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Abstract 
 
The analytical and numerical solutions of the response of an inclined cable subjected to external and para-
metric excitation forces is studied. The method of perturbation technique are applied to obtained the periodic 
response equation near the simultaneous principal parametric resonance in the presence of 2:1 internal reso-
nance of the system. All different resonance cases are extracted. The effects of different parameters and 
worst resonance case on the vibrating system are investigated. The stability of the system are studied by us-
ing frequency response equations and phase-plane method. Variation of the parameters α2, α3, β2, γ2, η2, γ3, η3, 
f2 leads to multi-valued amplitudes and hence to jump phenomena. The simulation results are achieved using 
MATLAB 7.6 programs. 
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1. Introduction 
 
Cable structures play an important role in many engi-
neering fields, such as civil, ocean and electric engineer-
ing. Arafat and Nayfeh [1] studied the motion of shallow 
suspended cables with primary resonance excitation. The 
method of multiple scales is applied to study nonlinear 
response of this suspended cables and its stability and the 
dynamic solutions. Some interesting work on the nonlin- 
ear dynamics of cables to the harmonic excitations can 
be found in the review articles by Rega [2,3]. Nielsen 
and Kierkegaard [4] investigated simplified models of 
inclined cables under super and combinatorial harmonic 
excitation and gave analytical and purely numerical re- 
sults. Zheng, Ko and Ni [5] considered the super-har- 
monics and internal resonance of a suspended cable with 
almost commensurable natural frequencies. Zhang and 
Tang [6] investigated the chaotic dynamics and global 
bifurcations of the suspended inclined cable under com- 
bined parametric and external excitations. Nayfeh et al. 
[7] investigated the nonlinear nonplanar responses of 
suspended cables to external excitations. The equations 

of motion governing such systems contain quadratic and 
cubic nonlinearities, which may result in 2:1 and 1:1 in- 
ternal resonances. Chen and Xu [8] investigated the glo- 
bal bifurcations of the inclined cable subjected to a har- 
monic excitation leading to primary resonances with the 
external damping by using averaging method. Kamel and 
Hamed [9], studied the nonlinear behavior of an inclined 
cable subjected to harmonic excitation near the simulta-
neous primary and 1:1 internal resonance using multiple 
scale method. Abe [10] investigated the accuracy of non- 
linear vibration analyses of a suspended cable, which 
possesses quadratic and cubic nonlinearities, with 1:1 in- 
ternal resonance. The nonlinear dynamics of suspend 
cable structures have been studied with 2:1 internal reso-
nances by the authors [11,12]. Experimental studies of 
this problem have been conducted by Alaggio and Rega 
[13] and Rega and Allagio [14], however explicit stabil-
ity regions for the semi-trivial solution have not been cal- 
culated analytically. Here, we use a modal model to com- 
pute the instability boundary for a range of excitation fre- 
quencies close to the 2:1 resonance for an inclined cable, 
including nonlinear modal interaction. The out-of-plane 
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dynamic stability of inclined cables subjected to in-plane 
vertical support excitation is investigated by Gonzalez-
Buelga et al. [15]. Perkins [16] examined the effect of 
one support motion on the three-dimensional nonlinear 
response. Using the Galerkin method, he constructed a 
two-degree-of-freedom model to analyze the 2:1 internal 
resonance. Lee and Perkins [17] extended the work to in- 
clude second-order perturbations and multiple internal 
resonances. Still, the focus was on the 2:1 internal reso- 
nance, whereas the excitation was changed to a harmoni- 
cally varying load per unit length acting in the static 
equilibrium plane. Lee and Perkins [18] also used a 
three-degree-of-freedom model to simulate non-linear 
response of suspended, inclined cables driven by planar 
excitation and determined the existence and stability of 
four classes of periodic solutions. 

Eissa and Sayed [19-21] and Sayed [22], studied the 
effects of different active controllers on simple and spring 
pendulum at the primary resonance via negative velocity 
feedback or its square or cubic. Sayed and Hamed [23] 
studied the response of a two-degree-of-freedom system 
with quadratic coupling under parametric and harmonic 
excitations. The method of multiple scale perturbation 
technique is applied to solve the non-linear differential 
equations and obtain approximate solutions up to and 
including the second-order approximations. Sayed and 
Kamel [24,25] investigated the effects of different con-
trollers on the vibrating system and the saturation control 
to reduce vibrations due to rotor blade flapping motion. 
The stability of the obtained numerical solution is inves-
tigated using both phase plane methods and frequency 
response equations. Amer and Sayed [26], studied the 
response of one-degree-of freedom, non-linear system 
under multi-parametric and external excitation forces 
simulating the vibration of the cantilever beam. Variation 
of some parameters leads to multi-valued amplitudes and 
hence to jump phenomena. Sayed et al. [27], investigated 
the non-linear dynamics of a two-degree-of freedom vi- 
bration system including quadratic and cubic non-lin- 
earities subjected to external and parametric excitation 
forces. The stability of the system is investigated using 
both frequency response curves and phase-plane trajecto- 
ries. The effects of different parameters of the system are 
studied numerically.  

This work deals with model having two-degree-of-
freedom nonlinear system subjected to external and pa-
rametric excitation forces describes the vibrations of an 
inclined cable. The method of multiple scales perturba-
tion is applied to obtain modulation response equations 
near the simultaneous principal parametric resonance in 
the presence of 2:1 internal resonance ( 2 22   and 

1 22  ). The stability of the proposed analytic nonlin-
ear solution near the above case is studied and the stabil-

ity condition is determined. The effect of different pa-
rameters on the steady state response of the vibrating 
system is studied and discussed from the frequency re-
sponse curves. The numerical solution and chaotic re-
sponses of the nonlinear system of an inclined cable for 
some different parameters are also studied. A compari-
son with previously published work is included. 
 
2. Mathematical Analysis 
 
Our attention is focused on an elastic-sag hanging at 
fixed supports and excited by harmonic and parametric 
distributed vertical forcing in plane. The two-degree-of-
freedom describing the nonlinear dynamics of cable 
shown in Figure 1, can be written as: 

2 2 2 3 2
1 1 2 2 2 22 0x c x x x y x xy             (1) 

2 3
2 2 3 3 3

1 1 2 2

2

cos cos

y c y y x y y x

f t y f t

       
   

  2 y
   (2) 

where x  and  denote in-plane and out-of-plane dis-
placements, respectively, and dots denote derivatives 
with respect to the time t. The parameters 1  and 2  are 
the viscous damping coefficients, 1

y

c c
  and 2  are the 

natural frequencies associated with in-plane and out-of-
plane modes 1 and 2 are the excitation frequencies, f1 
and f2 are the excitation forces amplitude, 2 2 2, , ,    

2 3 3, ,    and 3  are the coefficients of nonlinear pa-
rameters. The linear viscous damping forces, the exciting 
forces and nonlinear parameters are assumed to be 

2 2 2 2 2
1 1 2 2

2 2

ˆ ˆ ˆ ˆˆ ˆ, , , ,

ˆˆ ˆ ,

1, 2 2,3

n n s s s

s s

c c c c f f

n s

,s       

     

    

 

 



 

where   is a small perturbation parameter and  
0  1 . For the convenience of the analysis of Equa-
tions (1)-(2), the non-dimensional parameter   is in-
troduced. We can obtain 

2 2 2
1 1 2 2

2 3 2
2 2

ˆˆˆ2 (

ˆ ˆ( ) 0

2 )x c x x x y

x x y

    

  

   

  

 
    (3) 

 

2 2 2 3 2
2 2 3 3 3

2
1 1 2 2

ˆ ˆ ˆˆ2 (

ˆ ˆ( cos cos )

)y c y y x y y x y

f t y f t

      



    

   

 
 (4) 

The parameters 2 3 2
ˆˆ ˆ, ,  

ˆ ˆ ˆˆ ˆ, , , ,c c   
 are of the order of 1 and 

the parameters 1 2 2 3 2 3 1 2  are of the order 
of 2. The approximate solution of Equations (3)-(4) can 
be obtained using the method of multiple scales [28]. Let 

ˆ ˆˆ, , ,f f

0 0 1 2 1 0 1 2

2
2 0 1 2

( ; ) ( , , ) ( , , )

( , , )

x t x T T T x T T T

x T T T

 



 


     (5) 
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Figure 1. A schematic of inclined cable under combined 
excitations. 
 

0 0 1 2 1 0 1 2

2
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( ; ) ( , , ) ( , , )

( , , )
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 



 


   (6) 

where, n
nT t  (n = 0, 1, 2) are the fast and slow time 

scales respectively. In terms of 0  and , the time 
derivatives transform according to  

1,T T 2T

2
0 1 2

2
2 2 2
0 0 1 1 02

d

d

d
2 ( 2

d

D D D
t

D D D D D D
t

 

 

  

    2 )

 (7)  

where n n . Substituting Equations (5)-(6) and 
(7) into Equations (3)-(4) and equating the coefficients of 
similar powers of  in both sides, we obtain the differen-
tial equations as follows: 

D T  

Order 0( ) : 
2 2
0 1 0( )D x  0

0

            (8)  

2 2
0 2 0( )D y           (9)                 

Order 1( ) : 
2 2 2
0 1 1 0 1 0 2 0 2

ˆˆ( ) 2D x D D x x       2
0y

0y

    (10)  

2 2
0 2 1 0 1 0 3 0ˆ( ) 2D y D D y x    

2

     (11) 

Order ( ) : 
2 2 2
0 1 2 1 0 0 1 1 0 2 0

0 0 2 0 1 2 0 1

3 2
2 0 2 0 0

1

( ) 2 2

ˆˆˆ2 2 2

ˆ ˆ

D x D x D D x D D x

c D x x x y y

x x y


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 
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  
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 (12) 

 

2 2 2
0 2 2 1 0 0 1 1 0 2 0

3
2 0 0 3 0 1 0 1 3 0

2
3 0 0 1 1 0 0 2 2 0

( ) 2 2

ˆ ˆˆ2 ( )

ˆ ˆˆ cos cos

D y D y D D y D D y

c D y x y y x y

y x f T y f T



 



    
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    

(13) 

The solution of Equations (8)-(9) can be expressed in 
the complex form: 

0 1 2 1 0( , ) exp( )x A T T i T cc        (14) 

0 1 2 2 0( , ) exp( )y B T T i T c

where cc denotes the complex conjugate of the preceding 
terms and A ,  are complex functions in 1  and 2T  
which determined through the elimination of secular and 
small-divisor terms from the first and second-order of 
approximations.  

B T

In this case, we analyze the case where 2 22   and 

1 22  . To describe quantitatively the nearness of the 
resonances, we introduce the detuning parameters 1  
and 2  according to 2 2 1ˆ2    , 21 2 ˆ2    . 
Substituting Equations (14)-(15) into Equations (10)-(11) 
and eliminating the secular terms leads to the solvability 
conditions for the first-order expansion as:  

2
1 2 2 11

ˆ ˆ2 exp(i D A B i T   ) 0        (16) 

2 1 3 2 1ˆ ˆ2 exp(i D B AB i T   ) 0       (17) 

After eliminating the secular terms, the particular solu-
tions of Equations (10)-(11) are given by: 

22 2 2
1 1 02 2 2

1 1 1

ˆˆ ˆ
exp(2 )

3
x A i T AA BB

  


  
cc     (18) 

 
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1 022
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1 2
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
 
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 (19) 

Now substituting Equations (14)-(15) and Equations 
(18)-(19) into Equations (12)-(13), the following are ob-
tained 

2 2
0 1 2

2 2
1 1 1 2 1 2 11
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(21) 
where 
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c        (15) and NST stands for non-secular terms. Eliminating the 
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secular terms leads to the solvability conditions for the 
second-order expansion  

2 2
2 1 1 1 21 1 ˆ2 2i D A D A i c A ABB A A          (22) 

2
2 2 1 3

2
4 2

2 2ˆ2 2

1 ˆ ˆexp( )
2

i D B D B i c B AAB

BB f B i T

 



    

   1 1

    (23) 

 
Stability Analysis of Nonlinear Solutions 
From Equation (7), multiplying both sides be 12 ,i  

22i  we get 

2
1 1 1 1

d
2 2 2

d

A
i i D A i

t
      2D A     (24) 

2
2 2 1

d
2 2 2

d

B
i i D B i

t
      2 2D B     (25) 

To analyze the solutions of Equations (16)-(17) and 
Equations (22)-(23), we express A  and  in the polar 
form  

B

1 2
1 2 1 2( , ) ( 2) , ( , ) ( 2)i iA T T a e B T T b e     (26) 

where a , b and ( 1, 2s s )   are the steady state ampli- 
tudes and phases of the motion respectively. Substituting 
Equations (26), (16)-(17) and Equations (22)-(23) into 
Equations (24)-(25) and equating the real and imaginary 
parts we obtain the following equations describing the 
modulation of the amplitudes and phases: 
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1 2
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sin
4 8
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  
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 

    
 

        (27) 
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2
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cos
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    (28) 

2 3 3 2
2 122
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f
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 
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       
  
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b a b

f
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
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 
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where 

 

2
3 7 2 3 8

9 103 2
2 22

2 2 2 2
5 6 7 8 1 2 3 4

1 1 1 2 2 2 1 1 2

1

,
8 832 32

, , , , , ,

ˆ ˆand 2 , 2T T

  

Form the system of Equations (27)-(30) to have sta-
tionary solutions, the following conditions must be satis-
fied: 

1 2 0a b                   (32) 

It follows from Equation (31) that  

2 1 1 1

1
,

2 2                   (33) 

Hence, the steady state solutions of Equations (27)-(30) 
are given by 
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1
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f
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3 2
10 1

2
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1
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4

b ab

f
b b

  
 





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   

9a b

  (37) 

Solving the resulting algebraic equations for the fixed 
points of the practical case where , that is 
non-planar motions, we obtain the following frequency 
response equations 

0 , 0a b 

2 2 2 2 2 2 4 2 6 4
1 2 1 1 2 3

2 2 6
1 2 1 1 2 2

4 2
1 2

( )

2( ) 2( )

2 0
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 
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   

 
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2
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2
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2

1

4

2
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2
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f
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f
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 
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where 

2   

   

      
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    
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, ,
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    
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    
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  

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and 2 3 3

4 2
22 48

  



 

  
 

. 

The stability of the obtained fixed points for the simul-
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taneous primary, principal parametric and 2:1 internal 
resonance case is determined and studied as follows: 
one lets 

10 11 10 11

0 1

,

and s s s

a a a b b b

  
   

 
         (40) 

where a10, b10 and 0s  are the solutions of Equations 
(34)-(37) and a11, b11, 1s  are perturbations which are 
assumed to be small compared to a10, b10 and 0s . Sub-
stituting Equation (40) into Equations (27)-(30), using 
Equations (34)-(37) and keeping only the linear terms in 
a11, b11, 1s  we obtain:  
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(44) 

The system of Equations (41)-(44) are first order 
autonomous ordinary differential equations and the sta-
bility of a particular fixed point with respect to an infini-
tesimal disturbance proportional to exp( )t  is deter-
mined by eigenvalues of the Jacobian matrix of the right 
hand sides of Equations (41)-(44). The zeros of the char-

acteristic equation are given by 
4 3 2

1 2 3 4 0L L L L               (45) 

where,  and  are functions of the parameters 
( 1 2 3 2 2 3 2 3 2 1 1 22 1 2

1 2 3, ,L L L
, , ,c c

4L
,, , , , , , , , , , , ,a b f            ). 

According to the Routh-Hurwitz criterion the necessary 
and sufficient conditions for all the roots of Equation 
(45) to possess negative real parts are: 

  2
1 1 2 3 3 1 2 3 1 4 40, 0, 0, 0L L L L L L L L L L L        

(46) 
The system is stable if the eigenvalues have negative 

real parts, otherwise is unstable. In the frequency re-
sponse curves, solid/dotted lines denote stable/ unstable 
periodic responses, respectively.  
 
3. Results and Discussion 
 
The response of the two-degree-of-freedom nonlinear 
system under both parametric and external excitations is 
studied. The solution of this system is determined up to 
and including the second order approximation by apply-
ing the multiple time scale perturbation. The steady state 
solution and its stability are determined and representa-
tive numerical results are included. The stability zone 
and effects of the different parameters are discussed us-
ing frequency response curve. The stability of the nu-
merical solution is studied also using the phase-plane 
method. Some of the resulting resonance cases are con-
firmed applying well-known numerical techniques. The 
effects of the some different parameters on the vibrating 
system behavior are investigated and discussed.  
 
3.1. Numerical Solution 
 
Figure 2 shows that the response of the inclined cable 
for the non-resonant at the practical values of the pa-
rameters c1 = 0.0002, c2 = 0.03, α2 = 0.2, β2 = 0.5, γ2 = 
0.3, η2 = 0.5, α3 = 0.03, η3 = 0.05, γ3 = 0.04, 1 = 2, 2 = 
0.01, 1 = 2.75, 2 = 3.2, 1 = 1.2, 2 = 1.5. It can be 
seen from this figure that the steady state amplitude is 
about 0.005 with dynamic chaotic behavior for the in- 
plane mode and about 0.18 with multi-limit cycle for the 
out-of-plane mode. The amplitudes decreasing with in-
creasing time and tend to steady state motion and have 
stable solution. The worst resonance case is also con-
firmed numerically as shown in Figure 3. From this fig-
ure, it can be notice that the maximum steady state am-
plitude of the in-plane mode is about 130 times that of 
basic case with multi-limit cycle, while the maximum 
amplitude of out-of-plane mode is about 4 times of the 
basic case with chaotic motion. 

Effects of external and parametric excitation forces f1 
and f2. 
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Figure 2. Non-resonance system behavior (basic case) Ω1 ≠ 
ω1 ≠ ω2. 
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Figure 3. Simultaneous principal parametric resonance in the 
presence of 2:1 internal resonance ( 2 2 12 and 2   2   ). 

 
For increasing the amplitude of the external or parame- 

tric excitation forces f1 or f2, we observe that the modes 
of vibration have increasing magnitudes and there exist 
chaotic dynamic motion as shown in Figures 4 and 5. 

 
3.2. Frequency Response Curves 
 
The frequency response Equations (38)-(39) are nonlin-
ear algebraic equations in the amplitudes of the system 

(in-plane mode) and b (out-of-plane mode). The stabil-
ity of a fixed point solution is studied by examination of 
the eigenvalues of Equation (45). The numerical results 
of Equations (38) and (39) are plotted in Figures 6-8. 

a

Figure 6, show the frequency response curves of the 
two modes of inclined cable against detuning parameter 

1 . From the geometry of the figures we observe that the 
amplitudes have two branches and these branches are 
bent to the right, the bending leads to multi-valued solu-
tions and hence the effective nonlinearity is hardening 
type. In Figure 6(a), there are two branches of nontrivial 
solution such that the left branch stable and the right 
branch lose stability as 1 0.4  . Figure 6(b), show that 
the steady state amplitudes are increasing for increasing  
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Figure 4. Effects of increasing value of external excitation 
force f1 = 5. 
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Figure 5. Effects of increasing value of parametric excita-
tion force f2 = 3. 
 
parametric excitation force 2 . The region of instability 
for two modes is increasing for increasing 2 . For in 
creasing nonlinear parameter 2

f
f

  (i.e. 2 1  ) as shown 
in Figure 6(c), we show that the regions of definition are 
decreasing and the two branches of the steady state am- 
plitude curve are contracted and give one continuous 
curve which is stable and response amplitude of the in- 
plane mode is increased. Figure 6(d) show that the re- 
sponse amplitudes of the inclined cable are increasing for 
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(c)                                                        (d) 
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Figure 6. (a): Frequency response curves for amplitudes against σ1; (b): Frequency response curve for increasing parametric 
excitation force f2 = 3.0; (c): Frequency response curve for increasing nonlinear parameter β2 = 1.0; (d): Frequency response 
curve for decreasing nonlinear parameter η3 = 0.1; (e): Frequency response curve for increasing nonlinear parameter γ2 = 1.8; 
(f): Frequency response curve for negative value of nonlinear parameter γ3 = –0.4. 
 
decreasing nonlinear parameter 3  and the regions of 
multi-valued and instability of two modes are increasing. 
The regions of instability solutions are increasing for 
increasing nonlinear parameter 2  as shown in Figure 
6(e). Figure 6(f) shows that for negative value of non- 
linear parameter 3  the response amplitudes are in-
creasing and the stability solution are decreasing with 
increasing region of multi-valued. 

Figure 7, represent the variation of the amplitudes of 
the inclined cable against the detuning parameter 2 . In 
Figure 7(a), we see that each mode of the inclined cable 
has one continuous curve and single valued solution and 
it is symmetric about the origin and it is noticed that the 
in-plane mode reaches maximum value at 2 0   and 
the out-of-plane mode reaches minimum value at the 
same value of 2 . Also, it intersects in two points and 
these modes have stable and unstable solutions.  From 
Figure 7(b), we observe that for increasing parametric 
excitation force f2 the symmetric branch moves up with 
increased magnitudes and the region of stability is in-
creased. For increasing nonlinear parameter 3 , we note 
that the amplitudes of the two modes of the inclined ca-
ble have decreasing magnitudes and increasing stable 
solutions, as shown in Figure 7(c). The steady state am-
plitudes of the two modes are increasing for decreasing 
nonlinear parameter 3  as shown in Figure 7(d). Also, 

the region of stability solutions is increased. From Fig-
ure 7(e) we observe that the steady state amplitudes a 
and b of the two modes are increasing for decreasing 
value of nonlinear parameters 3  respectively with 
increasing stable solutions. The stability solution is de-
creasing as the nonlinear parameter 2  is increase and 
the curves are shifted to the right and has hardening phe-
nomena and there exists jump phenomena, as shown in 
Figure 7(f). 

Figure 8 represent force-response curves for the non- 
linear solution of the case of simultaneous principal pa-
rametric resonance in the presence of 2:1 internal reso-
nances. In this figure the amplitudes of the inclined cable 
are plotted as a function of the parametric excitation 
force f2. Figure 8 shows that the response amplitudes of 
the inclined cable have a continuous curve and the curve 
has stable and unstable solutions. 
 
4. Comparison with Published Work 
 
In comparison with the previous work [8], we have the 
global bifurcation of this inclined cable leading to pri-
mary resonances and 1:1 internal resonance is investi-
gated. A new global perturbation technique is employed 
to analyze Shilnikov type homoclinic orbits and chaotic 
dynamics in the inclined cable. Kamel and Hamed [9], 
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Figure 7. (a): Frequency response curves for simultaneous principal parametric resonance in the presence of 2:1 internal 
resonance 2 2 12 and 2     ; (b): Frequency response curve for parametric excitation force f2; (c): Frequency response 

curve for nonlinear parameter γ3; (d): Frequency response curve for nonlinear parameter η3; (e): Frequency response curve 
for nonlinear parameter α3; (f): Frequency response curve for nonlinear parameter α2. 
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Figure 8. Force response curves for ( 2 2 12 , 2 2     ). 

 
studied the nonlinear behavior of an inclined cable sub-
jected to harmonic excitation near the simultaneous pri-
mary and 1:1 internal resonance by using multiple scale 
method. 

In this paper, periodic and chaotic response of a dis-
cretization two-degree-of-freedom model of a suspended 
inclined cable, containing a 2:1 internal resonance, sub-

ject to harmonic external and parametric excitation are 
obtained. The stable/unstable periodic solutions are de-
termined using the method of multiple scale and are pre-
sented through frequency response plots. Chaotic re-
sponses are determined by numerical integration of the 
governing ordinary differential equations of motion. Var-
iation of the parameters 2 3 2 2 2, , , , ,     3 3 2, , f  leads 
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to multi-valued amplitudes and hence to jump phenom-
ena.  
 
5. Conclusions 
 
Cables are very efficient structural members and hence 
have been widely used in many long-span structures, 
including suspension, roofs and guyed towers. The 
nonlinear dynamic response of the nonlinear system sub-
jected to external and parametric excitations is investi-
gated. The method of multiple scales is applied to obtain 
the solution of the considered system up to second order 
approximation. The numerical solutions and chaotic re-
sponse of this nonlinear system are investigated. The 
stability of the proposed analytic nonlinear solution is 
studied at worst resonance case which is the simultane-
ous principal parametric resonance in the presence of 2:1 
internal resonances. The modulation equations of the 
amplitudes and phases are obtained and steady state solu-
tions are determined. The effects of some nonlinear pa-
rameters on the steady state response of the vibrating 
cable leading to multi-valued solutions.  From the analy-
sis the following may be concluded. 

1) For the resonance case 2 2 1 22 , 2      we note 
that the steady state amplitude is increased to about 
130% compared to basic case with multi-limit cycle, and 
it is better to avoid this resonance case as working condi-
tions for the system. 

2) The steady state amplitude of the system are in-
creasing for increasing external or parametric excitation 
force, and for large values of the system become unsta-
ble.  

3) Variation of α2, α3, β2, γ2, η2, γ3, η3, f2 leads to 
multi-valued amplitudes and hence jump phenomena.  

4) For increasing parametric excitation force f2 or 
negative value of the nonlinear parameter γ3 we observe 
that the steady state amplitudes of the two modes are 
increasing with increasing instability solutions. 

5) Increasing of the nonlinear parameters η3 or γ3 can 
reduce the amplitude of the system and obtain the effect 
of reduction of the amplitude.  

6) Variation of the parameter α2 leads to multi-valued 
amplitudes and hence to jump phenomena.  

7) For increasing parametric excitation force f2 or de-
creasing nonlinear parameter α3 we show that the steady 
state amplitudes of the two modes are increasing. 

For increasing nonlinear parameter η3 we note that the 
steady state amplitudes of the two modes are decreasing 
with decrease of the stability solutions. 
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