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Abstract 
 
In this paper we have generalized some results of Rahman [1] by considering the maximum of ( )f z  over a 

certain lemniscate instead of considering the maximum of ( )f z , for z r  and obtain the analogous re-

sults for the entire function     1
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
     where  q z  is a polynomial of degree m and 

 kp z  is of degree m  1. Moreover, we have obtained some inequalities on the lover order, type and lower 

type in terms of polynomial coefficients. 
 
Keywords: Lemniscate, Lower Order, Lower Type, Slowly Changing Function, Polynomial Coefficients and 

Entire Functions. 

1. Introduction 
 
Let  
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( ) n
n
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f z a




  z  

be a nonconstant entire function and assume that an ≠ 0 
for n = 1, 2, 3,  For classifying entire functions by 
their growth, the concept of order was introduced. If the 
order is a (finite) positive number, then the concept of 
type permits a subclassification. For the class of order  
= 0 and  =  no subclassification is possible. For exam-
ple all entire functions that grow at least as fast as exp 
(exp (z)) have to be kept in one class. For this reason, 
numerous attempts have been made to refine the concept 
of order and type. Boas [2] define the order  (0 ≤  ≤  ) 
and the type T (0 ≤ T ≤) as follows: 

 
1

log log , log
limsup limsup

log log| |r n n

M r f n n

r a
 

 
    (1.1) 

  /log , 1
limsup limsup | | n

n
r n

M r f
T n a

er


  


  







|

 (1.2) 

where  
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Rahman [1] studied the type by taking the function 
,  in place of   1
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In this paper, we show that instead of considering the 
maximum of |f(z)|, for |z| = r, we can consider the maxi-
mum of f(z) over a certain lemniscate and obtained 
analogous results for entire function  

f(z) = ,   1
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Walsh [3], Borwein [4], where q(z) is a polynomial of 
degree m and pk(z) is of degree m  1 and the equipoten-
tial curve |q(z)| = R defines the lemniscate mentioned 
above, various authors such as Rice ([5,6]), Juneja [7], 
Juneja and Kapoor [8], Kumar [9], Kumar and Kaur [10] 
studied the growth of above entire function but non of 
them studied the analogous results of (1.3). Therefore we 
have obtained lower order, type and lower type in terms 
of polynomial coefficients. 
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Rice [5] has extended the results (1.1) and (1.2) for the lemniscate R.: |q(z)| = R, i.e., 
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where  

M(R, f) = | ( ) || max | ( )
R

Rz
f z f 

 z , 

R is the boundary of the lemniscate. 
Analogous to (1.4) the lower order  if f(z) can be de-

fined as  
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2. Definitions and Auxiliary Results 
 

Definition 2.1. Slowly changing function (r) is defined 
as: 

1) (r) is positive, continuous and tends to  as r, 

2) 
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Now we prove 
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Proof. Set S = R1/m (1+ O(1)), so that from the esti-
mate Rice [5],  as R   for 
z  R, |z| = S, we have 
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Proof. Proof can be done in a similar manner as 
Lemma 2.1.  

3. Main Results 

First we prove the inequality for lower order  in terms 
of polynomial coefficients. 

Theorem 3.1. Let  be fixed and  
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 for k > K(). 

Using the relation Rice [5] 
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have Q(z) is a polynomial of degree m  1, independent 
of K and R, we get  
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Choose R =  1/ ,ek    since  < R, for sufficiently large k, we obtain 
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In view of a result of Rice [5] 
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Hence the proof is complete. 
Theorem 3.2. Let  be fixed. The necessary and suf-

ficient condition that  
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For an infinite sequence of values of k, so that from 
(3.1), we have 
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Choosing a sequence of values of R such that  
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maximum value, that is, 
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Applying the limits as R  , we get  
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In order to prove reverse inequality, from (3.2) we 
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Now following the same manner as in the proof of 
(3.4), we get 
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Since  is arbitrary, combining (3.4) and (3.6) we get 
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In view of Lemma 2.1 and condition (3) of Definition 
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with (3.1). Hence the proof is complete. 
Theorem 3.3. Let  be fixed. If  

  1

1

( )[ ( )]k
k

k

f z p z q z






   

is an entire function of order  > 0 and lower type ,t  
where 

log ( , )
liminf ,

( )r

M r f
t

r r 
  

Copyright © 2011 SciRes.                                                                                  AM 



H. H. KHAN  ET  AL. 1128
 

 

Then 

  /

liminf ( )
( ) ( )

mk

k
k

m k
p z t

e k 



   


     (3.7) 

Proof. The proof of this theorem follows on the lines 
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Now using the relation (3.1) and Lemma 2.2, we get 
the required result. Hence the proof is complete.  

Remark 3.1. Theorem 3.2 is the generalization of the 
result (1.3) by Rahman [1].  

Remark 3.2. Rahman’s theorem [1], if  
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is a special case of Theorem 3.3, if we take  
and consider the circle |z| = 

r, instead if the lemniscate |q(z)| = R. 
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