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Abstract

In this paper, we introduce a hybrid iterative method for finding a common element of the set of common
solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family
of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild condi-
tions.
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1. Introduction

Equilibrium problems theory provides us with a natural,
novel and unified framework for studying a wide class of
problems arising in economics, finance, transportation,
network and structural analysis, elasticity and optimiza-
tion. The ideas and techniques of this theory are being
used in a variety of diverse areas and proved to be pro-
ductive and innovative.

Let H be a Hilbert space with inner product (-,-) and
norm ||. Let C be a nonempty closed convex subset of H
and T:C— 2" amultivalued mapping. Let ¢:CxC—R
be a real-valued function and ®:H xCxC — R be an
equilibrium-like function, i.e., ®(w,u,v)+©(w,v,u)=0
for each (w,u,v)e HxCxC . The generalized mixed
equilibrium problem (for short, GMEP) is to find ueC
and weT(u) such that

GMEP :®(w,u,v)+¢(v,u)—¢(u,u)>0,vveC. (1.1)

in particular, if T is single-valued mapping, this problem
is equivalent to finding ueC such that

O(T (u),u,v)+g(v,u)-¢(u,u)=0,vweC. (1.2

Denote the set of solutions of GMEP by Q.

Now, we recall the following definitions.

A mapping f:C—>C is said to be contractive if
there exists a constant « € (0,1) such that
[t ()= f(y)|<a|x-y| forany x,yeC.A mapping
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g:C— C is sald to be flrmly nonexpansive if
[909-9(3)]" (0 ()~a(y).x~) . Amapping

C—>C is said to be nonexpansive if |[Tx— Ty||<
||x y| forany x,yeC. The set of fixed points of T is
denoted by F(T).

Let{T, }I be a finite famlly of nonexpansive map-
pings of C into H and ﬂ F(T;)# @ . Define the map-
pings

Upy = 40T+ (1= 4, ) 1

Unp = 4, TU, +(1-4,,)]

: (1.3)
Unnos = Ao Ty Uz (1= 2y ) |
W, =U, = 4 Ty + (1= 4,01

where {4, } <(0,1] for all n>1. Such a mapping
W is caIIed W —mapping generated by T,---,T,

n

and {/lnl}

i=1’

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hil-
bert space H. Then, for any x e H , there exists a unique
nearest point in C, denoted by P (x), such that

[x=Pe GOl <[x=y]

forall yeC .Sucha P. is called the metric projection
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of H into C. We know that P. is nonexpansive. What’s
more,

X" = Pc(x)<:><x—x*,x*—y>20,
vy eC.

Let C be a convex subset of a real Hilbert space H,
n:CxC—>H and k:C—>R a Frechet differential
function. Then k is said to be 7 -strongly convex if there
exists a constant >0 such that

k() =k (x)={k'(x).m (v 2)) = Zx =y
vx,y eC.

If ©«=0,thenkissaidto be 7-convex. In particular,
if 7(y,x)=y-x forall y,xeC, thenk is said to be
strongly convex.

Let C be a nonempty subset of a real Hilbert space H.
A bifunction ¢(--):CxC —R is said to be skew-
symmetric if

$(u,v)+g(v,u)-g(u,u)-g(v,v)<0,
vu,veC.

It is easy to see that if the skew-symmetric bifunction
#(-,-) is linear in both arguments, then

$(u,v)>0,vueC.

We denote — for weak convergence and — for
strong convergence. A bifunction ¢:CxC — R is called
weakly sequentially continuous at (xo,yo)erC if
$(%,, Y, ) > ¢(%.Y,) as n—oo for each sequence
{(X,,¥,)} in CxC  converging weakly to (X, Y,)-
The function ¢(-,-) is called weakly sequentially con-
tinuous on CxC if it is weakly sequentially continuous
at each point of CxC .

Let CB(X) denote the set of nonempty closed
bounded subset of X. For A ,BeCB(X), define the
Hausdorff metric 7 as follows:

1( A B) = max{sup,_,inf, zd(a,b),
SUPy.Ainf,sd (b,a)}.

In order to solve the generalized mixed equilibrium
problems for an equilibrium-like bifunction

e -

n+1

oo = T (%) +(1—ea, )W,u,

N+
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(1+ﬂh(T(xn),T(xm);

@(Wn,un,v)+¢(v,un)—¢(un,un)+%<k'(un)—k’(xn),n(v,un)>20, wveC

ET AL.

®:HxCxC — R, we assume that © satisfies the fol-
lowing conditions with respect to the multivalued map-
ping T:C —»2":

(®,) for each fixed veC, (w,u)— O(wu,v) is
an upper semicontinuous function from HxC to R,
thatis, w, >w and u, ->u imply
limsup, ,,©(W,,u,,v)<O(w,u,v);

(®,) foreach fixed (w,v)e HxC,
is a concave function;

(®,) foreach fixed (w,u)eHxC,
is a convex function

))+®(W2,

(©5) ©(w,T(
—7||T (O-T.(f

for all x,yeC and r,se(0,%), where 7>0, w eT(x)
and w, eT(y).

Let k:C — R be adifferential function with Frechet
derivative k'(x) atx satisfying the following:

(k,) k' is continuous from the weak topology to the
strong topology;

(k,) k' is Lipschitz continuous with constant v > 0.

Let 7:CxC — H be a function satisfying the fol-
lowing:

(m) n(xy)+n(y,x)=0 forall x,yeC;

(7,) m(--) is affine in the first coordinate variable;

(m5) for each fixed yeC, yeCxi>n(y,x) is se-
quentially continuous from the weak topology to the
weak topology.

Let C be a nonempty closed convex subset of a real
Hilbert space and T:C — 2" a multivalued mapping.
For xeC, let weT(x). Let ¢:C—R be a real-
valued function satisfying the following:

(4) o(.) isskew symmetric;

(¢,) for each fixed yeC, ¢(.,
per semicontinuous;

(#) ¢(-) isweakly continuouson CxC.

Recently Wei-You Zeng, Nan-Jing Huang and Chang-
Wen Zhao [1] introduce and consider a new class of
equilibrium problems, which is known as the generalized
mixed equilibrium problems. Furthermore, they intro-
duce an iterative scheme (1.4) by the viscosity approxi-
mation method for finding a common element of the set
of common solutions for generalized mixed equilibrium
problems and the set of common fixed points of a se-
guence of nonexpansive mappings in Hilbert space.

U 0(w,u,v)

Vi 0(w,u,v)

YT (%))

y) is convex and up-

2.1)
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Motivated and inspired by the research going on in
this important field, we introduce the following hybrid
iterative scheme (1.5) for finding a common element of
the set of common solutions for generalized mixed equi-
librium problems and the set of common fixed points of
a sequence of nonexpansive mappings. We show that the
approximation solution converges strongly to a unique
solution of a class of variational inequalities under some
mild conditions. Results obtained in this paper can be

1
"Wn Wi

Xos = 8, T (WX, )+, X, +CcW.u,

where {a }, {b,} and {c,} are three sequences in (0,
1) such that a, +b, +c, =1.

It is easy to see that the iterative scheme (1.5) may be
well defined.

Let r be a positive number. For a given point xeC
and w, eT(x), consider the following auxiliary prob-
lem for GMEP: find ueC such that

O(w,,u,v)+g(v,u)—g(u,u)

+%<k’(u)—k'(x),77(v,u)>20, vveC, (@3)

It is easy to see that if u=x, then u is a solution of
GMEP.

T.(x)= {u eC:0(w,,u,v)+¢(v,u)—g(u,u)

Then there hold the following:
1) the auxiliary problem (1.6) has a unique solution;
2) T, issingle-valued;

3) if Av/u<1, it follows that T, is firmly nonex-
pansive;

4) F(T)=Q;

5) Q isclosed and convex.

Lemma 1.2. [3] Let H be a real Hilbert space and
let C be a nonempty closed convex subset of H. Let

N
"VVn+1Un+l _Wnun | < ||un+1 - un” +2M Z;,
=

and

N
"VVn+1Xn+1 _Wn X " < ||Xn+1 - Xn” +2M le
=
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< (1+Hjh(T (%), T (X )

O (W, Uy, V) + 4 (V,Uy ) = By, uy )+ = (K (U, ) =K' (%, ),7(v,u,)) 20, Vv e C 2.2)

viewed as an improvement and refinement of the recent
results in this direction.

Algorithm 1.1. Let C be a nonempty closed convex
subset of a real Hilbert space H, T:C —»CB(H) bea
multivalued mapping, f be a contraction of C into itself
with coefficient o €(0,1). Let W,:C — C be defined by
(1.3),and r>0. Forgiven x, eC and w, eT(x,), there
exists sequences {x,}, {u,} in C and {w, 1w, eT(x,)}
in H such that forall n=1,2,---,

We need the following important results.

Lemma 1.1. [2] Let C be a nonempty closed convex
bounded subset of a real Hilbert space H and let
¢:CxC — R be a real-valued function satisfying (4 )-
(4,). Let T:C—2" be a multivalued mapping and
®:HxCxC —>R be an equilibrium-like bifunction
satisfying the conditions (©,) - (©,) . Assume that
n:CxC—H is a Lipschitz function with lipschitz
constant 1>0 which satisfies the conditions (7,) -
(773). Let k:C —->R be an #-strongly convex func-
tion with constant & >0 which satisfies the conditions
(k,) and (k,). For each xeC, let w, eT(x). For
r >0, defineamapping T,:C —>C by

1

+F<k'(u)—k’(x),77(v,u)>20, VVEC} (2.4)

{Ti }IN1 be a finite family of nonexpansive mappings of C
into H and (| F(T,)#@, and let {fln,i}iN:l be a se-
quence in (0,b] forsome be(0,1). Then,
F(Wn): iNle(Ti)'

Lemma 1.3. [4] If the sequences {u,} and {x,} are

bounded and W, is defined by (1.3), then the following
estimates hold:

, vVn=0

ﬂ“n+1,i - /?’n

ﬂ'ﬂ#—l,i _ln,i , Vn=0
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for some constant M >0.

Lemma 1.4. [4] In a real Hilbert space H, Vx,y,zeH
and t,t,,t; €[0,1] with t +t,+t; =1, there holds the
following equality:

ltx+ty+tz <t X+ Iy +t el

Lemma 1.5. [6] Let {x,} and {u,} be bounded
sequences in a Banach space X and let {b } be a se-
quence in [0,1] with O <liminf__b, <limsup, . b, <1
Suppose

=(1-b,)z, +b,x,

for all integers n>0 and

w1 = 2= X =X, [[) <O

limsup ||z
n—oo

Then,
lim[z, -, =0.

Lemma 1.6. [5] Let {a,} is a sequence of nonnega-
tive real numbers such that

a,, <(1-6,)a, +b,, vn=1,2,-

where {5} is a sequence in (0,1), D" 5, = and

n =1“n

limsup,_,.b,/6, <0, then lim _,_ a, =0.

Lemma 1.7. [2] Let {x,} be a sequence in a normed
space (X,||) such that

[%0e2 = Xnia | < €)%, = %ol + 10 YR =1,2,--

n+l

where 6¢<(0,1) ,
satisfying the following conditions:

1) s,21 and Y~ (s,—1) <
2) r,20,and Y
Then {x,} isa Cauchy sequence.

Lemma 1.8. [7] Let A BeCB(X) and ae A. Then
for p>1, there must exist a point beB such that
d(a,b)< ph(AB).

Lemma 1.9. [5] In a real Hilbert space H, there holds
the following equality:

and {s,} and {r,} are sequences

n

I’n<OO.

[+ v <X+ 20y x+ ),y € H.

3. Main Results

Theorem 2.1. Let C be a nonempty closed convex
bounded subset of a real Hilbert space H and r >0,
T:C —>CB(H) be a multivalued 7-Lipschitz continu-
ous mapping with constant L >0, and let ¢:CxC - R
be a real-valued function satisfying (¢4)-(¢4,) . and
®:HxCxC — R be an equilibrium-like function sat-
isfying the conditions (®,) - (®,) . Assume that
n:CxC —H is a Lipschitz function with lipschitz

Copyright © 2011 SciRes.
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constant 1 >0 which satisfies the conditions (7,) -
(n ) Let k:C —>R be an 7 -strongly convex func-
tion with constant & >0 which satisfies the conditions
(k,) and (k,).with Av/u<1. Let {,} be a finite
famlly of nonexpansive mappings on H such that
F(T)mQ;&Q Let f be a contraction of C into
itself with coefficient ae(01). Let {x.} {u}, {w,}
be sequences generated by (1.5), where {a,}, {b,} and
{c,} are three sequences in (0,1) with a, +b +c, =1
satisfying the following conditions:
1) lim_, a,=0, > a = and

n=1|an+1 - a'n| <00

2) 0<liminf___b, <limsup,_, b, <1 and

X fbb <
N
3) Y|4
i=1

n+1,i _/In,i

4) 2l

Then the sequences {x,} and {u,} converge strongly
to X e, F(T;)nQ, and {w,} converges strongly
to w eT(x"),where x' =Py o f X')

| 1F (T )ne

To proof Theorem 2.1, we first establish the following
lemma.

Lemma 2.1. Let C be a nonempty closed convex
bounded subset of a real Hilbert space H and r >0,
T:C—>CB(H) be a multivalued 7-Lipschitz continu-
ous mapping with constant L >0, and let ¢:CxC — R
be a real-valued function satisfying (¢4)-(¢,). and
®:HxCxC — R be an equilibrium-like function sat-
isfying the conditions (©,)-(©,). Assume that
n:CxC —H is a Lipschitz function with lipschitz
constant A >0 which satisfies the conditions (7,) -
(75). Let k:C—R be an 7 -strongly convex func-
tion with constant 4 >0 which satisfies the conditions
(k) and (k,) with Av/u<1.Let {T,}" be a finite
famlly of nonexpansive mappings on H such that
ﬂile( T.)NnQ=@. Let f be a contraction of C into
itself with coefficient o €(0,1). Let {x,}, {u,}, {w,}
be sequences generated by (1.5), where {a,}, {b,} and
{c,} are three sequences in (0,1) with a, +b, +c, =1,
satisfying the following conditions:

1) lim_,, a,=0, > a = and

< o0,

n+1_Cn|<OO'

n=l|a”'*'l _an| <o,
2) 0< Iiminfn%w b, <limsup,_, b, <1;
3) lim, 4.~ 4| =0
LIPS CRECHELE
then
1) lim,__ | u o= 0, tim L [%. =X |—
2) lim_,, [, -Wu[=0, lim_ [, - |

Proof. 1) From the nonexpansity of T, , we have
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||un+1 —u, " = ”Tr Xnat _Tr X ” < ||Xn+1 =X, ” (31)
andset z, = Lb"x” we obtain
1-b,
z _7 = Xn+2 _bn+1xn+1 n+1 b X — an+1f (Wn+1Xn+1)+ Cn+an+lun+l _ an f (Wn Xn ) + Canun
R 1-b, 1-b, 1-b,
n+1 an+1 _ a
[f n+l n+1 (ann)]+{l_bn+l 1 b ]f(W X )
Cn+l _ cn+1 _ cn
+1_bn+1 (Wn+1un+1 Wnun)+(1_b 1_bn anun
By Lemma 1.3, we arrive at
||Zn+l - Zn" S— 1 n+1 ||f n+1 n+1)_ f (ann) + ﬁﬁ_& ("f (ann) + nun") n+l "\Nn+1 n+l Wnun"
aa,, N n+
Sﬁ{"XnH—Xn"-i‘ZMZ ﬂ’n+l,i _ﬂn,i :|+ . ("f ﬂun") (32)
+1 nt;:ﬂ |:||un+1 u ||+ 2M Z n+1,i _ﬂ’n,i :|

Hence, it follows from (2.1) that

o=l 2 - 2w 3

C +.
+I$tﬂmﬂ—mh2Mgﬂ
_"X n+l 1 nb ("f

It follows from conditions (a) and (c), we have
X,[) <o0.

n+l n+l

limsup (|2, — 2, ]| - |
nN—o0

Hence by Lemma 1.5, we can see that
lim||z, —x,[=0
Consequently
I|m||xn L= X = lim(1-b, )|z, - x,[=0  (3.4)

From (2.1), we get
r!i_[?o"unﬂ _un" =0 (35)

2) In view of (1.5), we conclude that
"Xn _Wnun ” < "Xn - Xn+l|| + ||Xn+l _Wnun "
<o =X+ a0 [ £ (Wox, ) -Wou,

+by, %, —Wou, |,

that is

Copyright © 2011 SciRes.

n+li

1

-1

n+1,i

& a,
oo T W)+ e )

n,i

} (3.3)

n+li ]’n,i

N
nun||)+2MZ; p)

n Xn+1||

%, =W, u,|| s -

—Ilf

which implies that
lim |x, —W,u,[ =0 (3.6)

For pel'=nlF(T,)nQ, note that T, is firmly
nonexpansive, we can see that

"Un - p"2 = ”Trxn _Tr p"2 < <Trxn _Tr P, X, — p>
:<un_ P. X, — p>
1
= 2l = ol +lx, = Bl s
and so
Ju, = ol <[ix, = ol = Ju, x| <[x, o @7)

In view of Lemma 1.4, (2.6) and (2.7), we compute
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%51 p|| a, T (W, x, )+b,x, +¢,W,u, —p||
(ann) p" +bn "Xn - p" +C, "\Nnun - p"2
| (Wox,) = o[+, |, = oI+ Ju, ~ ol
FWox,) = pf" b, %, =Bl +c, (|, — bl %, ~u,
| (Woxy) = Pl + 3, = pIf ~q e, g
which follows that
2
Ca %, =" < (1% = Pl %02 = P (o =)+ 2, | £ (Wox, )~
and hence Proof of Theorem 2.1. We divide our proof into 3 steps.
lim x, —u, | =0 Step 1. We prove that there exists x" e C, such that

This completes the proof.

X, > X, u,—>x and w, >w as n—o, where
weT(x"). From (L5), (2.1) and Lemma 1.3, we compute

||Xn+1 - Xn " = I:an f ( )+ b X + Canun:| [an—l f (Wn—lxn—l) + bn—an—l + Cn—lwn—lun—1]||
< |an - an—1| ' || f(W n-1 f (Wn X ) —f (Wn—lxn—l )” + |bn - bn—1| '"Xn ”
+ bn—l "Xn - Xn—l" + |Cn - Cn—1| . "V\Inun " +Cy "\Nnun _Wn—lun—ln
N
S|an _an—1|'||f (ann) nla|:||xn _Xn—1||+2M§ ﬂ’ml,i _ﬂ’n,i i|+|bn _bn—l|'||xn|| (38)
N
T LS AN P [ TRPRRE V) o PP )
<[1-(1-a)a, % =X, + 7,
where 6, =1-(1-a)a,, g%, s, =1 and
N
= |an _an—1|'||f (W Xn) +|bn _bn—1|'||xn ||+|Cn _Cn—1|'"\/vnun"+ 2M Zl ﬂ’n+1,i il
By Lemma 1.7 and conditions (a)-(d), we conclude that Hence
{x,} is a Cauchy sequence in C such that lim __ u, =X, m-1
there exists an element x" eC . On the other hand, 0 ri
lim,_,. % —u,|=0 implies that lim_, u, =x". From Z"X X < - 9||Xn 1 9
(1.5), we have ) _
1 In view of (2.4) and (2.8), we obtain
W, —w,., (1+ njh(T(Xn)lT(Xml)) (3.9) m|!]rl]w”w —w, =0 (3.12)

<20(T (%,),T (X)) < 2L %, -

and for m>n>1,

I, —w | < ZIIW
Zam = Z"Xi
1=n I=n
m-1 -1 -1 m-1
= HZai + Zri < HZaH1 +6(a,—a,)+ Zri

< HZaH1 +60a, + Zr

i=n

n+l||

|+1

< szz’lnxi x| (310)

.+1||< Ha +1)

i= ﬂ

Copyright © 2011 SciRes.

which implies that {w,} isa Cauchy sequence in H and
therefore there exists an element w in H such that
lim w. = w. Next we can see that

n—owo n

a(wT(x)= inf_ 0 (wb) <[w-w+d(wT (x))

beT(x*)

< ||W—Wn||+h<T (xn),T<x* ))

(3.12)
Hence, we derive that d (W,T (x* )) =0, that is
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weT(x") as T(x")eCB(H).
Step 2. Let Q= P f.

Ni= lF(T)

tion of C into itself. In fact, forall x,yeC
[RG)-y)<[f (x)-

Therefore there exists a unique element gqeC such
that q=0Q(q). Notingthat qeC and
Q(q) e, F(T,)nQ, we get that gen,F(T,)NQ.
Then

(f(a)-9,p-0)<0,vpen,F(T)nQ.

Next, we show that x"e N\, F (T,) Q. Since x, — X’
and u, - x", we know that k'(u,)-k'(x,)—0, From
(15)and (®,), we have

@(W, x*,v)+¢(v, x*)—¢(x*,x*)20

that is x" € Q. We shall show x"eF (W,

Then Q is a contrac-

y)|<efx-y

(3.13)

L) . Assume

a,(f(W,x,)-a)+b, (x,—q)+

n (Xn _q)+cn (Wnun -

.1 =l =

ET AL. 1219

X" ¢ F(W,), thatis x* =W, x". Since {u,} is bounded,
there exists a subsequence {unj} of {u,} which con-

n

verges weakly to x". By Lemma 2.1, we conclude that
|W,u, —u,||— 0. From Opial’s condition, we have

liminf ju, —x*||<liminf{u, -W_ x"
] ]o®
< Iiminf( u, —Wu, ||+ ’Wnun_ -W, x" )
joo J J J
<liminfju, —x"
joo

This is a contradiction. So, we get
X" e F(W,)=nLF(T,). Therefore x* e, F(T,)nQ.
Step 3. From (2.13) and X, — X", we obtain

!l_r)r;(f (q)—q,xn—q>:<f (q)—q,x*—q>s0 (3.14)

By Lemma 1.9, (1.5) and (2.7), we compute

¢, (W,u, —q)"2
Q)"2 +2an <f (ann)_qv Xn+1 _q>
<[b, %, —af+c, Ju, —q||]2 +2a, <f (Wox )= F (), X0

—q)+2a,(f(q)-q,%,.,-q)

<[y b, = al+, x, ~al ] + 202, [x, ... -al+ 22, (f (a) -0, ... ~)

Hence
(1-a,)" +a,a
e = (JLISLE L)
1-2a, +aa, al 2a,
{?}uxn—qn% -+ 22 (1 (@)%, )

l a)an a,M, 1 B B
{1 1-a,a }" o+ 1 aa X{Z(l—a)+1—a<f(q) G %o q)}

=(1-6,)|x, —a| +6,0,,

where M :sup{"x —q||2'n>1} 5 :2(1_0‘)an and
' " A l-a,«a

O, ZJI—“/I;[)Jré(f(q)—q,xml—q). It is easy to

see that 5, >0, D" &, =, and limsup,,, o, <0.
Hence, by Lemma 1.6, the sequence {xn} converges
strongly to g. Consequently, we can obtain that {un}
also converges strongly to g, and so x* =q. This com-
pletes the proof.
Putting T;x = x forall i >1 in Theorem 2.1, we obtain.
Corollary 2.1. Let C be a nonempty closed convex

bounded subset of a real Hilbert space H,

Copyright © 2011 SciRes.

T:C—>CB(H) be a multivalued 7-Lipschitz continu-
ous mapping with constant L >0, and let ¢:CxC - R
be a real-valued function satisfying (¢)-(¢;). and
®:HxCxC — R be an equilibrium-like function sat-
isfying the conditions (©,)-(©,) and Q=@ . As-
sume that 7:CxC — H is a Lipschitz function with
lipschitz constant 4 >0 which satisfies the conditions
(m)-(n). Let k:C—R be an 7-strongly convex
function with constant x>0 which satisfies the condi-
tions (k) and (k,) with Av/u<1. Let F be a con-
traction of C into itself with coefficient « «(0,1). Then
the sequences {x,}, {u,}, and {w,} generated itera-
tively by

AM
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Xou = 3, F (X, )+b,X, +c U,

converge strongly to x"e Q, and {w,} converges strongly
to weT(x'), where x' =P, f(x"), and {a,}, {b,}
and {c,} are sequences in (0,1) with a, +b, +c, =1,
and r >0 satisfying the following conditions:

1) lim ,, a, =0, " a = and

Z::1|an+l _an| <o

2) O<liminf__b, <
Z::1|bﬂ+1 _bn| <o,

3) Z::1|Cn+l _Cn| <.

limsup,_,. b, <1 and
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