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ABSTRACT 

In this paper, we have considered an inhomogeneous beam with a damping distributed along the length of the beam. 
The beam is clamped at both ends and is assumed to vibrate longitudinally. We have estimated the total energy of the 
system at any time t. By constructing suitable Lyapunov functional, it is established directly that the energy of this sys-
tem decays exponentially. 
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1. Introduction 

In the last few decades the use of flexible structures is on 
rise. Research in the area of stabilization of vibrations of 
flexible structures like strings, beams, plates has been 
gaining importance since early seventies. The study of 
the stabilization for these problems is significant in the 
sense to suppress the vibrations to assure a good per- 
formance of the overall system. 

The vibrations of flexible structures are usually non- 
linear in practice. As the non-linear study of such struc- 
tures is rather cumbersome for analytical treatment, so 
linearized mathematical models are chosen for simplicity 
and concise results. The linearized vibrations of flexible 
structures are usually governed by partial differential 
equations, particularly, the second order wave equation 
and the fourth-order Euler-Bernoulli beam equation. Se- 
veral authors have established stabilization for the wave 
equation in a bounded domain (cf. G. Chen [1,2], J. 
Lagnese [3,4], J. L. Lions [5], V. Komornik [6] and the 
references therein). There are different types of stability 
for the vibrations of flexible structures and the most im- 
portant of all these is the uniform stability. Recently, P. 
K. Nandi, G. C. Gorain and S. Kar [7] has established the 
uniform exponential stabilization of a solar panel for fle- 
xural modes of vibrations. The exponential energy decay 
estimate is established by Yaojun Ye [8] in case of non- 
linear Kirchoff-type vibrations. 

The energy decay estimate in developing the theory of 
stabilization over distributed parameter system in view of 
its application in various flexible structures has been 
established by several authors (cf. G. Chen [1,2], J. Lag- 

nese [3,4], J. L. Lions [5], V. Komornik and E. Zuazua 
[9]). The question of uniform stabilization or point-wise 
stabilization of Euler-Bernoulli beams or serially con- 
nected beams has been studied by a number of authors 
(cf. J. L. Lions [5], K. Ammari and M. Tuesnak [10], K. 
Liu and Z. Liu [11], K. Nagaya [12], R. Rebarbery [13] 
etc.).  

2. Mathematical Formulation of the Problem 

We consider a flexible inhomogeneous beam of length 
 which is clamped at both ends. It is initially set to 

vibrate in the longitudinal direction along 
L

x  axis. At 
time , if t  ,y x t  is the longitudinal displacement of 
the beam at a position x , then it satisfies the differential 
equation (cf. K. Liu and Z. Liu [11])  
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(1) 

where the coefficients  x ,  x  and  are func- 
tions of 

 p x
x  for a general inhomogeneous beam with 

.  , [p L 0, L  , ]
For a clamped beam, the boundary conditions are   

   0, = , = 0.y t y L t              (2) 

Let the beam be set to vibrate with initial values   

       0 1,0 = and ,0 = ,

0 .

y
y x y x x y x

t
x L


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3. Energy of the System 

The total energy E(t) of the System (1)-(3) at time t is 
defined by  
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Differentiating (4) with respect to t and using (1), we 
obtain   
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(5) 

where the integration is performed by parts and the 
boundary conditions in (2) are used. Integrating (5) over 
[0, t], we get  
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where  
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In view of (5), the rate of change of energy with time 
is negative, so the energy of the system is dissipating 
with time. Our aim in this work is to establish the 
uniform exponential decay of this energy .  E t

Now the estimate (6) implies that, if 1
0 0[0, ]y H L  

and 2
1 [0, ]y L L , where  
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is the subspace of the classical Sobolev space   

 1 2[0, ] = [0, ], [0, ]2H L F F L L F L L      (9) 

of real valued functions of order one, then  
 for every  Hence the System 

(1)-(3) has a unique solution for  
 

   0 <E t E

 0 1 0, [0, ]y y H L 

4. Uniform Stability Result and Proof 

The main result of this paper can be stated in the fol- 
lowing theorem. 

Theorem 1. Let  ,y x t  be a solution of the system 
(1)-(3) with the initial values  
  1, [0 ,y y H L  2, ] [0L L0 1 0  Then the total energy of 
the system decays uniformly exponentially with time, 
that means, the energy 

].

 E t  satisfies the relation   

  e , 0tE t M t               (10) 

for some finite reals > 1M  and > 0 , both being 
independent of time . t

The theorem will be proved using the following results. 
For any real number > 0,  we have by the Cauchy- 
Schwartz’s inequality   
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By Poincare type Scheeffer’s inequality [14], we have  
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By mean value theorem of integral calculus, there are 
reals  ,  ,  ,  , [0, ]L   satisfying   
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Next we consider the following lemmas: 
Lemma 1. For every solution  ,y x t  of the system 

(1)-(3), the time derivative of the functional  (cf. G. 
C. Gorain [15], G. C. Gorain and S. K. Bose [16]) 
defined by   

G
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Proof: Differentiating (18) with respect to  and us- 

ng the Equation (1), we obtain  
t

i   
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Integrating by parts and using the boundary Conditions (2) and the energy Identity (4), we get   
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Proof: We can estimate the 1st term (18) as,  
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Again, we can estimate the 2nd term (18) as,   
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Adding (24) and (26), the lemma follows immediately. 
Proof of Theorem 1: Proceeding as in G. C. Gorain 

[15] and G. C. Gorain and S. K. Bose [16], we define 
energy like Lyapunov functional  by  V
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so that 
to , and using (5) 
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5. Conclusion 

W e
vi d
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 energy decay estimate. It is significant in 
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converges uniformly to zero as tim
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Hence the theorem. 

e have established here the uniform stabilization of th
brations of an inhomogeneous beam which is clampe

 
 

irectly by means of 
an exponential
the sense t  
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shows that exponential decay rate being a function of   
will be maximum for largest admissible value of  . 
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