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Abstract 
 
In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The method-
ology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adap-
tation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index 
from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. 
Moreover, theoretical order of convergence is verified on the examples. 
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1. Introduction 

Finding the root of a non-linear equation ( ) 0f x   is a 
common and important problem in science and engi-
neering. Analytic methods for solving such equations are 
almost non-existent and therefore, it is only possible to 
obtain approximate solutions by relying on numerical 
methods based on iteration procedures. Traub [1] has 
classified numerical methods into two categories viz. 1) 
one-point iteration methods with and without memory, 
and 2) multipoint iteration methods with and without 
memory. Two important aspects related to these classes 
of methods are order of convergence and computational 
efficiency. Order of convergence shows the speed with 
which a given sequence of iterates converges to the root 
while the computational efficiency concerns with the 
economy of the entire process. Investigation of one – 
point iteration methods with and without memory, has 
demonstrated theoretical restrictions on the order and 
efficiency of these two classes of methods (see [1]). 
However, Kung and Traub [2] have conjectured that 
multipoint iteration methods without memory based on 

 evaluations have optimal order . In particular, 
with three evaluations a method of fourth order can be 
constructed. The well-known Ostrowski’s method [3] is 
an example of fourth order multipoint methods without 
memory which is defined as 
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where 0,1, 2,i    and 0x  is the initial approximation 
sufficiently close to the required root. The method re-
quires two function f  and one derivative f   evalua-
tions per step and is seen to be efficient than classical 
Newton’s method. 

Recently, based on Ostrowski’s method (1) Grau and 
Díaz-Barrero [4] have developed a sixth order method 
requiring four evaluations, namely three f  and one 
f   per iteration. Sharma and Guha [5] have shown that 

there exists a family of such sixth order methods with 
equal number of evaluations. 

In the present paper, we derive two modified Os-
trowski’s-type methods which improve the local order of 
convergence from four for Ostrowski’s method to eight 
for new methods. The important feature of these methods 
is that per step they require three evaluations of f  and 
one evaluation of f  . Thus, the new methods support 
the conjecture of Kung and Traub for eighth order 
methods based on four evaluations. 

The paper is organized in six sections. In Section 2, 
methods are developed and their eighth order conver-
gence is established. In Section 3, computational effi-
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ciency of the methods is discussed. Section 4 contains 
the numerical experimentations and comparison with 
some well known methods. Concluding remarks are given 
in Section 5. In Section 6, references are given. 

2. The Methods and Their Convergence 

Method One 
Consider the Ostrowski scheme (1) now defined by 
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In what follows, we construct the method to obtain the 
approximation 1ix   to the root by considering the cubic 
curve interpolation. Let 

       2 3
,i iy x a b x x c x x d x x       i    (3) 

be an interpolatory polynomial of degree three such that 
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and 
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Our interest is to find the unknown parameters a, b, c 
and d introduced in the polynomial. In order to achieve 
that, we make use of the expressions (4) - (7) in (3). From 
(3), (4) and (5), it is easy to show that 
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Substituting the values of a and b in (3) then using (6) 
and (7), we obtain after some simple calculations 
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Solving these equations using Ostrowski iteration (2), 
we obtain 
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where 
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The tangent line to the curve of cubic polynomial (3) at 
the point   ,i iz y z  is given by 

    .i i iy y z y z x z            (14) 

Assuming that the root estimate 1ix   is point of inter-
section of the tangent line (14) with x-axis, then 
 1 0.iy x    Thus, from (7), (8) and (14), we obtain 
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Now using the approximation (8) in (15), we can ob-
tain the new improvement as given by  
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where i  is the Ostrowski point. It is quite obvious that 
formula (16) together with (2) requires five evaluations 
per iteration. However, we can reduce the number of 
evaluations to four by utilizing the approximation (8). 
Therefore, (3) and (8) yield  

z
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Substituting the values of  c and  in (17), we 
obtain 

,b d
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Then the formula (16) in its final form is given by 
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where  is the Ostrowski iteration (2) and iz   is given 
in (18). 

2
H


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 (12) 

Thus, we derive a multipoint method based on the 
composition of two sub steps, Ostrowski sub step (2) fol-
lowed by (19) obtained by tangential cubic interpolation. 
It is straight forward to see that per step the method util-
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izes four pieces of information namely-   ,if x    ,if x  
 if w  and  .if z  Since we are using the approxima-

tion (8) for the derivative, therefore the error is given by 
(see [6]) 

Theorem 1. Let  f x  be a real valued function. As-
suming that  f x  is sufficiently smooth in an interval I. 
If  f x  has a simple root I   and 0x  is suffi-
ciently close to   then the method defined by (19) is of 
order eight.  
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where .i i i i i i  min , , , max , ,x w z x w z      In order to 
show that the method is of order eight, we prove the fol-
lowing theorem:  

Proof: Let ,i ie x    i ie w    and î ie z    

be errors in the ith iteration. Using Taylor’s series expan-
sion of  if x  about   and taking into account that 
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Substitution of (23) in first step of (2), yields 
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Expanding  if w  about   and using (24), we obtain 
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Using Equations (21), (23) and (25), we obtain 

 
 

 
        

 

2 2 3 3 4 2 2
2 3 2 4 3 2 2 5 4 2 3 3 2 2

2 2 3 5 6 7
6 5 2 4 3 4 2 3 2 3 2 2

2 2 3 6 3 4 8 4 12 4
2

5 10 10 16 15 22 6 .

i i
i i i

i i i

i i

f x f w 

 

4 5
iA e A A e A A A A e A A A A A A A

f x f x f w

A A A A A A A A A A A A e O e

          
 

       

e
  (26) 

From second step of (2) it follows that 
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Expanding  if z  about ,  we obtain 

     2 9
2ˆ ˆ ,i i if z f e A e O e i

                          (28) 

Using (27) in (28), we get 
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Using the results of (21), (25) and (29) in 
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and simplifying, we get 
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Thus Equation (32) establishes the maximum order of 
convergence equal to eight for the iteration scheme de-
fined by (19). This completes the proof of the theorem. 

Remark 1. The error (20) is now given by 
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From (24), (27) and Taylor’s expansion of    ivf   
about ,  we can obtain the error as 
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This shows that the error in derivative approximation 
is of order four. 

Remark 2. Upon using Taylor’s expansion 
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which is same as obtained in equation (31) of 
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(33) and calculation of  iy z . 
Remark 3. From the convergence theorem of iterative 

functions [1], if  1g x  and  2g x
p

 

 are two iterative 
functions of order 1  and 2 , respectively, then the 
new composite iterative function 

p
 2 1g g x G x
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 has 
the order 1 2  In our case, the Ostrowski method (2) 
comprising the first two steps, is of order four. Thus to 
produce eighth order method the formula (19) should be 
of order two (neglecting how  is obtained). From (34), 
it turns out that 
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tion 2i i i i

y z

  e  ff z       On substitution 
and simplifying, we see that the Newton-like method (15) 
and hence (19), has the order two, thus verifying the con-
vergence theorem on composition of two iterative func-
tions to produce eighth order iterative method. 

2.2. Method Two 

Here we consider the inverse interpolation. Let 
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
       

   
    

2

3
,

i

i

i

F f x A B f x f x

C f x f x

D f x f x

  

 

 

       (35) 

be an inverse interpolatory polynomial of degree three 
such that 

   ,i iF f x x              (36) 

     1,i iF f x f x             (37) 

   ,i iF f w w              (38) 

   ,i iF f z z               (39) 

and 

     1.i iF f z f z             (40) 

From (36) and (37), we can calculate A  and  as 
given by 

B

 , 1i .iA x B f x              (41) 

Substituting the values of A  and  in (35), then 
using (38) and (39), we obtain 

B

    

    
 
 2

1

i i

i

ii i

C D f w f x

f w

f xf w f x

 

 


        (42) 

and 

    
    

 
 

 
   

 
 

2

1

.
2

i i

i i

i i i

i i i i

C D f z f x
f z f x

f w f x f z

f x f x f w f x

   


 
     

   (43) 

The Equations (42) and (43) when solved, yield 

    
 
 

 
   
   

2

1

1
,

i

ii i

i i

i i i

f w
C

f xf w f x

f w f x
G

f x f w f z

 





 

         (44) 

      
1

,
i i i

D G
f x f w f z


 

        (45) 

where 

 
    

    
     

   

2

2

1
.

2

i

i i

i i
i

i ii i

f w
G

f w f x

f x f w
f z

f x f wf z f x

 


 
  

   

 

The tangent line to the curve of cubic polynomial (35) 
at the point      ,i iF f z f z  is given by 

             .i i iF f x F f z F f z f x f z    

The approximation to the root 1ix   is now obtained by 
intersecting this tangent line with x-axis. This yields 

 
 1 ,i

i i
i

f z
x z

f z  


               (46) 

where 

    
    

    
12

1

2

3 .

i i

i i

i i

f z F f z

B C f z f x

D f z f x


 

  

  

 

From (40), (44) and (45), we have 

   
1 1

,
i if z f x


 

           (47) 

where 

 
   

   
   

       

     
   

2

1

1 2

.
2

i i

i i i i

i i i i

i i
i

i i

f w f z f x

f w f z f w f z

f w f z f z f x

f x f w
f z

f w f w


 

   
   

i

 
  

   
 

  
  

 

Hence, the iteration formula (46) is given by 

 
 1 ,i

i i
i

f z
x z

f x
  


           (48) 

where  is the Ostrowski iteration (2) and iz   is shown 
in (47). 

Thus, we obtain second modified Ostrowski-like me- 
thod (48) developed by tangential inverse interpolation. In 
this method also, the number of evaluations required is 
same as in the first method. Error in the approximation 
(40), likewise the error (20), can be given by 

    

           
( )

2

1

,
4!

i
i

iv

i i i i

F f z
f z

f
f z f x f z f w






  

   (49) 

where 

      
      

min , , ,

max , , .

i i i

i i i

f x f w f z

f x f w f z

  

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In the following theorem we prove that the method is 
of order eight. 

Theorem 2. Under the hypotheses of theorem 1, the it-

eration method defined by (48) is of order eight. 
Proof: Using (21), (25) and (29), after simple calcula-

tions we find 

             
   

     2 2 3 2 4 4 5
2 3 2 4 3 2 5 4 2 2 3 2

1 2

2

1 4 6 2 8 4 10 6 2 2 .

i i
i

i i i i i i

i i i i

f w f x
f z

f w f z f z f x f x f w

 iA e A A e A A A e A A A A A A e O e

   
    

        

          

          (50) 

Also 

 
   

   
   

     

2

2 2 3 2 4 4 5
2 3 2 4 3 2 6 4 2 2 3 21 2 3 2 4 4 5 .

i i i

i i i i

i i i i

f w f z f x

f w f z f w f x

 iA e A A e A A A e A A A A A A e O e

 
 

   

          

           (51) 

From (47) we know 1 Equation (50) Equation (51)    , which implies 

  2 3 2 4 4
2 3 4 5 4 2 3 2 21 2 3 4 5 7 7 .i i i i i 5A e A e A e A A A A A A e O e                         (52) 

From (22) and (52), we get 

       3 4 5
2 4 3 2 2

1
1 7 7 i i

i

A A A A A e O e
f x f

.



        

                    (53) 

Then using (28) and (53) in 
 
 1 ,i

i i
i

f z
x z

f x
  


 we obtain the error equation 

     
   

   
    

2 9 2 4 4 5
1 2 4 2 2 3 2

2 2 4 4 9
2 4 2 2 3 2

2 3 4 9
2 2 4 3 2 2

23 3 3
2 2 3 2 2 4 3 2 2 2 3 2

ˆ ˆ ˆ 1 7 7

ˆ ˆ ˆ 1 7 7

ˆ ˆ7 7

7 7

i i i i i i i

i i i i i

i i i i

i i

e e e A e O e A A A A A e O e

e e A e A A A A A e O e

A e A A A A A e e O e

8A A A A A A A A A A A A e O e


            

            
        
           




 
     

9

2 2 2 8 9
2 2 3 2 2 3 46 .i iA A A A A A A e O e      

                     (54) 

This result shows the eighth order convergence of 
method (48). 

Remark 4. The error (49) upon using (21), (25) and 
(29) is given by 

    
        3 4 5

2

1

.
4!

i
i

iv

i i

F f z
f z

F
f A e O e







     

 

Expanding    ivF   about   and using the fact that 

  
  

   
  

   
  

  

3

( )
7 6 5

3
2 3 2 44

15 10
(0)

4!
           5 5 ,

iv
iv

f f f f
F

f f f

A A A A
f

   

  



  
  

  

     

 

we can obtain the error as 

    

   3 4 5
2 4 3 2 2

1

1
5 5

i
i

i i

F f z
f z

.A A A A A e O e
f 




     

     (55  

in approximation (40) is of 
or

Remark 5. Upon using Taylor’s expansion 

)

This shows that the error 
der four. 

 1 if z  

   2
2 ˆ ˆ1 1 2 i if A e O e         in (55), we get 

  

     3 4 51
ˆ1 2 5 5 ,A e A A A A A e O e

 2 2 4 3 2 2

i

i i i

F f z

f
        

that is 


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  

   3 4 5
2 4 3 2 2

1
1 7 7

i

i i

F f z

A A A A A e O e
f 



        ,


 

which is same as obtained in Equation (53) of  



    .i iF f z f x   This verifies calculations of 
rm (55) and error te   iF f z . 

Remark 6. 

Since         ˆ1 1i i ,F f z f x f O           
  therefore, similar to remark 3, the iterative formula (48) 

combined with the Ostrowski iteration (2) verifies the 
 iterative 

functions to produce eig

3. Computational Efficiency 

ie

convergence theorem on composition of two
hth order iterative method. 

In order to obtain an assessment of the efficiency of our 
methods we shall make use of Traub’s efficiency index 
([1], Appendix C), according to which computational 
efficiency of an iterative method is given by 1 cE p , 
where p  is the order of the method and c is the cost per 

ction and derivative 
at is, 

iterative step of computing the fun
required by the iterative formula, th ,jc c  jc  
is the cost of evaluating  jf  for 0.j   The value 

0j   simply gives the function f . 
Designating Ostrowski’s method (1) as 4 ,M  sixth 

order method [4] as 6M  and present methods (19) and 
(48) as 8,1M  and 8,2M , respectively. Assuming that the 

cost of evaluating  
 

jf  is 1, then for 8M  we find effi-  

ciency index 1 48 1.682.E    For 6M , 1 46  
1.565  and similarly for 

E 
4 ,M  1 34

esent m
1

h r ethods are 
.587.E    Com- 

 the E values we find that t e pparing
better options than both of 4M  and 6M . 

4. Numerical Illustrations 

In this section, we ply the modified methods  ap 8,iM  
 1, 2i   to solve some nonl ar equa ich not 
only illustrate the methods practically but also serve to 
check the validity of theoretical results we have derived. 
The performance is comp 4

ine tions, wh

ared with M  and 6M . In 
mes order to compare the higher ord

necessary that we use higher pre
er m s it
cision in computations. 

pre-

ethod  beco

Therefore, the calculations are performed with high-
cision arithmetic and terminated after three iterations. To 
check the theoretical order of convergence, we obtain the 
computational order of convergence (p) using the formula 
(see [7]) 

   
   

1

1

ln
.

ln
i i

i i

x x
p

x x

 
 





 


 
 

Table 1. Performance of methods. 

Problem x0 3a x   3f x  p 

1f  1    

4M   2.21*10–34 4.65*10–33 4.0 

6M   7.09*10–103 1.49*1 01 6.0 0–1

8,1M   1.18*10–269 2.48*10–268 8.0 

8,2M   6.43*10–204 7.35*10–202 8.0 

2f  1    

4M   3.50*10  5.63*10–2  –22 2 4.0 

6M   4.25*10–64 6.83*10–64 6.0 

8,1M   7.26*10–171 1.17*10–170 8.0 

8,2M   1.46*10–146 2.35*10–146 8.0 

3f      

4M   1.28*10 8 1.–7 805*10–7  4.0 

6M   1.03* 0–251 8.44* 0–252 6.1 1 0 

8,1M   2.25*10–635 1.85*10–635 8.0 

8,2M   3.54*10–574 2.90*10–574 8.0 

4f  1    

4M   1.57*10 9 4.–2 934*10–2  4.0 

6M   4.42*10–81 1.22*10–80 6.0 

8,1M   2.33*10–298 6.44*10–298 8.0 

8,2M   1.12*10–209 3.10*10–209 8.0 

5f  0.5    

4M   2.21*10 6 2.–2 621*10–2  4.0 

6M   2.74*10–76 2.74*10–76 6.0 

8,1M   2.53*10–232 2.53*10–232 8.0 

8,2M   2.85*10–191 2.85*10–191 8.0 

6f  2    

4M   5.44*10 2 1.–3 135*10–3  4.0 

6M   2.98*10–95 7.40*10–95 6.0 

8,1M   1.10*10–268 2.72*10–268 8.0 

8,2M   9.17*10–212 2.28*10–211 8.0 

7f  1    

4M   1.62*10 6 4.–3 693*10–3  4.0 

6M   4.17* 0–108 1.27* 0–107 6.1 1 0 

8,1M   1.00*10–269 3.04*10–269 8.0 

8,2M   5.13*10–236 1.56*10–235 8.0 

8f  –1.5    

4M   2.30*10–39 4.68*10–38 4.0 

6M   1.36* 0–108 2.76* 0–107 6.1 1 0 

8,1M   2.83*10–231 5.75*10–230 8.0 

8,2M   2.11*10–233 4.28*10–232 8.0 
We consider the following test problems: 
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 
   
   
   2 1, 

  
 
   

3 2
1

52
2

3

4

3
5

2
6

7

1 319 636

0.3459 482420

sin 2, 1.8954942670339809,

10 exp 1.6 4284 ,

g 1 ,

sin 1.40 8 1534

cos

f x x

f x x x

f x x

f x x x

f x x

f x x

f x x





  

  

 







  2 2
8

, 0.51775736368245830,

sin 3cos 5,

1.2076478271309189.

x

x

xe

f x xe x x





 

   

 

 

Table 1 shows the absolute difference 

 , 0x  

 x 2 1, 

4x 5, 1.6  808055660 ,

1 ,   548158 ,

79630610 499

lo

449164 2 12,

x 

 



 



3x  , the 
absolute value of the function  3f x  

). It can be obs
blems, t

and the computa-
tional order of convergence (p erved clearly 
that in all considered test pro he new methods 

8,iM   1, 2i   

4

compute the results with higher precision 
than M  and 6M . This superiority of 8,iM  agrees

is of order and effici scussed
in previous sections. 

5.

the p int iterat
q alua

 
 with theoretical analys ency di

 Conclusions 

In this work, we have obtained two multipoint methods of 
order eight using an additional evaluation of function at 

o ed by Ostrowski’s method of order four for 
solving e uations. Thus, one requires three ev tions of 
the function f  and one of its first-derivative f   per 
full step and therefore, the efficiency of the me s

ki’s method. The superiority of pre-
orated by numerical resul

displayed in the table 1. The computational order of con-

 ro

 of One-Point 
and Multipoint Iteration,” Journal of the Association for 

chinery, Vol. 21, No. 4, 1974, pp. 643-651. 

thods i  
better than Ostrows
sent methods is also corrob ts 

vergence (p) overwhelmingly supports the eighth order 

convergence of our methods. These methods also p vide 
the examples of eighth order methods requiring four 
evaluations for Kung and Traub conjecture. Finally, we 
conclude the paper with the remarks that such higher or-
der methods are useful in the numerical applications re-
quiring high precision in their computations. 
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