloomy picture in nanofluids in the case of 
forced convection, even though the heat gradient de-
creases through the boundary layer the Nusselt num-
ber increases.  

As it has been mentioned by Muthtamilselvan et al. 
[16], the study of nanofluids is still at its developing 
stage so that it seems difficult to have a precise idea on 
the way the use of nanoparticles to understand the flow 
and heat transfer characteristics of nanofluids and iden- 
tify new and unique applications for these fluids. 
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