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Abstract 
 
In this paper, we study the following problem 
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where , the potential  is a positive bounded function, 1 p N   V x   ,p Nh L   
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p p
    
  

0,h   f s  is nonlinearity asymptotical to 1ps   at infinity, that is,    ~f s O s 1p

 as s   . The aim of this 
paper is to discuss how to use the Mountain Pass theorem to show the existence of positive solutions of the present 
problem. Under appropriate assumptions on  and , we prove that problem (*) has at least two positive 
solutions even if the nonlinearity 

,  ,  hV K f
 f s  does not satisfy the Ambrosetti-Rabinowitz type condition: 
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1. Introduction and Preliminaries 
 
In this paper, we study the following problem 
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and the function and ,  V K f  satisfy the following 
conditions:  
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WClearly, . W is a Hilbert space with its 
scalar product and norm are given by 
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because of   it is equivalent to the standard 1V
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d
u

F u f t  t . By  1V  and  1K  there 

exists  such that  0 0C 

   0K x C V x , for all Nx .   (1.3) 
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Under the conditions  1F and  2F , we are able to 
prove I  has a Mountain Pass geometry. Namely setting  

        0,1 , , 0 0, and 1 0C W I       , 

we have  and       
[0,1]

inf max 0.
t

c I t



 

 

The value  is called the Mountain Pass level 
for 

c
I . Ekeland’s variational principle implies that there 

exists a Cerami sequence at c, namely a sequence 
such that   u n W

     * and 1 0

 as ,
n n nW

I u c I u u

n

 

 


   (1.4) 

where denotes the dual space of . At this point, 
to get an existence result, it clearly suffices to show that 

is bounded and then that  n  has a strongly 
convergent subsequence whose limit is a non-trivial 
critical point of 

*W W

 nu u

I . These two steps consist the heart of 
the proofs of Theorems 1.1 below. 

For problems like (1.1) as p = 2, in most works, the 
following superlinear condition of  f t , the so-called 
Ambrosetti-Rabinowitz type condition is assumed  
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1
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Our equation does not satisfy (1.5) under assumption 

of  4F . The difficulty to prove that  is bounded 
is linked to the fact that we are considering an non- 
linearity asymptotically problem.  

 nu

There are a few works on asymptotically linear prob-
lems on unbounded domains. The first result is due to 
Stuart and Zhou [1]. They study a problem of the type of 

    ,   ,Nu V x u f u x       (1.6) 

assuming that it has a radial symmetry. Thanks to this 
assumption, the problem is somehow set in  and 
possesses a stronger compactness. Moreover in [2], a 
problem of the form  



   , ,   Nu K x u f x u x     

is studied, where  is a constant and 0K   ,f x s


 is 
asymptotically linear in s and periodic in Nx . Sub- 
sequently, taking advantages of some techniques intro- 
duced in [3], an extended study of radially symmetric 
problems on  was done in [4]. Jeanjean et al. in [5] 
discussed (1.6) under some different conditions of 

N

 V x  and  f u , it gives results that (1.6) has a posi-
tive solution. Recently, under the assumptions  1V  as 

0   with 0 2 
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Moreover, it is also proved in [6] that, if   pf u u   

in (1.7), then the restriction of 
2
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N
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 is nece- 

ssary to get a ground state (i.e. a least energy solution) of 
(1.7). Liu et al. in [7] showed that (1.7) has a bound state 
and ground state solution if f  is asymptotically linear 
at infinity and other assumptions of  and ,V K f . 

Similar to [8,9] considered the problem  
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t
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l

t
   . It studied the problem by the 

case  and  to obtain the multiple posi-
tive solutions in these two cases.  

l   l  

Our result is motivated by some work on the existence 
of positive solutions for asymptotically linear Schrod-
inger equations as well as by some ideas used for 
bounded domain problems. Positive solutions of nonlin-
ear elliptic problems on a bounded domain have been 
much studied (see, for example [3,10,11,12]). But to our 
best knowledge, it seems that there few results about (1.1) 
which is a p-laplacian equation with nonlinearity as-
ymptotic to 1pu   at infinity in N . In this paper, we 
shall extend the results of [9] to the more general case. 
As is known, to seek a weak solution of (1.1) is equiva-
lent to find a nonzero critical point of I  in , so by 
the Ekeland’s variational principle [13], we can get a 
weak solution 0  for 

W

u  Nph L  suitably small easily. 
Moreover, 0  is the local minimizer of u I  and 

. However, under our assumptions it seems 
difficult to get a second solution (different from 0 ) of 
(1.1) by applying the Mountain Pass theorem. Since we 
lose the (AR) condition, we must overcome the difficulty 
of the lack of a priori bound in W for Palais-Smale se-
quences. On the other hand, once a (PS) sequence is 
bounded in , it also has some difficulties to show this 
sequence converges to a different solution from 0 . 
When , it seems difficult to get the boundness 
result of , so we only discuss the case 

 0 0I u 

l

u

l
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and obtain Theorem 1.1:  
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Then there exists  such that problem (1.1) has 
at least two positive solutions  satisfying 

 and 
 

if 

0d 

 1 0
0 1,  u u W

 0 0I u  I u
p

h d  . 
 
2. Existence of Minimum Positive Solution 
 
In this section, we prove the existence of minimum posi-
tive solution for 
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by Ekeland’s variational method. To this end, we need 
some lemmas.  
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with l    hold and 0 p  . Let 
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gent subsequence in W. 
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where ,     and  are given by a  1V . Then, by 
 1V , (2.3) and (2.4), we have, for all , 0R R
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This implies that 
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From  0,1  and (2.7), it is easy to see that (2.19) 
implies (2.2). 

In the following, we give a property of variational 
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3. Existence of Second Solution 
 
Next we prove that problem (1.1) has a Mountain Pass 
type solution. For this purpose, we use a variant version 
of Mountain Pass theorem ([13] Chapter IV), which 
allows us to find a so-called Cerami type (PS) sequence. 
The properties of this kind of (PS) sequence are very 
helpful in showing its boundedness. The following 
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