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Abstract

In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The method-
ology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adap-
tation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index
from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples.
Moreover, theoretical order of convergence is verified on the examples.
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1. Introduction

Finding the root of a non-linear equation f(x)=0 isa
common and important problem in science and engi-
neering. Analytic methods for solving such equations are
almost non-existent and therefore, it is only possible to
obtain approximate solutions by relying on numerical
methods based on iteration procedures. Traub [1] has
classified numerical methods into two categories viz. 1)
one-point iteration methods with and without memory,
and 2) multipoint iteration methods with and without
memory. Two important aspects related to these classes
of methods are order of convergence and computational
efficiency. Order of convergence shows the speed with
which a given sequence of iterates converges to the root
while the computational efficiency concerns with the
economy of the entire process. Investigation of one —
point iteration methods with and without memory, has
demonstrated theoretical restrictions on the order and
efficiency of these two classes of methods (see [1]).
However, Kung and Traub [2] have conjectured that
multipoint iteration methods without memory based on
n evaluations have optimal order 2"*. In particular,
with three evaluations a method of fourth order can be
constructed. The well-known Ostrowski’s method [3] is
an example of fourth order multipoint methods without
memory which is defined as
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X . =W f(WI) f(Xi) , (1)
(%) (%)-2f(w)

where i=0,12,--- and x, is the initial approximation
sufficiently close to the required root. The method re-
quires two function f and one derivative f’ evalua-
tions per step and is seen to be efficient than classical
Newton’s method.

Recently, based on Ostrowski’s method (1) Grau and
Diaz-Barrero [4] have developed a sixth order method
requiring four evaluations, namely three f and one

f’ per iteration. Sharma and Guha [5] have shown that
there exists a family of such sixth order methods with
equal number of evaluations.

In the present paper, we derive two modified Os-
trowski’s-type methods which improve the local order of
convergence from four for Ostrowski’s method to eight
for new methods. The important feature of these methods
is that per step they require three evaluations of f and
one evaluation of f'. Thus, the new methods support
the conjecture of Kung and Traub for eighth order
methods based on four evaluations.

The paper is organized in six sections. In Section 2,
methods are developed and their eighth order conver-
gence is established. In Section 3, computational effi-
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J.R.SHARMA ET AL 817

ciency of the methods is discussed. Section 4 contains
the numerical experimentations and comparison with
some well known methods. Concluding remarks are given
in Section 5. In Section 6, references are given.

2. The Methods and Their Convergence

Method One
Consider the Ostrowski scheme (1) now defined by
W= — f(%) ,
i i f r(Xi ) (2)
) ()

(%) f(x)-2f(w)
In what follows, we construct the method to obtain the

approximation x,,, to the root by considering the cubic
curve interpolation. Let

y(x)=a+b(x—x)+c(x=x) +d(x=x%), @

be an interpolatory polynomial of degree three such that

y(%)="1(x), 4)

y'(x)=1"(x), ®)

y(w)="f(w), (6)

y(z)=1(z), ()
and

y'(z)=f'(z). (8)

Our interest is to find the unknown parameters a, b, ¢
and d introduced in the polynomial. In order to achieve
that, we make use of the expressions (4) - (7) in (3). From

(3), (4) and (5), it is easy to show that
a=f(x),
b '(x). ®

Substituting the values of a and b in (3) then using (6)
and (7), we obtain after some simple calculations

C+d(w —x) =" :g {f(w‘?: fx)_ f’(&)} (10)
c+d(z-x)= 2 iX- { ! (ZIZ):;(XI)_ f'(xi):|' 11)

Solving these equations using Ostrowski iteration (2),
we obtain

c— f'z(xi)[f(Wi)+ f(f(xi)_Zf(fV\Ejv . H}, (12)
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where
H=(06) f(w)(F ()= f(w))=(f(x)-f (Wi))?’.
+(F(x)=f(2))(f(x)-2f (Wi))z'

The tangent line to the curve of cubic polynomial (3) at
the point (z;,y(z)) is given by

y_y(zi)zy'(zi)(x_zi)' (14)

Assuming that the root estimate x,,, is point of inter-

section of the tangent line (14) with x-axis, then
y(X,1)=0. Thus, from (7), (8) and (14), we obtain

- t2) (15)

i+l T S

Now using the approximation (8) in (15), we can ob-
tain the new improvement as given by

X .4 =1 —m. (16)

where z; is the Ostrowski point. It is quite obvious that
formula (16) together with (2) requires five evaluations
per iteration. However, we can reduce the number of
evaluations to four by utilizing the approximation (8).
Therefore, (3) and (8) yield

f'(z)~ Yy (z)=b+2c(z —x)+3d(z,-x). (17)

Substituting the values of b, ¢ and d in (17), we
obtain

f'(z)=y(z)=01"(x), (18)

where

<1 06) F () ()= F (x))(F (x)-2f (w)]

Then the formula (16) in its final form is given by

a1 f(7)
Xy =2 — -, 19
i+l i (¢) f’(Xi) ( )
where z;, is the Ostrowski iteration (2) and ¢ is given

in (18).

Thus, we derive a multipoint method based on the
composition of two sub steps, Ostrowski sub step (2) fol-
lowed by (19) obtained by tangential cubic interpolation.
It is straight forward to see that per step the method util-
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izes four pieces of information namely- f (x), f'(x), Theorem 1. Let f(x) be a real valued function. As-

f(w) and f(z). Since we are using the approxima- suming that f (x) is sufficiently smooth in an interval .

tion (8) for the derivative, therefore the error is given by If f(x) has a simple root ael and x, is suffi-

(see [6]) ciently close to « then the method defined by (19) is of
£V (5) i order eight. i i

f'(z)-y'(z)= 2 (zi—%) (z,-w), (20) Proof: Let e =x-a, &=w—-a and &=z7-a

be errors in the ith iteration. Using Taylor’s series expan-

where & e[ min{x, W,z max {X;, w,z}]. Inorderto  gjon of f(x) about o and taking into account that
show that the method is of order eight, we prove the fol-
f(a)=0 and f'(a)#0, we have

lowing theorem:

f(x)= f’(oz)[ei +Ael+ A+ Agl +AR + Ag’ +O(ei7)] (21)
where A =(1/k!) f /f k=23, Furthermore, we have
f(x)= f'(a)[1+ 20, +3AE] +4AE +5Ae! +BAE +0(ef) . (22)

P00 o pe? - 2(A— AZ)ed (3A, TAA, + 480 )ef —(4A ~10AA, —6A7 + 20A A7 ~8A)e°
f'(Xi) i i i 4 i 4 i (23)
—(5A —13AA, ~17A A, + 28A, A} +33A7A, -52A,A] +16A7 )ef +0 e/ ).
Substitution of (23) in first step of (2), yields

6 = Agl +2(A-A)el +(3A, - TAA, +4A Je! +(4A ~10A,A, ~6A] +20AA; —8A] )¢’

24
+(5A ~13AA, ~17AA, + 28A,A; +33A] A, -52AA; +16A; )ef +O e/ ). 24
Expanding f(w;) about o and using (24), we obtain
f(w)= f’(a)[Azef+2(A3—A22)ei3+(3A4—7A3A2 +5A )¢ +(4A ~10AA, —6A + 24A A ~12A )ef
25
+(5A6—13A5A2—17A4A3+34A4A22+37A32A2—73A3A23+28A§)ei6+0(ei7)]. @
Using Equations (21), (23) and (25), we obtain
f,(xi) f(w) =Ag’ +(2A3 2R )€} +(3A, —6AA, +3A7 el +(4A, ~BAA, —4A; +12AA; —4A) )€l
F0q) F(x)-2f (w) (26)
+(5A, ~10AA, ~10AA, +16A,A; +15A7 A, — 22AA] +6A7 )ef +O(e] ).
From second step of (2) it follows that
& =(A - AR el +(-2AA —2A +BAA; —4A] e’ -
+(-3AA, —TAA +12A A +18A7 A, ~30AA] +10A7 )ef +O(e] ).
Expanding f(z) about «, we obtain
f(z)=f'(a) &+A8+0(e)), (28)

Using (27) in (28), we get

Copyright © 2011 SciRes. AM
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f(2)= (@) (A~ AA el +(-2AA ~28 +BAA —4A] e

(29)

+(-3AA, - TAA, +12AA? +18AZA, ~30AA] +10AF )ef +O(ei7)].

Using the results of (21), (25) and (29) in

¢:[f(wi)(f (Wi)_f(xi))3* f (Xi)f(Zi)(f(wi)_f(xi))(f(xi)_zf (Wi))

—21%(w)(f(z)-f (xi))(f(xi)—2f(wi))1f(xi)f(wi)(f(vvi)— f (xi))(f(xi)—Zf(Wi))J ,

and simplifying, we get

-1

p=1-2A0 +(4A; ~3A,)e} —(4A, —~12AA, +8A )&’ +(-5A, +17AA, +9A; —3BA A} +18A Je! +O(ef).  (30)

From (22) and (30), we get

p1'(x) = 1'(a)[1+ A (A - 28 + 247 )& +O(ef )| (31)

Using (28) and (31) in %, =2 —(¢) " ff((i ))
[6+ A8 +0(e)]

=8 —

ei+1

2

=8
[1+AZ(A4 —2AA, +2A§)e;‘+o(ef)]
= A8 - A (A-2AA +2A))ef8 |+O(e)

we find the error equation as given by

(e Ag 1A (A -2AA 128 |+O(e)

(32)

= AR -AA) A (A28 <28) (A~ AR ) el +O(¢))

= A (A=A A (A - A+ A Jel +O(ef).

Thus Equation (32) establishes the maximum order of
convergence equal to eight for the iteration scheme de-
fined by (19). This completes the proof of the theorem.

Remark 1. The error (20) is now given by

f2)-y(a) (e e (6 -8)

From (24), (27) and Taylor’s expansion of f(iv)(g)
about «, we can obtain the error as

f'(zi)—y’(zi)z—AAAZei“+O(ei5). (33)

This shows that the error in derivative approximation

is of order four.
Remark 2. Upon using Taylor’s expansion

F(z)= 1(e)[1+2A8+O(&)] in(e3) we ge
¥ (2)= ()12 + Ang +O(ef)].
that is
y'(zi)
= f’(a)[1+ AZ(A4 -2AA, +2A§)ei“ +O(ei5)]

(34)
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which is same as obtained in equation (31) of
y'(z)=¢f'(x). This verifies the correctness of error
(33) and calculation of y'(z).

Remark 3. From the convergence theorem of iterative
functions [1], if g,(x) and g,(x) are two iterative
functions of order p, and p,, respectively, then the
new composite iterative function G(x)=g,(g,(x)) has
the order p,p,. In our case, the Ostrowski method (2)
comprising the first two steps, is of order four. Thus to
produce eighth order method the formula (19) should be
of order two (neglecting how z; is obtained). From (34),
it tumns out that y'(z)=¢f'(x)="f'(a)[1+0(&)].
Also, the Taylor’s series expansion of the func-
tion f(z)=f'(a)|&+Ag +O(&)|. On substitution
and simplifying, we see that the Newton-like method (15)
and hence (19), has the order two, thus verifying the con-
vergence theorem on composition of two iterative func-
tions to produce eighth order iterative method.

2.2. Method Two

Here we consider the inverse interpolation. Let
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820 J.R.SHARMA ET AL

F(f(x)=A+B(f(x)-f(x))
+C(f(x)-f(x)) (35)
+D(f(x)- (%)),

be an inverse interpolatory polynomial of degree three
such that

F(F ()=, (36)
Fr(f(x))f'(x)=1 37)
F(f(w))=w, (38)
F(f(2))=2, (39)

and
F'(f(z))f'(z)~1 (40)

From (36) and (37), we can calculate A and B as
given by

A=x, B=1/1'(x). (41)

Substituting the values of A and B in (35), then
using (38) and (39), we obtain

C+D(f(w)-f(x))
1 f(Wi) (42)

and

f(w) f(x) )

f
) Fx)-2F(w) (%
The Equations (42) and (43) when solved, yield

(44)

G, (45)

where
f(w;)
(f (w,)-f (Xi))2

R S PN TS
(f(z)-1(x)) f(z) f(x)-2f(w)|

Copyright © 2011 SciRes.

The tangent line to the curve of cubic polynomial (35)
at the point (F (f(z)).f (zi)) is given by

F(f () =F (f(2))=F/(f(2))(f (-1 (2).

The approximation to the root X;,, is now obtained by

intersecting this tangent line with x-axis. This yields

X =27 — f(zi), (46)

where
f’(zi)z]/F'(f(zi))
:[B+2C(f(zi)— f(x))

+30(1(z)-1(x))'| -

From (40), (44) and (45), we have

=y : (47)

where

{f(zi)JpM}_

(Wi )_ 2f (Wi )
Hence, the iteration formula (46) is given by

f(z)

X|+l Z| l// f ,(Xi ) ’ (48)
where z, is the Ostrowski iteration (2) and y is shown
in (47).

Thus, we obtain second modified Ostrowski-like me-
thod (48) developed by tangential inverse interpolation. In
this method also, the number of evaluations required is
same as in the first method. Error in the approximation
(40), likewise the error (20), can be given by

1 -F'(f(z
g ) "
=0 6 @) £ () (1 (1) ()
where
ne[min{f(x), f(w). T (2)},
max{f(xi),f(wi),f(zi)].
AM
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In the following theorem we prove that the method is eration method defined by (48) is of order eight.

of order eight. Proof: Using (21), (25) and (29), after simple calcula-
Theorem 2. Under the hypotheses of theorem 1, the it- tions we find
1 _ 2 f(z)+ f(w)f(x)
f(w)-f(z) f(z)-f(x) f(x)-2f(w) (30)

=1+4Ae +(6A,—2A] e +(8A, —4AA, )&’ +(10A ~6AA, +2A A —2A7 )& +0O(ef).
Also

f (w) {f(zo—f(xo}z
F(wi) = f(z) [ f(w)-F(x)
=1+2A8 +(3A,—2A7 )67 +(4A, —4AA, )&’ +5( A - AA, - A A+ A el +0(e).

(51)

From (47) we know =1+ Equation (50) — Equation (51), which implies
y =1+2A8 +3A8" +4AE%+(5A— AA +TAN —TA e +0(e]). (52)

From (22) and (52), we get

1 3\ 4 5
ﬁ: f,(a)[1+A2(—A4+7A3A2—7A2)ei +0(e7)] (53)

f(z)

Then using (28) and (53) in x,,, =7 —w ——=, we obtain the error equation

(%)
== (8 A8+ O(e!)][1(-AA +TATA A el +O(el)
=6 [+ A8 |1+ (-AA +TA A -TA el [ +O(e])
—-[ A&+ A A4+7A3Az 7A)efé |+0(e?) (54)
—| A (A AA) A (AL TAA TR (A - A e O(ef)
= K (A —A)[ 65, (A - A)+A Jef +O(e?).

This result shows the eighth order convergence of we can obtain the error as
method (48). 1 '
Remark 4. The error (49) upon using (21), (25) and m_': (f (Zi))
e i (55)
(29) is given by
5 +5A) |[e' +0O(e
U@ T Ao R 0le)
(,i)( ) This shows that the error in approximation (40) is of
_F%( A A o 5 order four.
- 41 [_(f () A +O<e‘ )J Remark 5. Upon using Taylor’s expansion 1/f'(z)
Expanding F" (1) about & and using the fact that =[1/f’(a)][1—2A2éi+O(éf)]in (55), we get

ringy - B 00(@1"(@) ) E(()

( a)) N 5(f’(fl)) (f'(a)) f%a [1-2A4 + A, (-A, +5AA, -5 )ef +O(¢) ]
( 4[ o AEAZ_AA] that is

Copyright © 2011 SciRes. AM



822 J.R.SHARMA ET AL

F'(f(z))
1
:m[1+AZ(—A4+7&AZ—7A§)ei4+O(ei5)],
which is same as obtained in Equation (53) of
F'(f(z))=w/f'(x). This verifies calculations of
error term (55) and F'(f(z)).
Remark 6.
Since F'(f(z))=w/f'(x)=[Y ' («)][1+0(&)],
therefore, similar to remark 3, the iterative formula (48)
combined with the Ostrowski iteration (2) verifies the

convergence theorem on composition of two iterative
functions to produce eighth order iterative method.

3. Computational Efficiency

In order to obtain an assessment of the efficiency of our
methods we shall make use of Traub’s efficiency index
([1], Appendix C), according to which computational
efficiency of an iterative method is given by E = p*°,
where P is the order of the method and c is the cost per
iterative step of computing the function and derivative
required by the iterative formula, that is, C:ch, C;
is the cost of evaluating f'Y for j>0. The value
j=0 simply gives the function f .

Designating Ostrowski’s method (1) as M,, sixth
order method [4] as M, and present methods (19) and
(48) as My, and My, , respectively. Assuming that the
cost of evaluating ' is 1, then for M, we find effi-
ciency index E=8"~1682. For M, , E=6Y
~1.565 and similarly for M,, E=4"®~1.587. Com-
paring the E values we find that the present methods are
better options than both of M, and Mjg.

4. Numerical Ilustrations

In this section, we apply the modified methods My,
(i=1,2) to solve some nonlinear equations, which not
only illustrate the methods practically but also serve to
check the validity of theoretical results we have derived.
The performance is compared with M, and Mg. In
order to compare the higher order methods it becomes
necessary that we use higher precision in computations.
Therefore, the calculations are performed with high-pre-
cision arithmetic and terminated after three iterations. To
check the theoretical order of convergence, we obtain the
computational order of convergence (p) using the formula

(see [7])
- (.. — ) /(% —a)|.
In|(xi —a)/(xifl—a)|

We consider the following test problems:

Copyright © 2011 SciRes.

Table 1. Performance of methods.
Problem Xo la—x,| [F(x,)| p
f, 1
M, 2.21%10°% 4.65*107% 4.0
M, 7.09%107103 1.49*107% 6.0
M,, 1.18*107%° 2.48*107%® 8.0
M,, 6.43*107% 7.35%107%2 8.0
f, 1
M, 3.50%107% 5.63*107% 4.0
M, 4.25%107% 6.83*107 6.0
M,, 7.26%1071" 1.17*1077° 8.0
M,, 1.46%10746 2.35%10714 8.0
fs
M, 1.28*107"® 1.05*10™"® 4.0
M, 1.03*107%* 8.44*107%? 6.0
M,, 2.25%1075% 1.85*107%% 8.0
M,, 3.54*107°" 2.90*107" 8.0
f, 1
M, 1.57*107% 4.34*107% 4.0
M, 4.42%107 1.22*107% 6.0
M,, 2.33*107%% 6.44*107% 8.0
M,, 1.12*107%° 3.10%107%% 8.0
f, 05
M, 2.21*107% 2.21*107% 4.0
M, 274107 2.74%107° 6.0
M,, 2.53%107%%2 2.53*107%% 8.0
M,, 2.85%107" 2.85%1071" 8.0
f, 2
M, 5.44*107% 1.35%10°% 4.0
M, 2.98*%107% 7.40%10°% 6.0
M,, 1.10*107%8 2.72%107%8 8.0
M,, 9.17*107%2 2.28*10721 8.0
f, 1
M, 1.62%107% 4.93*10°% 4.0
M, 4,17*%10710® 1.27*107" 6.0
M,, 1.00*107%° 3.04*107%° 8.0
M,, 5.13*107%%° 1.56*1072® 8.0
f, -15
M, 2.30*107% 4.68*107%® 4.0
M, 1.36*107% 2.76%10717 6.0
M,, 2.83*107% 5.75%107%% 8.0
M,, 2.11*107%%8 4,28*107%% 8.0
AM
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f.(x)= x®+4x*-15, o =1.6319808055660636,

=x2—(1-x)°, @ =0.3459548158482420,
L(x)=sin(x)-x/2, & =1.8954942670339809,

=sin?(x)-x?+1, & =1.4044916482153412,

(

(x)

(x)

(x)

s(X)=x*+log(1+x), a=0,
(x)

(x)

(x)

a =-1.2076478271309189.

Table 1 shows the absolute difference |a—Xx,|, the
absolute value of the function |f (x;)| and the computa-
tional order of convergence (p). It can be observed clearly
that in all considered test problems, the new methods
Mg; (i=12) compute the results with higher precision
than M, and Mg . This superiority of M,; agrees
with theoretical analysis of order and efficiency discussed
in previous sections.

5. Conclusions

In this work, we have obtained two multipoint methods of
order eight using an additional evaluation of function at
the point iterated by Ostrowski’s method of order four for
solving equations. Thus, one requires three evaluations of
the function f and one of its first-derivative f’ per
full step and therefore, the efficiency of the methods is
better than Ostrowski’s method. The superiority of pre-
sent methods is also corroborated by numerical results
displayed in the table 1. The computational order of con-
vergence (p) overwhelmingly supports the eighth order

Copyright © 2011 SciRes.

convergence of our methods. These methods also provide
the examples of eighth order methods requiring four
evaluations for Kung and Traub conjecture. Finally, we
conclude the paper with the remarks that such higher or-
der methods are useful in the numerical applications re-
quiring high precision in their computations.
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