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Abstract 
 
Theorems of iteration g-contractive sequential composite mapping and periodic mapping in Banach or prob-
abilistic Bannach space are proved, which allow some contraction ratios of the sequence of mapping might 
be larger than or equal to 1, and are more general than the Banach contraction mapping theorem. Application 
to the proof of existence of solutions of cycling coupled nonlinear differential equations arising from 
prey-predator system and A & H stock prices are given. 
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1. Introduction 
 
Fixed point theorems play an important role for the proof 
of existence of solution of equations of algebra, differen-
tial, and integral, etc. It has been applied to many areas 
such as mathematical economics, game theory, dynamic 
optimization, functional analysis, etc. A lot of research 
work on fixed point theorems of various mappings on 
different spaces have been done (see [1,2] and their ref-
erences). Among these works, the Banach contraction 
mapping theorem is a basic theorem for many research 
works. However, the Banach contraction mapping theo-
rem needs a serious restriction, that is, all contraction 
mapping ratios must less than a constant less than 1. In-
stead of this restriction, a loosed restriction which allows 
some contraction mapping ratios to be greater or equal to 
1 but the geometric mean of contraction mapping ratios 
of the sequential mapping (simplifying as “g-contraction 
mapping”) must less than a constant less than 1, is pro-
posed by the author [2]. In this paper, the iterative 
g-contraction mapping and periodic mapping theorems in 
Banach or probabilistic Banach space are proved and 
application to cycling coupled nonlinear differential 
equations arising from prey-predator system and A & H 
stock prices are given.. 

The A-stock market in mainland China is a new de-

veloping market and is going to connect the rule with 
international market. The H-stock market in Hong Kong 
is a district international stock market. Many companies 
have their shares in both A- and H-markets, e.g., the 
China Petrol (601857) and Petro China (HK0857), a sig-
nificant share in A-stock market. Although there are 
some papers on computational stock price based on cer-
tain model [3,4], however, no paper on quantitative 
analysis of stock prices on different stock markets has 
been found. This paper establishes a cycling coupled 
differential equations of stock prices of A & H shares, 
and uses the theorem to prove the existence of solutions 
and further more find the solution as well as the prey- 
predator problem. 
 
2. Main Results 
 
In the following, let us consider a sequential mapping 
 iT , 1, 2,i N   , 1 , i:i i iT X X  X M  , M 
is a probability Banach space, i.e., a complete nonempty 
metric space satisfied probabilistic requirements. 

Definition 2.1. A sequential mapping  iT  satisfied 
(1) is called the sequential composite mapping. 


1 1:  or 

,
i i i i i i

i i

T X X x T x

x X M i N
  

   
,
          (1) 
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1

By induction, and define  

1 1 1 1
i

i i ix T T T x T x    



,        (2) 

where 
1 1

1and ,i i
iT T T T T           (3) 

The symbol F G represents the composition of map-
ping F and mapping G. 



Definition 2.2.  shown in (4) is called the contrac-
tion ratio of . 

ir
iT

   1 1sup d , d , 0

,

i i i i
i

i

r T x T y T x T y

x y X

   


    (4) 

where ,x y  are continuous random variables,  d ,x y  
is the distance between x  and  in y M , and 0 1T  . 

Obviously, we have 

   
 

1 2d , d ,

,

n n
nT x T y r r r x y

x y M



  

 ,
      (5) 

Definition 2.3. is  shown in (6) is called the iterative 
contraction ratio of . iT

   1 1Sup d , d , 0,

,

i i i i
is T x T x T x T x

x M

  
 


     (6) 

Obviously, we have 

    1 1
1 2d , d , ,  n n

nT x T x s s s T x x x M       (7) 

Definition 2.4 A sequential composite mapping  
is called the g-contraction mapping, if for each 

iT
i N , 

there exits a constant G, such that the geometric man 
contraction ratio  satisfies. iG

  1

1 20 , , , 1,   
i

i iG r r r G i N           (8) 

Definition 2.5. A sequential composite mapping  
is called the iterative g-contraction mapping U, U if 
for each , there exists a constant G, such that the 
iterative geometric mean contraction ratio  satisfies. 

iT

i N
iG

  1

1 20 , , , 1,   
i

i iG s s s G i N           (9) 

Obviously, condition (9) is weaker than condition (8). 
Theorem 2.6. Any sequential composite iterative g- 

contraction mapping of a complete nonempty metric 
space M into M has a unique fixed point in M. 

Proof: Suppose that the sequential composite mapping 
 satisfies (9). iT
Choose any point x in M , then ,we have  

     1
1d , ,   n n n

nT x T x G T x x n   0  

By the triangle inequality, we have for  m n

 
    

   

1 1 2 1

1 2
1 2 1

d ,

d , d , d ,

d ,

m n

m m m m n n

m m n
m m n

T x T x

T x T x T x T x T x T x

G G G T x x

   

 
 

   

   





  

By (9), we have  

     1 2
1d , d ,m n m m nT x T x G G G T x x      

     
 

1lim d , 1 d , 0,

,

m n nT x T x G G T x x

m n

    
 

 

Since, M complete, the sequence  has a limit z 
in M. i.e., 

 nT x
 ,nT x z x M n   

z

. This fixed point in 
unique, if there are two fixed points z and w, i.e., 

1nT x   and nT x w , then 

      1
1d , d , d , 0n n n

nz w T x T x G T x x n      , 

i.e., z = w.  
Obviously, this theorem allows part of contraction ra-

tio  if (9) holds. But the Banach contraction map-
ping theorem needs each contraction ratio r less than1, so 
this theorem is more general. If , only 1

1is 

1i  T T , then 
Theorem 1 reduces to the Banach contraction mapping 
theorem. 

Definition 2.7. A sequential composite mapping 
 jT  is called the periodic mapping with period k, if  

 ,   1, 2, , . ,j j nkT T j k n N          (10) 

and is denoted by 1
n
jP  . Where the superscript n denotes 

the times of cycling, the subscript  1,2, ,j K k    
indicates the mapping at the corresponding space jX , 
we have 

 

1

1 1

1 1

1 1 1

: , or

      ,    

, ,

j j j

1 1j j j j j j k j k

j j k

j j k j

T X X

x T x T T T x

P x

x x X



    

  

   



 





  

1

      (11) 

1 1j j j j kP T T T      ,          (12) 

1
1 1 1 1 1

n n
1j nk j j j j j jT P P P P P P

          



,   (13) 

 ,

: ,

, 

j j j k j

k j j j j k j j

P X X X

x P x x x X



 

 

 
        (14) 

Theorem 2.8. Any periodic iterative g-contraction 
mapping of complete nonempty metric space M has a 
unique set of k related fixed points in M. That is 

*
j jx X M   , such that  

* * * * * *
1,  ,  ,j j j j j j k j jP x x T x x x x          (15) 
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

Proof: For a periodic iterative g-contraction mapping, 
(7) becomes 

   

     

1

1

d , d ,

                     d , ,  

n
k

n n
j j j j

j

n

k j

P x P x s P x x

G P x x x M





 
  
 

 


  (16) 

where  

1

1
k

k j
j

G s G


   ,           (17) 

The same treatment as Theorem 1 for each n
jP  in-

stead of , we can prove that iT n
jP  has a unique fixed 

point *
jx , i.e., *n *

j jP x x
* *n n

j



1

 then 

  1 * ,  j j j j j j j jx P x P P x P x n    *    (18) 

* * *
1j j j j kT x x x    ,            (19) 

 * * ,  j k jx x j K               (20) 

  
 
3. Applications 
 
3.1. Application to the Prey-Predator System  

Problem in Banach Space 
 
3.1.1. Considering the Following Cycling Non-Linear  

Coupled Differential Equations Arising from a  
Model of Prey-Predator System [5] 

1 2

d
,

d

x
k ax k xy

t
               (21) 

2

d
,

d

y
k xy k

t
  3               (22) 

where x X , and y Y  are continuous variables, and 
represent the numbers of prey and predator respectively; 
X ,  are the sets symbolised the prey, and predator 

respectively; , , ,  are constants. Equation 
(21) shows that the increasing rate of 

Y
a 1 2kk 3k

x  is proportional 
to the product of x  and the amount of food ; and is 
decreasing with the product of 

a
x  and . Equation (22) 

shows that the increasing rate of  is proportional to 
the product of 

y
y

x  and ; and is decreasing with  
(natural death). 

y y

 
3.1.2. The Proof of Existence of Solution of (21), (22)  

by Theorem 2.8 
Equations (21) and (22) are rewritten as (23) and (24) 
respectively: 

 1
2

1 d ln
,

d

x
y k a T x

k t
     

 3 2
2

1 d ln
,

d

y
x k T y

k t
     

         (24) 

or 

1 2 1 ,y T T y P y                 (25) 

2 1 2 ,x T T x P x                (26) 

Then, Equations (25) and (26) can be solved by itera-
tion method, we have 

1 1 1 1 1 1 1 1,

,   1,2,

i
i i

i

y P y P P P y P y

y Y i
   

 

 


      (27) 

1 2 2 2 2 1 2 1

2

,

,   1,2,

i
i i

i i

x P x P P P x P x

x T y X i
   

  

 


     (28) 

X ,  are Banach spaces. 1 , 2  are continuous 
mappings. 1 , 2  are periodic mappings. Since 1T , 

2  are continuous functions, 1 , 2  as well, therefore 
it must be bounded. We choice the supper norm as the 
distance on 

Y T T
P P

T P P

X  and Y , i.e., 


1 1 2 2Sup ,  Sup ,

for , ,  and 1, 2, ,

i iP y R P x R

x X y Y i N

 

      
   (29) 

Then, (16) becomes 

 
   

1 1 1
1 1 1 1 1 1

2 1 1

d ,

                     d , d , ,

i i i i i i

i i

P y P y P y P y P y P y

G P y y G P y y

     

 
    (30) 

where the constant  is chosen  G

 1 21 1,  2 ,  max ,G S S R R R R    ,     (31) 

According to Theorem 2.8,  in (25) has a fixed 
point 

y
* *

1y P y  in Y . Similarly, x  in (26) has a fixed 
point *

2
*x P x  in X, and * *

2x T y , * *
1y T x . 

 
3.1.3. An Exact Solution of (21), (22) 
The solution of (21), (22) had been developed by Lotka 
(1925) and Vollerra (1926) independently (Refs. 1.7 and 
1.8 of [5]). However, we can’t find these articles for long 
ages far from now. Notice that (21), (22) may have no 
exact solution in general, except the food amount  in 
a special case. Let us find an exact solution by guest. 

a

Suppose that  

 exp sin ,y b c t                (32) 

Substituting  into (24), we get y

 3 2cos ,x t k k                (33) 

Substituting x  into (23), if the food amount  is a 
special function of t shown in the following form 

a
1          (23) 
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T. Q. YUN 702
 

 

   
2

2

1 2

sin
exp sin ,

cos

k c t
a b c t

k k c

 
 

 
   

  t


     (34) 

then, (23) is satisfied, and (32), (33) are solutions of (21) 
and (22). It should be mention that the supposition of 
food amount  to be a periodic function is reasonable 
and confirm with the fact than that of the supposition of 

 to be a constant. 

a

a
The exact solution of (21), (22) has a referent meaning 

for understanding the relationship among food, prey and 
predator quantitatively. The number of predator  
mainly depends on the number of prey 

y
x ; and x  

mainly depends on the food amount . , a a x  and  
are periodic functions with the same period 

y
 . 

 
3.2. Application to the Prey-Predator System  

Problem in Probabilistic Banach Space 
 
Equation (21) shows that the growing rate of prey num-
ber x  is proportional to the product of the food amount 

 and the number of prey a x , if other elements keep 
unchanged. The proportion constant is 1 . Equation (22) 
shows that the growing rate of predator number  is 
inverse proportional to the product of 

k
y

x  and , if 
other elements keep unchanged. The inverse proportional 
constant is . And constant 3  represents the natural 
death rate of . It is reasonable and reflect the fact that 

1 , 2  and 3k  are considered as independent random 
variables than that of constants. Let 1 , 2

y

k v

2k
y

k

k k
k u  , 

 be independent continuous random variables , 
, , then, 

3k
v

w
w

u
 ,, ,x x t u v w ,  , , ,y y t u v w , are 

continuous random variables and satisfy the probabilistic 
properties, i.e., 

   0,  0,f x g y 

1,

1,

1,

1,

           (35) 

     

     
0

0

0 0 d

0 0 d

x

y

p x F x f x x

p y G y g y y

    

    




     (36) 

   

   
0

0

d d

d d

M

M

x

y

f x x f x x

g y y g y y









 

 

 

 
       (37) 

where f , g , F ,  are the density function, distrib-
uted function of 

G
x  and  respectively;  is the 

probability. 
y p

Comparing  x x t X   and  y y t Y   of (23) 

and (24) in Banach space with  

   , , , 0, Mx x t u v w x M    and  

   , , , 0, My y t u v w y M    in probabilistic. 

Banach space M , we found that there is no differ-

ence between the distances defined by Sup norm, i.e., 

   
   

Sup , , , Sup ,

Sup , , , Sup ,

M

M

x x t u v w x t x

y y t u v w y t y

 

 




 

Mappings 1 , 2  and 1 , 2  of (25) and (26) in 
Banach space are continuous mappings, so these map-
pings are still continuous mappings in probabilistic Ba-
nach space ((Lemma 4.3 continuous mapping) of [2]) 
and the proof of existence of fixed points in Section 3.1.2 
is still suited for the case of probabilistic Banach space. 

T T P P

 
3.3. Application to A & H Stock Prices 
 
3.3.1. Cycling Coupled Differential Equations of  

Stock Prices of A & H Shares 
Let  x x t  and  y y t  be the stock prices of 
China Petrol (601857) and Petrol China (HK0857) re-
spectively. Follows the set up of differential equation of 
stock price [3,4], we have: 

1) Equations of amount of purchasing and selling of 
 x t  

       1

1 2 ,pA t p x t p x t ay t
           (38) 

     1 ,sA t s x t ay t               (39) 

where  pA t  and  sA t
p
 are the amount of purchasing 

and selling respectively; 1 , 2 , 1p s ,  are constants; 
(36) shows that 

a
 pA t  is inversely proportion to  x t  

and proportion to the difference of    x t ay t ; (37) 
shows that  sA t  is proportion to    x t ay t . 

2) Assumes that the changing rate of stock price is 
proportion to the difference of demand and supply, we 
have 

   d

d p s

x
g A t A t

t
    ,           (40) 

where constant g keeps the same of dimensions in both 
sides of (40). 

3) Substituting (38) and (39) into (40), we have 

   
11

3
2 1

1 1 d
,

d

p x
y T x x x

a p s a g t
   


     (41) 

Similarly, we have 

  11 2 1
4

2 1 2 1

1 d
,

d

p p s y
x T y y y

p s p s g t
 

   
 

  (42) 

In which, the right hand side of (36) is changed to 
 1

1 2p y p ay x   , and (39) is unchanged. 
Equations (41), (42) are cycling coupled non-linear 

differential equations, and 3 , 4  are continuous map-
pings. Similarly to (25) and (26), (41) and (42) have 

T T
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fixed points  and 3 4 4 3* *y T T y  * *x T T x  . 

If the coefficients in (41) and (42) are viewed as ran-
dom variables, then,  and y x  are the functions of 
random variables, like the case in Section 3.2,  and y
x  also have fixed points in probabilistic Banach space. 
 
3.3.2. An Exact Solution of Speculating Type  

Differential Equations of Stock Price for  
A & H Stocks 

Usually, (41), (42) may have no exact solution. However, 
for a simplest case, for example, the second term in (38) 
is much larger than the first term, i.e., the speculation on 
the difference of stock prices in A & H stock market (and 
suppose that there is no limit for money freely to pur-
chase a stock in A or H stock market) forms a major part 
of the purchasing volume. In such case, , and (41), 
(42) become 

1 0p 

1 1 d
,

d

x
y x

a g
 

t
               (43) 

2 1

2 1

1 d
,

d

y

g t


p s
x y

p s





             (44) 

Equations (43), (44) are cycling coupled differential 
equations of stock prices in A and H stock markets.  

Substituting (44) into (43), we have 
2

2

d d
0,y 

dd

y y
R S

tt
              (45) 

where  R g a kg  ,   2k gS a  , 2 1

2 1

p
k

s

p s





. 

Equation (45) has exact solution, depended on the root 
of characteristic function . 2r R 0r S  

 2 2p ,

1) when ,  2 4 0R S 

 1 1exp exy C r t C  r t           (46) 

where ,  are arbitrary constants, and 1C 2C

 2
1r R R   4 2,S  

 2
2 4 2r R R S    ,  

2) When , 2 4 0R S 

 exp ,  2,y C rt r R  

0

          (47) 

3) When , the characteristic function has 
complex roots and there is no real meaning for  has 
complex value and thus is out of discussion. 

2 4R S 
y

Similarly, substituting (43) into (44), we have,  
2

2

d d
0,

dd

x x S
R x

t at
             (48) 

4) When 2 4 0R S a  ,  

   3 3 4 4exp exp ,x C r t C r t         (49) 

where ,  are arbitrary constants, and  3C 4C

 2
3 4 2r R R S a      

, 

 2
4 4 2r R R S a      

,  

5) When 2 4 0R S a  , 

 5 5exp ,  2,x C r t r R            (50) 

6) When 2 4 0R S a  , x  has no real meaning and 
is out of discussion. 
 
4. Discussion on the Solution 
 
We are interested in “what is ” and “how to find ”. a a

   *a x t y t *  is the ratio of A-share price to H-share 
price at the equilibrium time . If , then the 
“hot money” (money can freely purchase or sell stocks in 
A and H markets) rushes into H-stock market to purchase 
the cheaper shares; if 

*t

0y

0x ay 

x a  , then the hot money 
rushes into A-stock market to purchase the cheaper 
shares. And if 0x ay  , then it is the equilibrium state, 
in which no profits can be made by speculating the dif-
ference of stock prices in A-stock or H-stock markets. 

a  is an important value for decision making of op-
erators. But how to find  = ?  a

From (41), if d d 0x t  , then,    * *a x t y t . 
From (42), if d d 0y t  , then, 1 1   x t ky t . If both 
stock prices are in equilibrium state at the same time 

1*t t , then a k .  
The determination of coefficients via market data may 

be referred to [3], or we can directly use the share prices 
both in temporary equilibrium states (the so-called 
“Doji” or the Chinese stock market saying “cross star”) 
of A and H stock markets at the same time to find . 
For example, 2008-04-10, a “Doji” for China Petrol 
(601857) (opening price 17.11, closing price 17.35 RMB) 
and a near “Doji” for Petrol China (HK0857) (opening 
price 10.20, closing price 9.82 HKD). Then,  = 

a

a x y  
= 17.35×0.88/9.82 = 1.554. (where 0.88 is the changing 
rate for RMB to HKD) 

The analysis of this example might be useful to deci-
sion making of operators and is referred [6] for details. 
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