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Abstract 
 
In this paper, we introduce a hybrid iterative method for finding a common element of the set of common 
solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family 
of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild condi-
tions. 
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1. Introduction 
 
Equilibrium problems theory provides us with a natural, 
novel and unified framework for studying a wide class of 
problems arising in economics, finance, transportation, 
network and structural analysis, elasticity and optimiza-
tion. The ideas and techniques of this theory are being 
used in a variety of diverse areas and proved to be pro-
ductive and innovative.  

Let H be a Hilbert space with inner product ,   and 
norm  . Let C be a nonempty closed convex subset of H 
and : 2HT C  a multivalued mapping. Let : C C R    
be a real-valued function and : H C C R  

 , ,w u v 

 , , = 0w v u

u C

 be an 
equilibrium-like function, i.e.,  
for each . The generalized mixed 
equilibrium problem (for short, GMEP) is to find 

 v H C C  , ,w u
  

and  such that   w T u

     : , , , , 0,GMEP w u v v u u u v C       .  (1.1) 

in particular, if T is single-valued mapping, this problem 
is equivalent to finding  such that  u C

      , , , , 0, .T u u v v u u u v C         (1.2)  

Denote the set of solutions of GMEP by .  
Now, we recall the following definitions.  
A mapping :f C C  is said to be contractive if 

there exists a constant (0,1)   such that  
   f x f y x y    for any ,x y C . A mapping 

:g C C
  

 is said to be firmly nonexpansive if  
    2

,g x g y g x g y x y    . A mapping  
:T C C  is said to be nonexpansive if Tx Ty   

x y  for any ,x y C . The set of fixed points of T is 
denoted by  F T .  

Let  =1

N

i i
 be a finite family of nonexpansive map-

pings of C into H and . Define the map-
pings  

T
 =1

Ø
N

ii
F T 
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I

   (1.3) 

where    , 0,1
N

n i 
W map

=1i
 for all . Such a mapping 

n  is called 
1n 

W ping  generated by 1, , NT T  
and  , =1

N

n i i
 . 

 
2. Preliminaries  
 
Let C be a nonempty closed convex subset of a real Hil-
bert space H. Then, for any x H

CP
, there exists a unique 

nearest point in C, denoted by , such that  x

 Cx P x x y    

for all y C . Such a  is called the metric projection CP
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of H into C. We know that  is nonexpansive. What’s 
more,  

CP

 = , 0,Cx P x x x y    

.

x

y C

 

 
 

Let C be a convex subset of a real Hilbert space H, 
: C C H    and  a Frechet differential 

function. Then k is said to be 
:k C R

 -strongly convex if there 
exists a constant > 0  such that  

       2
, ,

2
, .

k y k x k x y x x y ,

Cx y



 

   
 

If = 0 , then k is said to be  -convex. In particular, 
if  , =y x y  x  for all ,y x C , then k is said to be 
strongly convex.  

Let C be a nonempty subset of a real Hilbert space H. 
A bifunction  is said to be skew- 
symmetric if  

 , : C C R    

u
u v 

, 0 

      , , , ,

, .

u v v u u v v

C

       0,

.

 

It is easy to see that if the skew-symmetric bifunction 
 is linear in both arguments, then   ,  

  ,u v u C   

We denote   for weak convergence and  for 
strong convergence. A bifunction 


: C C R  
 0 0,

 is called 
weakly sequentially continuous at x y C C   if 
  0 0n n , , x y x 
  ,n n

y  as  for each sequence n 
x y C in  converging weakly to C  0 , 0x y . 

The function  is called weakly sequentially con-
tinuous on  if it is weakly sequentially continuous 
at each point of .  

 ,  
C C

C



C
Let  denote the set of nonempty closed 

bounded subset of X. For 
 CB X

 ,A B CB X , define the 
Hausdorff metric  as follows:  

   
 

, = max ,

, .

b B

b A B

,a A

a

A B sup inf d a

sup d b a

  b

inf 

 

In order to solve the generalized mixed equilibrium 
problems for an equilibrium-like bifunction  

: H C C R   

: 2

, we assume that  satisfies the fol-
lowing conditions with respect to the multivalued map-
ping 



HT C 
 

: 
 1  for each fixed v C ,    , ,w u vw u ,  is 

an upper semicontinuous function from H C  to R, 
that is,  and  imply  nw  w nu u

   ,v, ,n v ,w ulimsup n n w u  ; 
 2  for each fixed  ,w v H C ,  , ,u w u v  

is a concave function; 
 3  for each fixed  ,w u H C  ,  , ,v w u v  

is a convex function; 
 4           1 2, , , ,r s s rw T x T y w T y T x 

   
 

2
T x T y  r s  

for all ,x y C  and  , 0,r s  , where > 0 ,  1w T x  
and  2w T y

:k C 
.  

Let  be a differential function with Frechet 
derivative 

R
 k x  at x satisfying the following: 

   k1  k   is continuous from the weak topology to the 
strong topology; 

 2k  k  is Lipschitz continuous with constant > 0 . 
Let : C C H    be a function satisfying the fol-

lowing: 
  1     , ,x y y x  = 0  for all ,x y C ; 
 2   ,    is affine in the first coordinate variable; 
 3  for each fixed y C ,  ,y Cx y x   is se-

quentially continuous from the weak topology to the 
weak topology.  

Let C be a nonempty closed convex subset of a real 
Hilbert space and : 2HT C   a multivalued mapping. 
For x C , let  w T x . Let : C R   be a real- 
valued function satisfying the following: 
  1   ,    is skew symmetric; 
 2  for each fixed y C ,  , y   is convex and up-

per semicontinuous; 
 3   ,    is weakly continuous on .  C C
Recently Wei-You Zeng, Nan-Jing Huang and Chang- 

Wen Zhao [1] introduce and consider a new class of 
equilibrium problems, which is known as the generalized 
mixed equilibrium problems. Furthermore, they intro-
duce an iterative scheme (1.4) by the viscosity approxi-
mation method for finding a common element of the set 
of common solutions for generalized mixed equilibrium 
problems and the set of common fixed points of a se-
quence of nonexpansive mappings in Hilbert space.  

 

   

           

   

1 1

1

1
1 , ;

1
, , , , 0,

= 1

n n

n n n n n n

n n n n

T x T x
n

v v u u u k u k x v u v C
r

x W u

  

 

 



       


        

  





, ,

n n

n n

n n

w w

w u

x f

              (2.1) 
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Motivated and inspired by the research going on in 
this important field, we introduce the following hybrid 
iterative scheme (1.5) for finding a common element of 
the set of common solutions for generalized mixed equi-
librium problems and the set of common fixed points of 
a sequence of nonexpansive mappings. We show that the 
approximation solution converges strongly to a unique 
solution of a class of variational inequalities under some 
mild conditions. Results obtained in this paper can be 

viewed as an improvement and refinement of the recent 
results in this direction. 

Algorithm 1.1. Let C be a nonempty closed convex 
subset of a real Hilbert space H,  :T C CB H  be a 
multivalued mapping, f be a contraction of C into itself 
with coefficient  0,1  . Let  be defined by 
(1.3), and . For given 1

:W C Cn

> 0r x C  and  1 1w T x , there 
exists sequences  nx ,  nu  in C and   nx:n nw w T  
in H such that for all ,  = 1n , 2,

 

   

           

 

1 1

1

1
1 , ;

1
, , , , , , 0,

=

n n n n

n n n n n n n n

n n n n n n n n n

w w T x T x
n

w u v v u u u k u k x v u v
r

x a f W x b x c W u

  

 



       
        

  





C               (2.2) 

 
where  na ,  and  are three sequences in (0, 
1) such that .  

 nb
a b

 nc
= 1n n n

It is easy to see that the iterative scheme (1.5) may be 
well defined.  

c 

Let r be a positive number. For a given point x C  
and , consider the following auxiliary prob-
lem for GMEP: find  such that  

 xw T x
u C

     

     

, , , ,

1
, , 0,

xw u v v u u u

k u k x v u v C
r

 



  

      ,
     (2.3) 

It is easy to see that if , then u is a solution of 
GMEP.  

=u x

We need the following important results. 
Lemma 1.1. [2] Let C be a nonempty closed convex 

bounded subset of a real Hilbert space H and let 
: C C R    be a real-valued function satisfying  1 - 

 3 . Let : 2HT C   be a multivalued mapping and 
: H C C R  

: C C



H

 be an equilibrium-like bifunction 
satisfying the conditions - . Assume that  1  4 
  

> 0
 is a Lipschitz function with lipschitz 

constant   which satisfies the conditions  1 - 
 3 . Let  be an :k C R  -strongly convex func-
tion with constant > 0  which satisfies the conditions 
 1k  and  2k . For each x C , let  x . For 

, define a mapping  by  
w T x

> 0r :rT C  C
 

             1
= : , , , , , , 0,r xT x u C w u v v u u u k u k x v u v C

r
             

 
          (2.4) 

 
Then there hold the following: 
1) the auxiliary problem (1.6) has a unique solution; 
2)  is single-valued; r

3) if 
T

1   , it follows that  is firmly nonex-
pansive; 

rT

4) ;   =rF T 
5)  is closed and convex. 

Lemma 1.2. [3] Let H  be a real Hilbert space and 
let C be a nonempty closed convex subset of H. Let 

  =1

N

i i
T  be a finite family of nonexpansive mappings of C 

into H and  =1
Ø

N

ii
F T  , and let  , =1

N

n i i
  be a se-

quence in  0,b b

 N

n i

 for some . Then,   0,1

  =1i
=F W F T . 

Lemma 1.3. [4] If the sequences  and  nu  nx  are 
bounded and n  is defined by (1.3), then the following 
estimates hold:  

W

 

1 1 1 1, ,
=1

2 ,
N

n n n n n n n i n i
i

W u W u u u M n           0  

and  

1 1 1 1, ,
=1

2 ,
N

n n n n n n n i n i
i

W x W x x x M n           0  
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for some constant . > 0M

Lemma 1.4. [4] In a real Hilbert space H, , ,x y z H   
and  with , there holds the 
following equality:  

1 2 3, , [0,1]t t t  1 2 3 = 1t t t 

2 2 2

1 2 3 1 2 3 .t x t y t z t x t y t z     2
 

Lemma 1.5. [6] Let  nx  and  be bounded 
sequences in a Banach space X and let   be a se-
quence in [0,1] with . 
Suppose  

 nu

limb 
nb

sup0 < < 1n n n n liminf b

n n 1 = 1n n nx b z b x    

for all integers  and  0n 

 1 1limsup 0.n n n n
n

z z x x 


     

Then,  
lim = 0.n n
n

z x


  

Lemma 1.6. [5] Let  is a sequence of nonnega-
tive real numbers such that  

 na

 1 1 , = 1n n n na a b n     , 2,  

where  n  is a sequence in (0,1), 
=1

=nn
   and 

limsupn nb 0n  , then . limn na


= 0

Lemma 1.7. [2] Let  nx  be a sequence in a normed 
space  ,X   such that  

1 2 1 , = 1,2,n n n n n nx x x x s r n         

where (0,1)  , and  ns  and  are sequences 
satisfying the following conditions: 

 nr

  1)  and ; 1ns   =1
1 <nn

s
  

2) , and . 0nr 
=1

<nn
r

 
  Then  nx  is a Cauchy sequence. 

Lemma 1.8. [7] Let  ,A B CB X  and a . Then 
for 

A
> 1 , there must exist a point  such that 

. 
bB

 b  , ,d a A B
  


Lemma 1.9. [5] In a real Hilbert space H, there holds 

the following equality:  
2 2

2 , , , .x y x y x y x y H       

 
3. Main Results  
 
Theorem 2.1. Let C be a nonempty closed convex 
bounded subset of a real Hilbert space H and , 

 be a multivalued -Lipschitz continu-
ous mapping with constant , and let 

> 0r

C C R
:T C CB H

> 0L :    
be a real-valued function satisfying  1 -  3 . and 

: H C C  

: C C H

R  be an equilibrium-like function sat-
isfying the conditions   - . Assume that 1  4 
    is a Lipschitz function with lipschitz 

constant > 0  which satisfies the conditions  1 - 
 3 . Let  be an :k C R  -strongly convex func-
tion with constant > 0  which satisfies the conditions 
 1k  and  2k . with 1   . Let 

=1 N

i i
T  be a finite 

family of nonexpansive mappings on H such that 

=1i  i Ø
N

F T   . Let f be a contraction of C into 
itself with coefficient 0,1  . Let  nx ,  nu ,  nw  
be sequences generated by (1.5), where  na ,  nb  and 
 nc  are three sequences in (0,1) with  
satisfying the following conditions:  

= 1ncn na b 

1) , lim = 0n na =1 nn
a =

   and 

1=1n
<n na a


   ;  

2) 0 < nb bliminfn n limsup < 1n  and 

1=1n
<n nb b


   ;  

3) 1, ,
=1

<
N

n i n i
i

   ;  

4) 1=1
<n nn

c c


   . 

Then the sequences  nx  and  nu  converge strongly 
to  =1

N
i ix F T   , and   converges strongly  nw

to  w T x  , where 
 F Ti i

 
=1

N=x P f x 

 
.  

To proof Theorem 2.1, we first establish the following 
lemma. 

Lemma 2.1. Let C be a nonempty closed convex 
bounded subset of a real Hilbert space H and , > 0r

 CB H:T C  be a multivalued -Lipschitz continu-
ous mapping with constant , and let > 0L : C C R    
be a real-valued function satisfying  1 -  3 . and 

: H C C R     be an equilibrium-like function sat-
isfying the conditions  1 -  4 . Assume that  

: C C H  
> 0

 is a Lipschitz function with lipschitz 
constant   which satisfies the conditions  1 - 
 3 . Let  be an :k C R  -strongly convex func-
tion with constant > 0  which satisfies the conditions 
 1k  and  2k  with 1   . Let   =1

N

i i
T  be a finite 

family of nonexpansive mappings on H such that  
 iF T

=1

N

i
Ø  . Let f be a contraction of C into 

itself with coefficient . Let 0,  1  nx ,  nu ,  nw  
be sequences generated by (1.5), where  na ,  nb  and 
 nc  are three sequences in (0,1) with , 
satisfying the following conditions:  

= 1ncn n a b

1) , lim = 0n na =1 nn
a =

   and 

1=1n
<n na a


   ;  

2) 0 < liminfn n nb b limsup  < 1n ;  
3) , 1 ,n n i n lim = 0i  ;  
4) 1=1

<n nn
c c


   . 

then  
1) 1lim = 0n n nu u   , 1n nx x lim =n 0 ;  
2) lim = 0n n n nx W u  , lim = 0n n n

Proof. 1) From the nonexpansity of , we have  
x u

rT
 .  
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1 1 1=n n r n r n n nu u T x T x x x                                    (3.1) 

and set 1=
1

n n
n

n

nx b x
z

b
 


, we obtain  

   

     

 

1 1 1 1 1 12 1 1 1
1

1 1

1 1
1 1

1 1

1 1
1 1

1 1

= =
1 1 1 1

=
1 1 1

1 1 1

n n n n n n n n n n nn n n n n n
n n

n n n n

n n n
n n n n n n

n n n

n n n
n n n n

n n n

a f W x c W u a f W x c W ux b x x b x
z z

b b b b

a a a
f W x f W x f W x

b b b

c c c
W u W u

b b b

        


 

 
 

 

 
 

 

  
  

   

 
        

 
       

n nW u

n

 

By Lemma 1.3, we arrive at  

      

  

1 1 1
1 1 1 1 1

1 1 1

1 1
1 1, ,

=11 1

1
1 1, ,

=11

1 1 1 1

2
1 1 1

2
1

n n n n
n n n n n n n n n n n n n n

n n n n

N
n n n

n n n i n i n n n n
in n n

N
n

n n n i n i
in

a a a c
z z f W x f W x f W x W u W u W u

b b b b

a a a
x x M f W x W u

b b b

c
u u M

b


 

 

  
    

  

 
 

 


 



       
   

           

       





 (3.2) 

Hence, it follows from (2.1) that  

  

  

1 1
1 1 1, ,

=11 1

1
1 1, ,

=11

1
1 1, ,

=11

2
1 1 1

2
1

2
1 1

N
n n n

n n n n n i n i n n n n
in n n

N
n

n n n i n i
in

N
n n

n n n n n n n i n i
in n

a a a
z z x x M f W x W u

b b b

c
x x M

b

a a
x x f W x W u M

b b


 

 

 

 
  

 


 




 



            

       

      
 







         (3.3) 

 
It follows from conditions (a) and (c), we have  

 1 1limsup 0.n n n n
n

z z x x 


     

Hence by Lemma 1.5, we can see that  

lim = 0n n
n

z x


  

Consequently  

 1lim = lim 1 = 0n n n n n
n n

x x b z x 
      (3.4) 

From (2.1), we get  

1lim = 0n n
n

u u
             (3.5) 

2) In view of (1.5), we conclude that  

 
1 1

1

,

n n n n n n n n

n n n n n n n

n n n n

x W u x x x W u

x x a f W x W u

b x W u

 



    

   

 

 

that is  

 

1

1

1

,
1

n n n n n
n

n
n n n n

n

x W u x x
b

a
f W x W u

b

  


 


 

which implies that  

lim = 0n n n
n

x W u


            (3.6) 

For  =1= N
i ip F T   , note that  is firmly 

nonexpansive, we can see that  
rT

 

2 2

2 2

= ,

= ,

1
=

2

n r n r r n r n

n n

n n n

u p T x T p T x T p x p

u p x p

u p x p u x

    

 

     2

n

 

and so  
2 2 2

n n n n nu p x p u x x p       2
   (3.7) 

In view of Lemma 1.4, (2.6) and (2.7), we compute     
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22

1

2 2 2

2 2 2

2 2 2

2 2 2

n n n n n n n n n

n n n n n n n n

n n n n n n n

n n n n n n n n n

n n n n n n n

x p a f W x b x c W u p

a f W x p b x p c W u p

a f W x p b x p c u p

a f W x p b x p c x p x u

a f W x p x p c x u

     

     

     

       

     

2

 

which follows that  

     22

1 1n n n n n n n n n nc x u x p x p x x a f W x p          

 
and hence  

lim = 0n n
n

x u


  

This completes the proof. 

Proof of Theorem 2.1. We divide our proof into 3 steps. 
Step 1. We prove that there exists x C  , such that 

nx x , nu x  and n  as n , where w  w 
 w T x . From (1.5), (2.1) and Lemma 1.3, we compute  

 

   
     

 

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1,
=1

=

2

n n n n n n n n n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n n

N

n n n n n n n n i
i

x x a f W x b x c W u a f W x b x c W u

a a f W x a f W x f W x b b x

b x x c c W u c W u W u

a a f W x a x x M 

    

    

     

   

         

       

      

      

1 1 1 1    

 

, 1

1 1 1 1 1 1, ,
=1

1 1

2

1 1

n i n n n

N

n n n n n n n n n n n i n i
i

n n n n

b b x

b x x c c W u c u u M

a x x r



 





     

 

      
           

      



          (3.8) 

where   1

1
= 1 1

2n na     ,  and  = 1ns

 1 1 1
=1

= 2
N

n n n n n n n n n n n n n i n i
i

r a a f W x b b x c c W u M 1, , .             
 

 
By Lemma 1.7 and conditions (a)-(d), we conclude that 

 nx  is a Cauchy sequence in C such that lim =n nu x , 
there exists an element x C  . On the other hand, 
lim = 0x un n n  implies that lim =n nu x . From 
(1.5), we have  

    

    
1 1

1 1

1
1 ,

2 , 2

n n n n

n n n n

w w T x T x
n

T x T x L x x

 

 

    
 

 



 
 (3.9) 

and for ,  > 1m n 
1 1

1 1
= =

2
m m

m n i i i i
i n i n

w w w w L x x
 

         (3.10) 

 

 

1 1 1

1 1
= = =

1 1 1

1
= = = =

1 1

1
= =

=

=

m m m

i i i i i
i n i n i n

m m m m

i i i n m
i n i n i n i n

m m

i n i
i n i n

a x x a r

a r a a a

a a r



  

 

  

 

   



 



  

    

  

  

   

 

 
1

ir

Hence  
1

1
=

1 1
= 1 1

m

im
i n

i i n n
i n

r
x x x x


 





    
 


  

In view of (2.4) and (2.8), we obtain  

,
lim = 0m n

m n
w w


            (3.11) 

which implies that  nw  
e exists an

xt we ca

is a Cauchy sequence in H and 
therefore ther  element w in H such that 

. Ne n see that  lim =n nw w

    
    

   

, = inf , n
b T x

d w T x d w b w w





 



,

n n

d w T x

w w T x



   

Hence, we derive that 

,T x  

n nw w L x x   

(3.12) 

  , =d w T x 0 , that is  
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 as 
 Let . Then Q is a contrac-  

 w T x
Step 2.

tion of C into i

   T x CB H  . 

 =1
= N F Ti i

Q P
 

tself. In fact, for all 

f


,x y C   

       Q x Q y f x f y x y      

q CTherefore there exists a unique element  such 
th at at  =q Q q . Noting th q C  and  

, we  N F T hat =1Q q i i  get t  q F=1

en  

N
i iT  . 

Th

   =1, 0,f q q p q p     .N
i iF T   (3.13) 

Next, we show that . Since  =1
N
i ix F T  nx x  

0 , From and  we kno
(1

n n n

.5) and 
u x , w that  k u k  x 

 1 , we have  

  , , , 0w x v x        ,v x x 

that is 



. We shall show x   nx F W  . Assu  me 

 nx F W  , that is nx W x  . Since  nu  is bounded,  

there exists a subsequence  jnu  of   which con-  nu

verges weakly to x . By Lemma 2.1, we conclude that 
0n n nW u u  . From Opial’s condition, we have  

 
liminf < liminf

liminf

liminf

n n nj jj j

n n n n n nj j jj

n jj

u x u W x

u W u W u W x

u x

 

 









 

   

 

 

This is a contradiction. So, we get  
   =1= N

n i ix F W F T   . Therefore  =1
N
i ix F T  .  

Step 3. From (2.13) and nx x , we obtain  

   lim , = , 0n
n

f q q x q f q q x q


    

 

  (3.14) 

By Lemma 1.9, (1.5) and (2.7), we compute  

      

     

     

 

2

1

2

1 1

1 1

2 ,

2 , 2 ,

2 ,

n n n n n

n n n n n n n n

n n n n n n n n n n

n n n n n

a f W x q q W u q

x q c W u q a f W x q x q

b x q c u q a f W x f q x q a f q q x q

c x q q x q a f q q x q
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2

1

2

=n n n n

n

x q b x c
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2
2n n n nb x q a x    

   

 

   
   

 

2
2 2

1 1

2
2 2

1

2 1
1

2

1 2
,

1 1

1 2 2
= ,

1 1 1

2 1 2 1 1
1 ,

1 1 2 1 1

= 1 ,

n n n
n n n

n n

n n n n
n n n

n n n

n n n
n n

n n

n n n n

a a a
x q x q f q q x q

a a

a a a a
x q x q f q q x q

a a a

a a a M
x q f

a a

x q


 


  

 
   

  

 





 
     

 

  
         

q q x q
                     

  

 

 

where  2

1 = sup : 1nM x q n  , 
 2 1

=
1

n
n

n

a

a








 and 

   1
1

1
= ,

2 1 1
n

n n

a M
f q q x q

   
 

 . It is easy to  

see that 0n  , 
=1

=nn
  , and limsup 0n n  . 

Hence, by  sequence  Lemma 1.6, the  nx  converge
 obtain that 

s 
rongly o we canst  to q. C nsequently,  nu

=
 

also converges strongly t , and so o q x q . This com-
pletes th

 closed convex 

e  
Putting  for all in Theorem 2.1, we obtain. 
Corolla  Let C nonempty

bounded subset of a real Hilbert space H,  

 proof. 
=iT x x

ry 2.1.
1i   

 be a 

 :T C CB H  
ous mapping with c

be a multivalued -Lipschitz continu-
onstant , and let 


> 0L : C C R    

 1be a real-valued function satisfying  -  3 . and 
: H C C R   

isfying th
 

e conditions 
be an equilibrium-like function sat-

 1 -  4  and Ø  . As-
sume that : C C H  

> 0
 is a Lipschitz function with 

lipschitz constant   which satisfies the conditions 
 1 -  3 . Let :k C R  be a n  -strongly convex 
function w nstith co ant > 0  which s -
tions 

atisfies the condi
 1k  and  2k  with 1   . L  be a con-

traction of C into itself with coefficient  0,1  . T  
the sequences 

et F
hen

 nx ,  nu , and  nw rated itera-
tively by     

 gene
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 1

;

1
, , , , , ,

=

n n n n n

n n n n n n n

w u v v u u u k u k x v u
r

x a f x b x c u

  



     

  



 
converge strongly to , and 

1 11 ,n n n nw w T x T x
n      



1  

0,n n n v C                (3.15) 

x  nw
 

 converges strongly 
to , wh w T x  ere =x P f x  , and  na ,  nb  
and  nc  

> 0r  
are sequences i

and 
1)  and 

n



 
satisfying the following conditions: 

(0,1) with = 1nc , n na b 
 

lim = 0n na , 
=1

=nn
a 

1=1
<n nn

a a


   ;  

2)  and 0 < liminf limsup < 1n n n nb b 

1=1
<n nn

b b


   ;  

3) 1=1
<n nn

c c


   . 
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